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Quantitative geneticists long ago recognized the value of studying evolu-
tion in a multivariate framework (Pearson, 1903). Due to linkage, pleiotropy,15

coordinated selection and mutational covariance, the evolutionary response
in any phenotypic trait can only be properly understood in the context of
other traits (Lande, 1979; Lynch and Walsh, 1998). This is of course also
well–appreciated by comparative biologists. However, unlike in quanti-
tative genetics, most of the statistical and conceptual tools for analyzing20

phylogenetic comparative data (recently reviewed in Pennell and Harmon,
2013) are designed for analyzing a single trait (but see, for example Rev-
ell and Harmon, 2008; Revell and Harrison, 2008; Hohenlohe and Arnold,
2008; Revell and Collar, 2009; Schmitz and Motani, 2011; Adams, 2014b).
Indeed, even classical approaches for testing for correlated evolution be-25

tween two traits (e.g., Felsenstein, 1985; Grafen, 1989; Harvey and Pagel,
1991) are not actually multivariate as each trait is assumed to have evolved
under a process that is independent of the state of the other (Hansen and
Orzack, 2005; Hansen and Bartoszek, 2012). As a result of these limitations,
researchers with multivariate datasets are often faced with a choice: ana-30

lyze each trait as if they were independent or else decompose the dataset
into statistically independent set of traits, such that each set can be ana-
lyzed with the univariate methods.

Principal components analysis (PCA) is the most common method for
reducing the dimensionality of the dataset prior to analyzing the data us-35

ing phylogenetic comparative methods. The first PC axis is the eigenvector
in the direction of greatest variance, the second PC axis, the second greatest
variance, and so on. However, standard methods for calculating PC scores
assume that the samples are independent of one another, which is hardly
ever the case for comparative data. As a result of shared common ancestry,40

relatives are likely to share many traits and trait combinations. Performing
comparative analyses without considering the species’ evolutionary rela-
tionships is anathema to most evolutionary biologists, but it is less well–
appreciated that phylogeny should be considered when transforming data
(Revell, 2009; Polly et al., 2013).45

Standard PCA continues to be regularly used in comparative biology.
This is applied to a variety of types of traits including geometric morpho-
metric landmarks (e.g., Dornburg et al., 2011; Hunt, 2013), measurements
of multiple morphological traits (e.g., Harmon et al., 2010; Bergmann and
Irschick, 2012; Weir and Mursleen, 2013; Pienaar et al., 2013; Price et al.,50

2014), and climatic variables (e.g., Kozak and Wiens, 2010; Schnitzler et al.,
2012). We stress that the papers that we have cited here are simply ex-
amples selected from a substantial number of papers where standard PCA
was used.

The most frequently used approach for correcting for the non–independence55

of species is to assume a phylogenetic model for the evolution of measured
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traits and incorporate the expected covariance in the calculation of the PC
axes and scores (Revell, 2009). Revell’s method (explained in detail below)
assumes that the measured traits have evolved under a multivariate Brow-
nian motion (BM; Edwards and Cavalli-Sforza, 1964) model of trait evo-60

lution. In a brief simulation study, Revell (2009) demonstrated that if the
underlying model for the traits was indeed a multivariate BM model, per-
forming standard PCA gave biased estimates of the eigenvalues, whereas
pPCA did not.

In this paper, we first extend the argument of Revell (2009) and demon-65

strate how biased eigenvalues obtained from PCA systematically distort
biological inference in a predictable manner. Performing comparative anal-
yses on standard PC axes can therefore positively mislead inference. This
point has been made in other fields that deal with auto–correlated data,
such as population genetics (Novembre and Stephens, 2008), ecology (Po-70

dani and Miklós, 2002), climatology (Richman, 1986) and paleobiology
(Bookstein, 2012). However, the connection between these previous results
and phylogenetic comparative data has not been widely appreciated and
standard PCs continue to be regularly used in the field. We hope that our
paper helps change this practice.75

Second, as stated above, Revell (2009) assumed that the measured traits
had evolved under a multivariate BM process. As the pPC scores are not
phylogenetically independent (Revell, 2009; Polly et al., 2013, see below),
one must use comparative methods to analyze them which will in turn re-
quire selecting an evolutionary model for the scores. The choice of model80

for the traits and the pPC scores are separate steps in the analysis (Rev-
ell, 2009). This has the potential to introduce an odd circularity into the
analysis: it seems probable that the choice of a model for the evolution of
the traits will influence the apparent macroevolutionary dynamics of the
resulting pPC scores. To our knowledge this effect has not been previ-85

ously explored. Here we analyze simulated data to investigate whether
assuming a BM model for the traits introduces systematic biases in the
pPC scores when the generating model is different. Furthermore, we an-
alyze two real comparative datasets — wherein the traits almost certainly
have not evolved via a strict BM process – to understand the implications90

of these results for the types of data that researchers actually have.

Last, we consider the interpretation of evolutionary models fit to pPC
axes and discuss the conceptual and statistical advantages and disadvan-
tages of using pPCA compared to alternative approaches for studying mul-
tivariate evolution in a phylogenetic comparative framework. We argue95

that the statistical advantages of using pPC axes comes at a substantial
conceptual cost and that alternative techniques are likely to be much more
informative for addressing many evolutionary questions.
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Methods

Overview of pPCA100

Before describing our analyses, we briefly overview standard and phyloge-
netic PCA and highlight the differences between the two. In conventional
PCA, a m×m covariance matrix R is computed from a matrix of trait values
X for the n species and m traits

R = (n− 1)−1(X− 1µᵀ)ᵀ(X− 1µᵀ) (1)

where µ is a vector containing the means of all m traits and 1 is a column105

vector of ones. We note that in many applications X may not represent the
raw trait values; in geometric morphometrics, for example, size, translation
and rotation will often be removed from X prior to computing R (Rohlf
and Slice, 1990; Bookstein, 1997). The eigenvalues D and eigenvectors V of
R are then obtained using singular–value decomposition R = VDV−1 or110

some related technique. The scores S, the trait values of the species along
the PC axes, are computed as

S = (X− 1µᵀ)V. (2)

Phylogenetic PCA differs from this procedure in two important ways
(Revell, 2009; Polly et al., 2013) . First the covariance matrix is inversely
weighted by the expected covariance of trait values between taxa under a115

given model Σ. Under a BM model of trait evolution, Σ is simply propor-
tional to the matrix representation of the phylogenetic tree C, such that
Σi,j is the shared path length between lineages i and j. (We note that as
only relative branch lengths matter, under a multivariate BM process, we
can simply set Σ = C without loss of generality.) Including the expected120

covariance between trait values essentially just re–orients the axes accord-
ing to the phylogeny. Second, the space is centered on the “phylogenetic
means” a of the traits rather than their arithmetic means, which can be
computed following Revell and Harmon (2008):

a = [(1ᵀΣ−11)−11ᵀΣ−1X]ᵀ. (3)

In pPCA, Equation 1 is therefore modified as125

R = (n− 1)−1(X− 1aᵀ)ᵀΣ−1(X− 1aᵀ) (4)

Similarly, S can be calculated for pPCA using Equation 2 but substituting
the phylogenetic means for the arithmetic means

S = (X− 1aᵀ)V (5)
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where again, V is a matrix containing the eigenvectors of R (in this case
obtained from Equation 4).

The effect of weighting the covariance and centering the space using130

phylogeny has an important statistical consequence (Revell, 2009; Polly
et al., 2013). In PCA, each PC score is independent of all other scores
from the same PC axis and from scores on other axes. Due to the phylo-
genetic structure of the data, this property of independence does not hold
when using pPCA. Therefore it is necessary to analyze pPC scores using135

phylogenetic comparative methods, just as one would for any other trait
(Revell, 2009; Polly et al., 2013).

Effect of PCA on model selection under multivariate Brownian
motion

We simulated 100 replicate datasets under multivariate Brownian motion140

to evaluate the effect of using standard versus phylogenetic PCA to infer
the mode of evolution. For each dataset, we used TreeSim (Stadler, 2011) to
simulate a phylogeny of 50 terminal taxa under a pure–birth process and
scaled each tree to unit height. We then simulated a 20–trait dataset under
multivariate Brownian motion. When analyzing phylogenetic comparative145

data, R is estimated from the data; here, we set R to be a known quantity
and use it to simulate phylogenetically structured trait data. For each sim-
ulation, we generated a positive definite covariance matrix for R, by draw-
ing eigenvalues from an exponential distribution with a rate λ = 1/100

and randomly oriented orthogonal eigenvectors. We then used this matrix150

to sample a covariance matrix for the tip states X ∼ N (0, R ⊗ C) where
⊗ is the Kronecker product. For each of the 100 simulated datasets, we
computed PC scores using both standard methods and pPCA (using the
phytools package; Revell, 2012). We used phylolm (Ho and Ané, 2014) to
fit models of trait evolution to the original data and to all PC scores ob-155

tained by both methods. Following Harmon et al. (2010), we considered
three models of trait evolution: 1) BM; 2) Ornstein–Uhlenbeck with a fixed
root (OU: Hansen, 1997); and 3) Early Burst (EB: Blomberg et al., 2003; Har-
mon et al., 2010). We then calculated the Akaike weights (AICw) for each
model/transformation/trait combination.160

To explore the effect of trait correlation on inference, we conducted an
additional set of simulations where R was varied from the above simu-
lations to result in more or less correlated sets of phenotypic traits. We
drew eigenvalues m from an exponential distribution and scaled these
so that the leading eigenvalue m1 was equal to 1. We then exponenti-165

ated this vector across a sequence of exponents ranging for �1 to �1;
this gave us a series of covariance matrices ranging from highly correlated
(m1 = 1; m2, . . . , m20 ≈ 0) to nearly independent (m ≈ 1), respectively. We
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chose the series of exponents to obtain a regular sequence of m1/ ∑20

i=1
mi

from 0.05 to 1. For each set of eigenvalues, we simulated 25 datasets and170

estimated the slope of the relationship between the absolute size of phylo-
genetically independent contrasts (Felsenstein, 1985) and the height of the
node at which they were calculated (i.e., the “node height test” of Freck-
leton and Harvey, 2006). Under OU models, this relationship is expected
to be positive, while under EB models this relationship is negative. BM175

models are expected not to show correlation between contrasts and height
of the nodes.

Effect of using PCA when traits are not Brownian

We then simulated datasets under alternative models of trait evolution. Be-
cause of difficulties in efficiently simulating large multivariate datasets of180

covarying traits under OU or EB models, we instead simulated 20 indepen-
dent traits under BM, OU and EB for 50 taxa trees (as above, but setting all
eigenvalues equal to one another). Of course, this is certainly not represen-
ative of the process that have shaped real multivariate data, but considering
this simple case allowed us to investigate how misspecifying the model of185

trait evolution can impact analyses under the simplest scenario.

For the BM simulations, we set σ2 = 1. For OU, we set σ2 = 1 and
α = 2, such that the phylogenetic half–life log(2)/α (Hansen et al., 2008)
was equal to ∼ 0.35 of the total tree depth. For EB, we again set σ2 = 1 and
set a, the exponential rate of deceleration, to be log(0.02).190

As above, we fit BM, OU and EB models to the original data, PC scores
and pPC scores for each simulated dataset and estimated parameters and
AICw. In addition to the model–fitting and comparison, for every trans-
formation, we applied two common diagnostic tests for deviation from
BM–like evolution to all trait/PC axes. First, we calculated the slope of the195

node height test as described in the preceding section. Second, we charac-
terized the disparity through time (Harmon et al., 2003) using the geiger

package (Pennell et al., in press).

Finally, we examined the scenario in which a set of traits each follow a
model of evolution with unique evolutionary parameters. In particular, we200

use the accelerating-decelerating (ACDC) model of Blomberg et al. (2003) to
generate independent trait datasets. This model is a general case of the EB
model which allows both accelerating or decelerating rates of phenotypic
evolution. Accelerating rates of evolution result in identical likelihoods
as the OU model (assuming the root state is at the optimal trait value),205

and thus are equivalent for our purposes. We simulated 100 datasets with
50 taxa and 20 traits. Trees were generated as in previous simulations.
Each trait was simulated along the phylogeny with an ACDC parameter
(a) drawn from a normal distribution with mean 0 and standard deviation
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of 5. Values of a above 0 correspond to accelerating evolutionary rates,210

while those below 0 correspond to decelerating, or Early-Burst models of
evolution. For each dataset, we conducted both standard and phylogenetic
PCA in which the traits are standardized to unit variance (i.e., using cor-
relation matrices, which ensured traits across parameter values had equal
expected variances). For each PC or pPC, we regressed the magnitude of215

the trait loadings against the trait’s ACDC parameter value. We then vi-
sualized whether there were systematic trends in the relationship between
the ACDC parameter value, and the weight given to a particular trait across
PC axes. Such systematic trends would indicate that either PCA or pPCA
“sorts” traits into PC axes according to the particular evolutionary model220

each trait follows.

Empirical examples

We analyzed two comparative datasets assembled from the literature, al-
lowing us to investigate the effects of principal components analyses on re-
alistically structured data. First, we analyzed phenotypic evolution across225

the family Felidae (cats) using measurements from two independent sources
— five cranial measurements from Slater and Van Valkenburgh (2009) and
body mass and skull width from Sakamoto et al. (2010). For the analy-
sis, we used the supertree compiled by Nyakatura and Bininda-Emonds
(2012). Second, we analyzed 23 morphometric traits in Anolis lizards and230

phylogeny from Mahler et al. (2010). In both datasets, all measurements
were linear measurements on the logarithmic scale. We conducted stan-
dard and phylogenetic PCA and examined the effect of each on model–
fitting, the slope of the node height test, and the average disparity through
time. All simulations and analyses were conducting using R v3.0.2 (R De-235

velopment Core Team, 2013). Scripts to reproduce all analyses are available
at https://github.com/mwpennell/phyloPCA.

Results

Effect of PCA on model selection under multivariate Brownian
motion240

Standard PCA introduces a systematic bias in the favored model across
principal components. In our simulations where the traits evolved under
a multivariate BM model, EB models had systematically elevated support
as measured by Akaike weights for the first few components, for which
it generally exceeded support for the BM model (Figure 1). Fitting mod-245

els sequentially across PC axes 1–20 revealed a regular pattern of increas-

7

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 22, 2014. ; https://doi.org/10.1101/007369doi: bioRxiv preprint 

https://doi.org/10.1101/007369
http://creativecommons.org/licenses/by-nd/4.0/


ing support for BM models moving from the first toward the intermediate
components, followed by increasing support for OU models among later
components (which generally approached an AICw of 1). This regular pat-
tern across trait axes was not present for either the original datasets, or for250

phylogenetic principal components, which found strong support for the
BM model regardless of which trait was analyzed. We note that the theo-
retical maximum AICw for the BM model in the three–model comparison
is 1/(2e−1 + 1) ≈ 0.576, as BM is a special case of both OU and EB and
therefore the ∆AICw for these models cannot be greater than 2.255

Multivariate datasets simulated with high correlations (low effective di-
mensionality) showed increased support for BM across PC axes. When
the leading eigenvalue explained a large proportion of the variance, the
slope of the node height test converged toward 0, indicating no system-
atic distortion of the contrasts through time (Figure 2). However, when the260

eigenvalues of the rate matrix were more even, standard PCA resulted in
a negative slope in the node height test among the first few PCs, which
in turn provides elevated support for EB models. This pattern is reversed
among higher PC axes, which have positive slopes between node height
and absolute contrast size, which provides elevated support for OU mod-265

els (Figures 2 and 4).

Effect of using PCA when traits are not Brownian

If the underlying model was either OU or EB rather than BM, then phy-
logenetic PCA tended to increase support for the true model relative to
the original trait variables for the first few component axes (Figures 3, S1,270

and S2). For example, when each of the original trait variables were simu-
lated under an OU process, support for the OU model increased for pPC1

relative to the original trait variables. Higher principal component axes in-
ferred a regular pattern of decreasing support for the OU model, while the
last few PCs have equivocal support for either a BM or OU model (Figure275

3). Furthermore, parameter estimation was affected by phylogenetic PCA.
The α parameter of the OU model was estimated to be stronger than the
value simulated for individual traits for the first few pPC scores and lower
for the higher components (Figure S3).

Examining the outcomes of the node height tests (Figure 4) and the dis-280

parity through time analyses (Figure 5) help clarify the results we observed
from model comparison and parameter estimation. Under OU models,
traits are expected to have the highest contrasts near the tips, whereas un-
der EB models, traits will have the highest contrasts near the root of the
tree. Under multivariate BM, standard PCA maximizes the overall vari-285

ance explained across the entire dataset, thereby tending to select linear
combinations of traits that maximize the contrasts at the root of the tree.
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Thus, the first few PCs are skewed toward resembling EB models, while the
last few PCs are skewed toward resembling OU models. By contrast, the
effect of pPCA on the node height relationship depends on the generating290

model. When traits are evolved under an OU model, the first few pPC axes
show an exaggerated pattern of high variance towards the tips. Likewise,
when traits are evolved under an EB model, the first few pPC axes show an
exaggerated pattern of high variance towards the root of the tree. For traits
generated under both OU and EB models, the higher components resemble295

BM–like patterns.

When the data includes traits evolved under different parameters, both
PCA and pPCA resulted in the systematic assignment of traits with par-
ticular parameter values to each PCA axes. Traits which follow EB models
are preferentially given higher loadings under both PCA and pPCA for the300

first few PCs as well as the last few PCs (Figure 6). Furthermore, both PCA
and pPCA assign fewer PCs with higher loadings to traits that follow EB
models, whereas the intermediate PCs have more even loadings slightly
skewed toward accelerating rates (i.e., OU–like models). This asymmetry
may reflect the fact that EB models are more variable in their outcomes305

to the phylogeny, owing to the fewer independent branches among which
divergence can occur closer to the root of the tree. Our results indicate that
both pPCA and PCA can be biased in the selection of PC axes with respect
to the generating evolutionary model.

Empirical examples310

In the Felid dataset, the seven morphometric traits were extremely highly
correlated, with the first PC explaining 96.9% and 93.7% of the total vari-
ation in the dataset for standard PCA and phylogenetic PCA, respectively.
All raw traits and the first PC axis of both standard and phylogenetic PCA
support a BM model of evolution (PC and pPC axes have AICw’s of 0.574,315

which is near the theoretical maximum for BM). The last four standard
PC axes show strong support for a OU model (AICw ≈ 1) whereas un-
der phylogenetic PCA the last axes have mixed support favouring BM or
OU (Figure S4). Both the node height test and the disparity through time
plots show this same pattern. The node height slope of the first axis is ap-320

proximately zero while the slope of the remaining axes are slightly positive
under standard and phylogenetic PCA. The first axis show the same dispar-
ity through time pattern of the untransformed data in both standard and
phylogenetic PCA. However, the last PC axes show disparity accumulated
toward the tips under standard PC, while phylogenetic PCA produced a325

less clear pattern (Figure S5).

For the morphometric traits in the Anolis dataset, the first PC also ex-
plained a large proportion of the variation (92.6% and 90.0% for standard
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and phylogenetic PCA, respectively). Most of the untransformed traits had
equivocal support for either a BM or EB model (Figure 7). While PC1 of330

both PCA and pPCA mirrored this pattern, the remaining PCs for both
PCA and pPCA show a general pattern of decreasing support for an EB
model (Figure 7). Collectively PCs 2-4 had higher support for the EB model
than any other PC in both standard PCA (AICwEB: PC2 = 1.0; PC3 = 0.47;
PC4 = 0.28) and phylogenetic PCA (AICwEB: pPC2 = 1.0; pPC3 = 0.43,335

pPC4 = 0.27). Similarly, these early PC axes tended to have more negative
slopes from the node height test relative to the average trait in the dataset
(Figure S6).

Discussion

Different ways of representing the same set of data can change the mean-340

ing of measurements and alter the interpretations of subsequent statistical
analyses (Houle et al., 2011). PCA is often considered to be a simple linear
transformation of a multivariate dataset and the potential consequences of
performing phylogenetic comparative analyses on PC scores has received
very little attention. In this paper, we sought to highlight the fact that fitting345

macroevolutionary models to a handful of PC axes may positively mislead
inference — what appears like the signal of an interesting biological pro-
cess may simply be an artifact stemming from how PCA is computed. By
focusing analyses exclusively on the first few PC axes, as is commonly done
in comparative studies, researchers are, in effect, taking a biased sample of350

a multivariate distribution. We demonstrate how these biased samples can
influence inference in both PCA and pPCA — particularly toward inferring
decreasing rates of evolution in highly dimensional datasets.

We can obtain an intuitive understanding of how inference can be af-
fected by PCA by considering data simulated under a multivariate BM355

model. Despite a constant rate of evolution across each dimension of trait
space, stochasticity will ensure that some dimensions will diverge more
rapidly than expected early in the phylogeny, while others will diverge
less. All else being equal, dimensions that happen to diverge early are
expected to have the greatest variance across species, and standard PCA360

will identify these axes as the primary axes of variation. However, the trait
combinations that are most divergent early, will have apparent slowdowns
towards the present simply due to “regression toward the mean”, result-
ing in the characteristic “early burst” pattern of evolution for the first few
principal components (for a related point in the context of models of lin-365

eage diversification, see Pennell et al., 2012). An analogous process will
result in the last few PCs following an OU process, in which the amount
of divergence will appear to increase toward the present. Standard PCA
thus “sorts” orthogonal trait dimensions by whether they follow EB, BM
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and finally, OU like patterns of trait divergence. Thus, traits studied using370

PCA may often be biased to reflect particular evolutionary models, merely
as a statistical artifact.

These problems, which ultimately stem from using PCA on auto–correlated
data, are not limited to phylogenetic comparative studies (see Richman,
1986; Podani and Miklós, 2002; Novembre and Stephens, 2008; Jolliffe, 2002;375

Bookstein, 2012). For example, Novembre and Stephens (2008) demon-
strated that apparent waves of human migration in Europe obtained from
PCA of genetic data (e.g., Cavalli-Sforza et al., 1994) could be attributed
to artifacts similar to those we document here (in their case, the auto–
correlation was the result of geography rather than phylogeny). While the380

bias introduced by applying standard PC to comparative data has been
documented previously (Revell, 2009; Polly et al., 2013), we sought to clar-
ify precisely how inferences of macroevolutionary processes and patterns
can be impacted by this bias.

Revell (2009) recognized this biased selection of eigenvectors and intro-385

duced pPCA as a means for accounting for the phylogenetic correlation
of data points. Our simulations verify that when the underlying model
is multivariate BM, phylogenetic PCA mitigates the biased selection of PC
axes by scaling divergence by the expected divergence given the branch
lengths of the phylogeny. However, BM is often a poor descriptor of the390

macroevolutionary dynamics of trait evolution (for example, see Harmon
et al., 2010; Pennell et al., 2014) and assuming this model when performing
pPCA is less than ideal. Revell (2009) suggested that alternative covariance
structures could be used to estimate phylogenetically independent PCs for
different models. For example, one could first optimize the λ model (Pagel,395

1999) across all traits simultaneously and then rescale the branch lengths of
the tree according to the estimated parameter in order to obtain Σ for use in
Equation 4. However, one cannot compare model fits across alternative lin-
ear combinations of traits, so the data transformation must occur separately
from modeling the evolution of the PC axes. As Revell noted, parameters400

estimated to construct the covariance structure for the pPCA will likely be
different from the same parameters estimated using the PC scores them-
selves. Furthermore, this procedure is restricted to models that assume a
shared mean and variance structure across traits (see Hansen et al., 2008;
Bartoszek et al., 2012, for examples where this does not apply). As such, if405

the question of interest relies on model–based inference, transformation of
trait data using pPCA will require simplifying and rather ad–hoc assump-
tions, and researchers must hope that the resulting inferences are generally
robust to these decisions.

We show that when the trait model is misspecified, systematic and pre-410

dictable distortions occur across pPC axes — similar to those that were
observed when the phylogeny was ignored altogether. In some scenar-
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ios, such distortions may not substantially alter inference. For example,
when all traits evolve under a OU model (or when all traits evolve un-
der a EB model), we find that these distortions primarily serve to inflate415

the support for the true model. Even so, interpretation of parameter esti-
mates for pPC scores becomes much more challenging (Figures 4, 5, and
S3). However, more complex scenarios can produce more worrying distor-
tions. When evolutionary rates vary through time and across traits, both
PCA and pPCA will sort traits into PC axes according to which evolution-420

ary model they follow, despite all traits being evolutionarily independent.
Under the conditions we examined, this resulted in both PC1 and pPC1 be-
ing heavily-weighted toward EB-type models, despite simulating an even
distribution of accelerating and decelerating rates across traits. Sugges-
tively, we observe similar patterns for both PCA and pPCA in the Anolis425

morphometric dataset (Figures 7 and S6). Focusing on the first few axes
of variation identified by pPCA alone may skew our view of evolutionary
processes in nature, and bias researchers toward finding particular patterns
of evolution.

When employed as a descriptive tool, PCA can be broadly used even430

when assumptions regarding statistical non–independence or multivariate
normality are violated (Jolliffe, 2002). There is nothing wrong with using
standard PCA or pPCA on comparative data to describe axes of maxi-
mal variation across species or for visualizing divergence across phylo–
morphospace (Sidlauskas, 2008). Furthermore, our simulations and em-435

pirical analyses suggest that strong correlations among traits (i.e., when
the leading eigenvector explained a majority of the variation, e.g., > 75%),
PC scores may not be appreciably distorted (Figure 2). The statistical arti-
facts we describe are more likely to appear when matrices have high effec-
tive dimensionality (see Bookstein, 2012). Given that many morphometric440

datasets may be highly correlated, the overall effect of using PCA or of
misspecifying the model in phylogenetic PCA may in some cases be rela-
tively benign. And we certainly do not mean to imply that the biological
inferences that have been made from analyzing standard or phylogenetic
PC scores in a comparative framework are necessarily incorrect. When445

Harmon et al. (2010) analyzed the evolution of PC2 (what they referred
to as “shape”) obtained using standard PCA, they found very little sup-
port for the EB model across their 39 datasets. The magnitude of the bias
introduced by using standard PCA is difficult to assess but any bias that
did exist would be towards finding EB–like patterns. This only serves to450

strengthen their overall conclusion that such slowdowns are indeed rare
(but see Slater and Pennell, 2014). However, our results do suggest that in
some cases analyses conducted with PC axes should be revisited to ensure
that results are robust.

The broader question raised by our study is how one should draw evo-455

lutionary inferences from multivariate data. The first principal component
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axis from pPCA is the major axis of divergence across the sampled lineages
in the clade (also known as the “line of divergence”). This axis is of con-
siderable interest in evolutionary biology. The direction of this line of di-
vergence may be affected by the orientation of within–population additive460

genetic (co)variance G, such that evolutionary trajectories may be biased
along the “genetic line of least resistance” (i.e., divergence occurs primar-
ily along the leading eigenvector of G, gmax; Schluter, 1996). Alternatively,
the line of divergence may align with ωmax, the “selective line of least re-
sistance”, due to the structure of phenotypic adaptive landscapes (Arnold465

et al., 2001; Jones et al., 2007; Arnold et al., 2008), or else may be driven by
patterns of gene flow between populations (Guillaume and Whitlock, 2007)
or the pleiotropic effects of new mutations (Jones et al., 2007; Hether and
Hohenlohe, 2014).

While it is perfectly sensible and interesting to compare the orienta-470

tion of pPC1 to that of gmax, ωmax or other within–population parameters,
making explicit connections between macro– and microevolution requires a
truly multivariate approach. Quantitative genetic theory (e.g., Lande, 1979;
Lynch and Walsh, 1998) makes predictions about the overall pattern of evo-
lution in multivariate space. By fitting evolutionary models to pPC scores,475

we are only considering evolution along these axes independently and are
therefore missing most of what is going on. In contrast, multivariate tests
for the correspondence of axes of trait variation within and between species
can provide meaningful insights into the long–term determinants of evo-
lutionary change, and the process by which traits evolve (Hohenlohe and480

Arnold, 2008; Bolstad et al., 2014).

The most conceptually straightforward multivariate approach for an-
alyzing comparative data is to construct models in which there is a co-
variance in trait values between species (which is done in univariate mod-
els) and a covariance between different traits. Such multivariate exten-485

sions of common quantitative trait models have been developed (Butler and
King, 2004; Revell and Harmon, 2008; Hohenlohe and Arnold, 2008; Revell
and Collar, 2009; Thomas and Freckleton, 2012). These allow researchers
to investigate the connections between lines of divergence and within–
population evolutionary parameters (Hohenlohe and Arnold, 2008) as well490

as to study how the correlation structure between traits itself changes
across the phylogeny (Revell and Collar, 2009).

However, these approaches also have substantial drawbacks. First, the
number of free parameters of the models rapidly increases as more traits
are added (Revell and Harmon, 2008), making them impractical for large495

multivariate datasets. This issue may be addressed by constraining the
model in meaningful ways (Butler and King, 2004) or by assuming that
all traits (or a set of traits) share the same covariance structure (Klingen-
berg and Marugán-Lobón, 2013; Adams, 2014b,a). Such restrictions of pa-
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rameter space are especially appropriate for truly high–dimensional traits,500

such as shape inferred from geometric morphometric landmark data. For
such traits, we are primarily interested in the evolution of the aggregate
trait and not necessarily the individual components. The second drawback
is that these models allow for inference of the covariance between traits
but the cause of this covariance is usually not tied to specific evolution-505

ary processes. This difficulty can be addressed by explicitly modeling the
evolution of some traits as a response to evolution of others. Hansen and
colleagues have developed a number of models in which a predictor vari-
able evolves via some process and a response variable tracks the evolution
of the first as OU process (Hansen et al., 2008; Hansen and Bartoszek, 2012;510

Bartoszek et al., 2012). This has been a particularly useful way of modeling
the evolution of allometries (e.g. Hansen and Bartoszek, 2012; Voje et al.,
2013; Bolstad et al., 2014). But, as with the “full covariance” models dis-
cussed above, increasing the number of traits makes the model much more
complex and parameter estimation difficult.515

As we can only estimate a limited number of parameters from most
comparative datasets — and even when we consider large datasets, most
existing comparative methods have only been developed for the univari-
ate case — it often remains necessary to reduce the dimensionality of a
multivariate dataset to one or a few compound traits. We believe that al-520

though PCA can be potentially quite usefully applied to this problem, it
may be in ways that are statistically and conceptually distinct from how it
is conventionally applied to comparative data.

First, we argue that reducing multivariate problems to more easily man-
aged, lower-dimensionality analyses should be approached with the spe-525

cific goal of maintaining biological meaning and interpretability (Houle
et al., 2011). The common practice of examining only the first few PCs
carries with it the implicit assumption that PCA ranks traits by their evo-
lutionary importance and biological interest — a conclusion that may not
necessarily be the case (Polly et al., 2013). If a certain PC axis is of suffi-530

cient biological interest in its own right, it may not matter if it is a biased
subset of a multivariate distribution. The fact that a vast majority of the
traits studied in adaptive radiations likely represent very biased axes of
variation across the multivariate process of evolution does not diminish
the importance of the inferences made from studying these traits (Schluter,535

2000).

The danger occurs when the biological significance of the set of traits
is poorly understood, and when the source of the statistical signal may be
either artifactual or biological. If a trait was not of interest a priori, then
this essentially turns into a multiple comparisons problem in which PCA540

searches multivariate trait space for an unusual axis of variation, which
tend to suggest models inconsistent with the generating multivariate pro-
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cess as a whole. A posteriori interpretation of the PC axes by their loadings
is something of an art — one must “read the tea leaves” to understand what
these axes mean biologically. Even when a particular axis is correlated with545

a biological interpretation, it can be unclear whether the statistical signal
supporting a particular inference results from the evolutionary dynamics
of the trait of interest or if it is the result of statistical artifacts introduced
by the imperfect representation of that trait by a PC axis. More rigorous
algorithms can be applied to identify subsets of the original variables that550

best approximate the principal components, which — although still biased
— are frequently more interpretable (Cadima and Jolliffe, 2001; Somers,
1986, 1989; Hausman, 1982; Vines, 2000; Jolliffe, 2002; Zou et al., 2006). An-
other potential approach is to use principal components computed from
within–population data, rather than comparative data. For example, if G555

(or failing that, the phenotypic variance–covariance matrix P) is available
for a focal species, then the traits associated to the principal axes of vari-
ation in that species can be measured across all species in the phylogeny.
In other words, across species trait measurements can be projected along
gmax. This alleviates the issues we discuss in this paper by estimating PCs560

from within–population data that is independent from the comparative
data used for model–based inference.

Of course, components defined by within–population variance struc-
ture or by approximating principal components with interpretable linear
combinations will not explain as much variance across taxa as standard565

PCA and will not necessarily be statistically independent of one another.
However, the extra variance explained by the principal components of com-
parative data may in fact include a sizeable amount of stochastic noise,
rather than interesting biological trait variation (as we have shown in our
simulations). Furthermore, while the traits identified by pPCA will be sta-570

tistically orthogonal, this is only true in the particular snapshot captured
by comparative data and does not imply that they are evolving indepen-
dently. The distinction between statistical and evolutionary independence
is crucial (Hansen and Houle, 2008) but it is easy to conflate these concepts
when the data has been abstracted from its original form. We argue that the575

added intepretability of carefully chosen and biologically meaningful trait
combinations far outweighs the cost of some trait correlations or explaining
less–than–maximal variation.

Concluding remarks

In this note, we sought to clarify some statistical and conceptual issues re-580

garding the use of principal components in comparative biology. We have
shown that from a statistical standpoint, failing to consider the phylogeny
when performing PCA can be positively misleading. And despite the de-
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velopment of methods to correct for this, in our reading of the empirical
literature, we have found this to be a common oversight. We have also585

demonstrated that misspecifying the model of trait evolution when con-
ducting pPCA may influence the inferences we make from the pPC scores.
We show that in some scenarios, pPCA may sort traits according to the
particular evolutionary models they follow in a similar manner as stan-
dard PCA — ignoring phylogeny altogether is, of course, a form of model590

misspecification. Consequently, we caution that the use of pPCA may bias
inference toward identifying particular evolutionary patterns, which may
or may not be representative of the true multivariate process shaping trait
diversification as a whole.

We hope that our paper provokes discussion about how we should go595

about analyzing multivariate comparative data. We certainly do not have
the answers but argue there are some major theoretical limitations inherent
in using PCA (phylogenetic or not) to study macroevolutionary patterns
and processes.
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Ho, L. S. T. and C. Ané. 2014. A linear-time algorithm for gaussian and690

non-gaussian trait evolution models. Systematic biology 63:397–408.

Hohenlohe, P. A. and S. J. Arnold. 2008. Mipod: A hypothesistesting frame-
work for microevolutionary inference from patterns of divergence. The
American Naturalist 171:366–385.
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Figure 1: Distribution of support for BM, OU and EB models when the
generating model is a correlated multivariate BM model. Support for mod-
els were transformed onto a linear scale by calculating an overall model
support statistic: AICwOU − AICwEB. Thus high values support OU, low
values support EB, and intermediate values near 0 indicate BM-like evo-
lution. Models were fit to each replicated dataset for each of 20 different
traits which were taken either from PC scores (blue line) or phylogenetic
PC scores (green line). Shaded regions indicate the 25

th and 75
th quan-

tiles of the model support statistic for 100 replicated datasets. The red line
indicates the average model support statistic averaged over all 20 original
trait variables. Note that EB models have higher Akaike weights for the
first few PCs of standard PCA, and that later PCs subsequently favor BM
and finally, OU models. No such bias is found across traits for either the
original data or pPCA.
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Figure 2: Effect of trait correlations on the slope of the node height test
for PC scores (left) and pPC scores (right) under a multivariate BM model
of evolution. The red line is the aggregated data for all 20 traits on the
original (untransformed) scale. The intensity of the colors are proportional
to the ranking of the PC or pPC axes, stronger lines represent the first axes.
When the leading eigenvector explains very little variation in the data and
the effective dimensionality is high, the slope of node height test increases
from negative to positive across PC axes. This indicates that under stan-
dard PCA, PC1 has higher contrasts near the root of the tree, while later
PCs have higher contrasts near the tips (resulting in the pattern of model
support observed in Figure 1). As the amount of variance explained by
the principal eigenvector increases, the slope of the node height test ap-
proaches 0. No such effect is found for phylogenetic PCA.

24

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 22, 2014. ; https://doi.org/10.1101/007369doi: bioRxiv preprint 

https://doi.org/10.1101/007369
http://creativecommons.org/licenses/by-nd/4.0/


PC axis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PCA
Phylogenetic PCA

B
M

S
up

po
rt

 fo
r O

U
S

up
po

rt
 fo

r E
B

Figure 3: Distribution of support for BM, OU and EB models when the
generating model is a uncorrelated multivariate OU model. Support for
models were transformed into a linear scale by calculating an overall model
support statistic: AICwOU − AICwEB. Thus high values support OU, low
values support EB, and intermediate values near 0 indicate BM-like evo-
lution. Models were fit to each replicated dataset for each of 20 different
traits which were taken either from PC scores (blue line) or phylogenetic
PC scores (green line). Shaded regions indicate the 25

th and 75
th quan-

tiles of the model support statistic for 100 replicated datasets. The red line
indicates the average model support statistic averaged over all 20 original
trait variables. Note that standard PCA results in Akaike weights that are
skewed toward EB for the first few PCs of standard PCA, while and that
later PCs subsequently favor OU models. By contrast, pPCA results in
Akaike weights that are skewed toward stronger support for OU models
relative to the original trait variables.
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Figure 4: Relationship between the average phylogenetic independent con-
trasts and the height of the node across 100 datasets simulated under either
a BM (left), OU (middle) or EB (right) model of evolution. Contrasts were
calculated for each of the 20 traits corresponding to either PC scores (top
row) or pPC scores (bottom row). Each line represents a best–fit linear
model to the aggregated data across all 100 replicate simulations. Red
lines are aggregated over all 20 traits on the original data. The plots are
oriented so that the left side of each panel corresponds to the root of the
phylogeny, with time increasing tipward to the right. The intensity of the
colors are proportional to the ranking of the PC or pPC axes, stronger lines
represent the first axes. PCA results in a predictable pattern of increasing
slope in the contrasts across PCs. By contrast, pPCA only has systematic
distortions across pPC axes when the underlying model is not multivariate
BM. When this occurs, the first few pPC axes tend to have more extreme
slopes than the original data (but in the correct direction).
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Figure 5: Disparity through time plots averaged across the 100 simulated
datasets. The datasets were simulated under BM (left), OU (middle) or EB
(right). The analyses were then performed on PC scores (top row) and pPC
scores (bottom row). The average disparity through time of all 20 original
trait variables is indicated by the red line. We fit a loess curve through the
relative disparities for each trait/transformation/model combination. The
plots are oriented so that the left side of each panel corresponds to the root
of the phylogeny, with time increasing tipward to the right. The intensity
of the colors are proportional to the ranking of the PC or pPC axes, stronger
lines represent the first axes. As in Fig. 4, the first few axes from the PCA
show a strong pattern of high disparity early in the clades’ histories with
the higher components showing seemingly higher disparity towards the
present. Phylogenetic PCA corrects the distortion if the generating model
is multivariate BM. However, if the generating model was not BM, the first
few pPC axes tend to show an exaggerated pattern of disparity relative to
the original traits.

27

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 22, 2014. ; https://doi.org/10.1101/007369doi: bioRxiv preprint 

https://doi.org/10.1101/007369
http://creativecommons.org/licenses/by-nd/4.0/


PC axis

S
lo

pe
 o

f a
bs

ol
ut

e 
lo

ad
in

gs
 ~

 A
C

D
C

 p
ar

am
et

er

−0.06

−0.04

−0.02

0.00

0.02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

●

●

●

● ●
● ● ● ● ●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
● ●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

pPC axis

−0.06

−0.04

−0.02

0.00

0.02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

●

●
● ●

●
● ●

● ● ● ● ●
● ● ● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 6: Relationship between factor loadings and ACDC parameter (α)
for PCA (left) and pPCA (right) across 100 simulated datasets. For each
simulation a value of α were drawn from a Normal distribution with mean
= 0 and sd = 5. Boxplots indicate the distribution of the slope of a lin-
ear model describing the relationship between the absolute factor loadings
for a given PC and the magnitude of the ACDC parameter. A negative
slope indicates that traits with decelerating rates of evolution tend to have
higher loadings in that particular PC. Conversely, positive slopes indicate
that traits with accelerating rates tend to have higher loadings.
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Figure 7: Distribution of support for BM, OU and EB models for a 23–
trait morphometric dataset taken from Mahler et al. (2010). Support is
measured in Akaike weights across all original trait variables (left), as well
as standard PCA (middle) and pPCA (right). For both PCA and pPCA,
support for the EB model appears to be concentrated in PCs 1-4, with a
suggestive pattern of decreasing support across PCs 2-4.
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Figure S1: Distribution of support for BM, OU and EB models when the
generating model is an uncorrelated multivariate BM model. Support for
models were transformed into a linear scale by calculating an overall model
support statistic: AICwOU − AICwEB. Thus high values support OU, low
values support EB, and intermediate values near 0 indicate BM-like evo-
lution. Models were fit to each replicated dataset for each of 20 different
traits which were taken either from PC scores (blue line) or phylogenetic
PC scores (green line). Shaded regions indicate the 25

th and 75
th quan-

tiles of the model support statistic for 100 replicated datasets. The red line
indicates the average model support statistic averaged over all 20 original
trait variables. Note that EB models have higher Akaike weights for the
first few PCs of standard PCA, and that later PCs subsequently favor BM
and finally, OU models. No such bias is found across traits for either the
original data or pPCA axes.
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Figure S2: Distribution of support for BM, OU and EB models when the
generating model is an uncorrelated multivariate EB model. Support for
models were transformed into a linear scale by calculating an overall model
support statistic: AICwOU − AICwEB. Thus high values support OU, low
values support EB, and intermediate values near 0 indicate BM-like evo-
lution. Models were fit to each replicated dataset for each of 20 different
traits which were taken either from PC scores (blue line) or phylogenetic
PC scores (green line). Shaded regions indicate the 25

th and 75
th quantiles

of the model–support statistic for 100 replicated datasets. The red line indi-
cates the average model support statistic averaged over all 20 original trait
variables. Note that both pPCA and PCA increase support for EB models
for early PC axes.
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Figure S3: Estimated values of the α parameter from phylogenetic PCA
when data is simulated under an uncorrelated multivariate OU model. The
simulating value α = 2 is depicted with the red line. The estimate of α is
inflated in the first few pPC axes consistent with an exaggerated support
for the OU model. In the last pPC axes, α is estimated to be very close to 0,
such that the OU model is statistically indistinguishable from a BM model.
These results mirror those depicted in Figure 3.
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Figure S4: Proportion of support for BM, OU and EB models for each of
the traits/PC axes from the morphological dataset of Felidae species. Traits
were log transformed prior to analysis. Note that all original traits and the
first axes under standard and phylogenetic PCA show strong support for a
BM model.
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Figure S5: Node height test and disparity through time plots for the mor-
phological dataset of Felidae species. Each line represents a best–fit linear
model (left) or loess curve fitted (right) to the original traits, PC or pPC
scores. All traits were log transformed prior to analysis. The intensity of
color is proportional to the ranking of the PC or pPC axes, stronger lines
represent the first axes. Left panels show the relationship between the av-
erage phylogenetic independent contrasts and the height of the node. Red
lines indicate the average value for the original trait values. Right panels
show disparity through time plots. The plots are oriented so that the left
side of each panel corresponds to the root of the phylogeny, with time in-
creasing tipward to the right. Compare this highly correlated dataset with
only 7 traits to the larger, less correlated dataset of Anolis lizards (Figure
S6).
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Figure S6: Node height test and disparity through time plots for the mor-
phological dataset of Anolis lizards. Each line represents a best–fit linear
model (left) or loess curve fitted (right) to the original traits, PC or pPC
scores. All traits were log transformed prior to analysis. The intensity of
color is proportional to the ranking of the PC or pPC axes, stronger lines
represent the first axes. Left panels show the relationship between the av-
erage phylogenetic independent contrasts and the height of the node. Red
lines indicate the average value for the original trait values. Right pan-
els show disparity through time plots. The plots are oriented so that the
left side of each panel corresponds to the root of the phylogeny, with time
increasing tipward to the right.
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