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Abstract

Following the increase in available sequenced genomes, tissue-specific transcrip-
tomes are being determined for a rapidly growing number of highly diverse species.
Traditionally, only the transcriptomes of related species with equivalent tissues have
been compared. Such an analysis is much more challenging over larger evolutionary
distances when complementary tissues cannot readily be defined. Here, we present
a method for the cross-species mapping of tissue-specific and developmental gene
expression patterns across a wide range of animals, including many non-model
species. Our approach maps gene expression patterns between species without
requiring the definition of homologous tissues. With the help of this mapping, gene
expression patterns can be compared even across distantly related species. In
our survey of 36 datasets across 27 species, we detected conserved expression
programs on all taxonomic levels, both within animals and between the animals and
their closest unicellular relatives, the choanoflagellates. We found that the rate of
change in tissue expression patterns is a property of gene families. Our findings
open new avenues of study for the comparison and transfer of knowledge between
different species.

Introduction

Gene functions have traditionally been determined using molecular and cellular ap-
proaches involving forward or reverse genetics. Functional annotations that were directly
determined through these approaches are, however, not available at all for most species,
and incomplete even for model species [1]. For non-model species, often only data
transferred from other organisms is available. In this case, the degree of conservation of
functions is uncertain, especially when a gene is duplicated in a non-model species, but
not in the model species where its function has originally been studied. Previously, gene
coexpression data has been used to find conserved coexpressed modules [2, 3] and to
uncover functional similarities between genes from different species [4]. However, the
latter approach requires that the two species are well-studied in both gene expression
and functional annotation, and will suffer from incomplete and biased annotations [1].
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Tissue expression data is available for many species, as tissues can be gathered even
from non-model species where genetic tools such as transgenesis or RNAi are not
available. Developmental gene expression profiles between closely related species
can be compared to find functional links between genes and to detect differences
between orthologs [5, 6, 7]. For closely related species, homologous tissues can easily
be identified [8], and cross-species correlations between equivalent tissues of closely
related species have previously been investigated [9, 10, 11]. Existing approaches
require that expression datasets have been obtained under comparable conditions for the
respective species. Across larger evolutionary distances, only few clearly homologous
tissues can be determined. Even between closely related species, the relative amounts
of cell types within tissues may change. This reliance on homologous tissue is, therefore,
a severe limitation for functional mapping between many species: it is not possible to
correlate gene expression patterns across species using the traditional methods. If it was
possible to compare expression patterns across large phylogenetic distances, we could
substantially improve the annotation of non-model-species genomes, fill annotation gaps
in model species, and in particular address the problem of functional conservation after
gene duplications.

To ameliorate this situation, we have developed a method to map tissue expression
patterns of genes from one species to another, without defining equivalent tissues
between the two species. Our hypothesis is that groups of functionally related genes
will be coexpressed in very different tissues and species due to the re-use of ancestral
functional modules. For example, it is possible to identify deep homologies among
tissues [12], like homologous structures in the nervous systems of vertebrates and
annelids [13, 14]. Other organs show functional convergence, e.g. mammalian liver and
brown fat in flies, which both carry out xenobiotic clearance functions [15]. For each
gene of the source species, our approach predicted a virtual tissue expression pattern
in the destination species. The correlation between these virtual expression patterns
and the actually observed expression could then be used to score how well a gene’s
expression of a gene in a target species can be predicted from the expression patterns
of its orthologs. Importantly, this scheme can be used to determine the extent to which
the transcriptional regulation of sets of genes is conserved across large phylogenetic
distances.Subsequently we illustrate the potential of our modeling approach with two
applications: determining the degree of conservation of tissue-specific gene expression
patterns, and for comparing the speed of functional divergence between independently
evolving members of protein families.

Results

To analyze tissue expression across the entire metazoan kingdom, we gathered genome
and tissue expression data from 36 datasets covering 27 different species (Table 1, Table
S1). The datasets contained both developmental time courses (e.g. embryonic stages)
and static measurements of different tissues (like adult organs; see Supplementary
File 1 for a complete list). For the sake of brevity, we refer to the all of these samples
as “tissues.” Datasets were imported and normalized per gene (see Methods), i.e.
we quantified only relative expression changes of the same gene between tissues,
instead of comparing expression differences of genes within the same tissue. (Therefore,
housekeeping genes and other genes which are globally expressed did not skew our
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Species 1:1 OGs
with
human

Dataset Tissues Timepoints Kind

Chordates
Homo sapiens n/a [16] 84 0 Microarray
Mus musculus 15008 GNF [17] 59 5 Microarray

MOE [17] 51 0 Microarray
dev [18] 0 8 Microarray

Sus scrofa 11156 [19] 57 0 Microarray
Gallus gallus 10900 [20] 20 0 Microarray

dev [18] 0 15 Microarray
Xenopus tropicalis 9888 [20] 20 0 Microarray

dev [5] 0 15 Microarray
Tetraodon nigroviridis 7627 [20] 20 0 Microarray
Danio rerio 7851 dev [21] 0 64 Microarray
Ciona intestinalis 2793 [22] 11 0 Microarray
Echinoderms
Heliocidaris erythrogramma 2780 dev [23] 0 7 RNA-seq
Nematodes
Ascaris suum 2460 [24] 10 0 Microarray
Brugia malayi 1546 dev [25] 0 7 RNA-seq
Caenorhabditis brenneri 1694 dev [6] 0 10 Microarray
Caenorhabditis briggsae 2509 dev [6] 0 10 Microarray
Caenorhabditis elegans 2589 dev [6] 0 10 Microarray

[26] 40 0 Microarray
Caenorhabditis japonica 2213 dev [6] 0 10 Microarray
Caenorhabditis remanei 2309 dev [6] 0 10 Microarray
Insects
Anopheles gambiae 3083 mix [27] 7 7 Microarray

dev [28] 0 20 Microarray
[29] 15 0 Microarray

Bombyx mori 2894 [30] 10 0 Microarray
Drosophila melanogaster 3094 mix [31] 26 0 Microarray

dev [32] 0 30 RNA-seq
Flatworms
Schistosoma japonicum 2207 dev [33] 0 13 Microarray
Schistosoma mansoni 2211 [34] 13 0 Microarray

dev [35] 0 15 Microarray
Sponges
Amphimedon queenslandica 2432 dev [36] 0 7 RNA-seq
Sycon ciliatum 2852 dev [37] 4 16 RNA-seq
Cnidaria
Nematostella vectensis 3258 dev [38] 0 6 RNA-seq
Hydra vulgaris 2358 [39] 5 0 RNA-seq
Ctenophora
Pleurobrachia bachei 1435 mix [40] 5 10 RNA-seq
Choanoflagellates
Salpingoeca rosetta 2259 [41] 8 0 RNA-seq

Table 1: Analyzed species and datasets
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analysis.) When we applied the concept of looking for correlations between orthologs
across species to an existing dataset [10], we found that many of the reported lineage-
specific expression shifts only changed the absolute expression levels, while the relative
expression patterns remained conserved (Fig. S1). Normalizing each gene’s expression
individually also avoided technical concerns regarding the comparability of absolute
expression values between genes. However, this gene-wise normalization means that
the normalized values are influenced by the complement of tissues that have been
measured. For this reason, we only include datasets that survey a whole organism or a
wide range of developmental time points. The datasets excluded during quality control
(see next section) have between five and ten data points. Therefore, six diverse tissues
seemed to be a lower limit for the number of data points.

Quality control

The available datasets differ in their suitability for cross-species mapping. Existing mea-
sures for the quality of expression datasets rely on conserved features, e.g. conserved
coexpression [42]. Because of the large biological diversity of species in our dataset,
relying on conservation of features was not appropriate. We therefore devised a simple
measure of dataset quality that only relied on the features of the given dataset. For each
normalized dataset, we performed Principal Component Analysis and determined the
proportion of variance represented by each eigenvector. We then calculated the fraction
v50 of components that represent at least half of the total variance. For example, for the
C. elegans dataset, the first four out of forty principal components explain just above
50% of the variance (hence, v50 = 0.1). Based on the observed correlation between v50
and median mapping quality (Fig. S2), we chose v50 ≥ 0.25 as a filter to remove the five
worst datasets from our analysis: Hydra vulgaris, Amphimedon queenslandica, Bombyx
mori, Brugia malayi and Ascaris suum.

Mapping gene expression between species

In order to compare expression patterns across distant species, we first need to map
the patterns. Our concept rests on the notion that the expression of a gene in a specific
tissue of a target species can be predicted using the expression pattern of that gene
across the tissues in the source species. For example, a gene specifically expressed in
insect neurons is likely to be expressed also in the mouse brain. Here we show that this
concept holds even if these “matching” tissues are not known. Consider the example
of mapping gene expression patterns from fly to mouse (Fig. 1). We model mg,t, the
relative expression of gene g in mouse tissue t, as a linear combination of the relative
expression levels in all fly tissues (fĝ,s):

mg,t =
∑
s

βs,tfĝ,s + β0,t + εg,t (1)

where ĝ is the fly ortholog of gene g and ε is the residual error. The regression coefficients
βs,t and the intercept β0,t are fitted using all 1:1 orthologs between mouse and fly.
Subsequently, this model can be applied to all fly genes to predict the expression in
mouse tissue t. We used linear models in this first description of the method as they are a
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Figure 1: Mapping expression patterns across species. For each tissue in the target species,
models were fitted to predict the tissue-specific gene expression pattern from the expression
patterns of 1:1 orthologs in a source species. Mapping the expression patterns of all genes
created virtual expression patterns, which could then be used to compute correlations between
the mapped and actual expression patterns.

simple, transparent and efficient method that is relatively robust to over-fitting. Of course,
other methods may be used as well. For example, Random Forest regression [43]
can deal with non-linearity, while the lasso [44] could be used to deal with redundancy
between source tissues.

Expression distances between genes

After mapping expression patterns between species, we quantified how well a gene
can be predicted by correlating its predicted expression across all tissues with the
respective measurements of the target species using Pearson’s correlation coefficient
(see Methods). These pairwise correlations between genes could be calculated for
different sets of genes: phylogenetically unrelated genes, orthologs and 1:1 orthologs.
Of these, 1:1 orthologs had the highest correlations (Fig. 2A). However, the overall
distribution of correlations differed between dataset pairs, e.g. due to the varying number
of tissues or variable data quality. Therefore, we computed an expression distance
based on the quantiles qx,y of the matrix of correlation coefficients R = [rx,y]. We found
that lineage-specific genes (i.e. those without homologs between the two species under
consideration) tended to have lower correlations than genes with homologs. Therefore,
to calculate quantiles, we computed the matrix R only for genes with homologs between
the two species. We first analyzed correlations between 1:1 orthologs and checked if they
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Figure 2: Distribution of correlations between mapped and actual expression patterns.
When mapping expression patterns from fly to C. elegans, correlations between orthologs (green)
and 1:1 orthologs (blue) were much higher than for background gene pairs (pairs of genes that are
not homologous to each other, shown in red). (b) Target genes were split in bins according to the
number of genes with similar expression patterns within the target species. Pairs of background
genes had a higher correlation when there were more genes with similar expression patterns,
as is evident from the shift towards higher correlations. For this pair of datasets, bins contained
between 321 and 326 one-to-one orthologs, with an average of 324.

depended on different properties of the genes (Fig. S3). We found that when the target
gene had many coexpressed genes in the same species, the cross-species expression
correlation tended to be higher (Fig. S3). To correct for this effect, we considered only
target genes with similar numbers of coexpressed genes when computing the expression
distance (Fig. 2B and Fig. 9 in Methods section). By design, the expression distance of
background gene pairs had an uniform distribution. When making inferences about 1:1
orthologs, we used linear models based on a 10-fold cross-validation.

Benchmarks

In order to establish the biological relevance of our expression distance measure, we
applied benchmarks at three levels, namely sequence, structure, and function. On
the sequence level, we found that expression distances could be used as a signal to
decide which of the top two BLAST hits for a query protein is the true 1:1 ortholog of
the query protein in the target species (Fig. 3A and Fig. S4). On the structural level
[45], expression distance and the number of proteins belonging to a structural fold were
correlated (Fig. 3B and Fig. S5). That is, structural folds with fewer members, and hence
lower functional diversity, were more similar in their expression patterns across species.
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Figure 3: Summary of benchmarking results. For each pair of datasets from different species,
the performance in different benchmarks has been computed, along with a p-value. In all three
benchmarks, there was a clear shift of the results relative to the random expectation (black line).
For details, see Fig. S4, Fig. S5, Fig. S6 and supplementary text. Due to limited structural and
functional annotations, there was a lower number of dataset pairs for the two lower panels.

Lastly, on the functional level, we applied the phenolog concept [46] to find equivalent
phenotypic annotations across species. We found that expression distances could be
used to better predict which member of a protein family has been annotated with a
matching phenotype (Fig. 3C and Fig. S6).

Conservation of gene expression programs

At all taxonomic levels, we determined the conservation of the expression patterns of 1:1
orthologs. This data then allowed us to estimate the degree of conservation of tissue-
specific expression patterns, even between groups of species that do not have readily
identifiable homologous organs. For each pair of datasets, we first computed the median
expression distance of 1:1 orthologs (Fig. 4). We then tested for each pair of datasets
whether the distribution of expression distances between 1:1 orthologs was shifted
towards lower values, i.e. if the median is below 0.5. Using the Wilcoxon signed-rank
test and controlling for multiple hypothesis testing with the Benjamini-Hochberg method
[47], we found that all dataset pairs had significant shifts to lower expression distances
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Figure 4: Conservation of expression patterns throughout the metazoans and choanoflag-
ellates. For all dataset pairs, the median expression distance of 1:1 orthologs is shown. Within
most clades, this median was very low and approached 0 in some cases. When there was no
enrichment of 1:1 orthologs towards lower expression distances, the median was 0.5 (see Fig. 5).
See Fig. S7 for a version of this figure without filtering for dataset quality.

(q < 0.05 and median < 0.5). This analysis revealed both an expected enrichment
for closely related species and unexpectedly high enrichments between very distant
species, such as between chordates and insects. In general, developmental datasets
mapped less well to other species than datasets of adult tissues.

To summarize the data shown in Fig. 4, we computed median expression distances for
1:1 orthologs across all internal nodes of the phylogenetic tree (e.g. for vertebrates, we
compared expression patterns between fish and tetrapods). As the median expression
distances vary greatly between dataset pairs, we also computed the distribution of
expression distances and the number of well-conserved OGs for the best dataset pair
across each internal node (Fig. S8 and Fig. S9). Using a Wilcoxon signed rank test,
we then tested if the distribution of median expression distances is shifted towards
lower values, i.e. if the median of the distribution is lower than 0.5. This was the case
for all internal nodes, with the highest p-value (5e-49, median value: 0.39) observed
when mapping from the ctenophore Pleurobrachia to other animals. This confirmed
that our approach could predict expression patterns over large evolutionary distances
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Figure 5: Distribution of median conserved expression. For each clade, the distribution of
expression distances of 1:1 orthologs is shown. Red and blue colors denote the direction of
the mapping, either from the first subclade to the second or vice versa. For each distribution,
the median is shown as a vertical bar. The gray bar corresponds to an expression distance
of 0.5, which is the median to be expected by chance. When the mapping is successful, our
mapping procedure yields virtual expression patterns of 1:1 orthologs that are very similar to the
actual expression patterns, and the distribution of expression distances is skewed towards lower
values. Our mapping procedure becomes less accurate over larger evolutionary distances, and
the distribution of expression distances becomes less skewed. It becomes a uniform distribution
when 1:1 orthologs cannot be mapped better than background gene pairs. Clades are numbered
corresponding to the taxonomic tree in Fig. 6.

(Fig. 5 and 6). For some clades, the available data was very uneven on the two
sides of the internal node. For example, at the level of eumetazoa, only one species
with few tissues was available for cnidarians, whereas most bilaterian species had
many tissues measured. Thus, expression distances were higher when mapping from
cnidarians to bilaterians than the other way round. Interestingly, the median divergence
between animals and the outgroup choanoflagellates was comparable to the median
divergence between major animal clades, e.g. bilateria. Thus, mapping tissue-specific
gene expression revealed expression programs conserved for 1 billion years.

Correlations between expression changes of homologs

Next, we addressed the question if conservation of expression programs depends on the
functions of genes, i.e. if certain gene functions generally imply a stronger conservation
of expression programs than other functions. To this end, we compared the expression
distances of gene families in different clades under the assumption that functional
constraints would lead to expression conservation in independent clades. If the rate
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Figure 6: Conservation of expression patterns across clades. The length of the blue bars
denotes the median expression distance of 1:1 orthologs across the bifurcation, with values
between 0 and 0.5. (0 corresponds to the best possible value, while 0.5 would occur when there
is no enrichment of lower expression distances.) The numbers next to the internal nodes refer to
the clade numbers in Fig. 5

of expression divergence is a property of the gene family, we expect a correlation
between the expression similarities for each family in different clades. In other words,
a gene family that has a conserved expression pattern in one clade should also have
a conserved expression pattern in another clade. For each internal node with two or
more species on either side of the split, we calculated the median expression distance
per gene family within each of the two clades. Out of four internal nodes with more than
one species on both sides, we found significant Spearman correlations (rs) of median
expression similarities for three splits (Fig. 7A): between tetrapods and fishes (rs=0.18,
#12 in Fig. 5), between protostomes and deuterostomes (rs=0.15, #4), and between
nematodes and insects (rs=0.06, #7).

The previous analysis was only possible for a subset of the taxonomic splits in our body
of data, due to the requirement of having more than one species on either side of the split.
We therefore also analyzed the fate of duplicated genes. In this case, we tested whether
duplication products are more similar if the non-duplicated members of the gene family
have low expression distances across the species outside the duplication event. Indeed,
we found significant negative correlations between the median expression distance
among the non-duplicated genes and the intra-species correlation of the duplicated
genes (Fig. 7B). For example, duplicated genes in fish were more similar (i.e. had a
higher correlation) when the corresponding tetrapod genes had more similar expression
patterns (i.e. had a low expression distance): rs=-0.11 for 2045 pairs of duplicated genes,
corresponding to a p-value of 3e-7. Taken together, these two observations implied that
for a significant fraction of genes, the rates of change in gene expression patterns were
correlated between independently evolving clades.
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# clade rs p-value n
5 bilateria 0.15 0 4281
6 protostomia 0.05 0.18 615
8 ecdysozoa 0.06 5E-04 3201
12 vertebrata 0.18 0 3391

#
clade with 
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clade with single 

genes rs p-value n
3 porifera eumetazoa -0.11 0.003 750
5 deuterostomia protostomia -0.02 0.098 8713
6 ecdysozoa Schistosoma -0.14 0.003 473
6 Schistosoma ecdysozoa -0.10 0.033 433
8 diptera Caenorhabditis -0.07 0.018 1119
8 Caenorhabditis diptera -0.05 0.051 1800
10 echinodermata chordates -0.15 0.024 236
12 actinopterygii tetrapoda -0.11 3E-07 2045

Figure 7: Correlations between expression conservation rates. A For 1:1 orthologs, the
expression distance across internal nodes was compared. In the dataset, there were only six
splits with at least two species on both sides of the split. For example, when genes were similar
within tetrapods, they also tended to be similar within fishes. B The rate at which gene duplication
products diverge was negatively correlated with the expression distance among single-copy genes
in related species. Only correlations with p-values below 0.1 are shown in this table. (# – Number
of clade in Fig. 5, n – count of 1:1 orthologs [A] or duplicated genes [B])

Evolution of the beta catenin protein family

We seleteced the beta catenin protein family [48] as an example to illustrate the impli-
cations of our work. Beta catenin proteins are involved in regulating cell adhesion and
gene transcription through the Wnt signaling pathway. Ancestrally, there was a single
beta catenin protein, which duplicated independently in the nematode and vertebrate
lineages [49]. Hence, Drosophila, Anopheles and Schistosoma only have one beta
catenin, armadillo. We found this protein to be similar in its expression patterns with both
the vertebrate and nematode beta catenins (Fig. 8), which is indicative of their functional
similarities [50]. In vertebrates, two forms exist: beta catenin and plakoglobin. These
two proteins have largely overlapping functions [51] and consequently, their observed
expression distance was very low. In nematodes, the outcome of the repeated gene
duplications [52, 53, 54] is very different: three of the duplication products (hmp-2,
wrm-1, and sys-1) are very similar to each other in their expression patterns, which
can be explained by their cooperation in in the non-canonical Wnt signaling pathway
and the SYS pathway [55]. These three proteins had high expression distances to
bar-1. In contrast to them, bar-1 is part of a canonical Wnt signaling pathway [55]. We
also observed that bar-1 had a low expression distance to the vertebrate plakoglobin,
while hmp-2, wrm-1, and sys-1 had high expression distances. Among the nematode
genes, vertebrate beta catenin had the lowest expression distance with hmp-2. This
example illustrates that our method is able to uncover patterns of functional similarity
and divergence both between closely related species and across large evolutionary
distances.
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Figure 8: Expression similarity and divergence in the beta catenins. For each group of
genes, the median expression distance is shown (see (Fig. S10 for individual expression distances).
The unduplicated beta catenins from insects, flatworms and cnidarians a similar to all other protein
groups, while functional and expression divergence has occurred independently among nematodes
and vertebrates.

Discussion

The presented analysis established and benchmarked a new method, and provided
two examples of biological conclusions that can be reached with our method: there
is widespread conservation of expression regulation across very large evolutionary
distances, and the expression programs of different gene families evolve at distinct
rates. Presumably, the latter observation is explained by variable functional constraints
between gene families.

In particular, we have shown that tissue-specific gene expression can be predicted
across large evolutionary distances, even in the absence of apparent similarities between
the species’ tissues. Our approach can be rationalized as follows: we assume that
evolution conserves the coexpression of functionally related genes, both on the level of
homologous cell types and on the level of functional modules that occur in unrelated
tissues. Our analysis demonstrated that the expression patterns of such conserved
gene modules can be predicted across species using 1:1 orthologs as “anchors.” This
approach worked despite the fact that the tissues themselves are only conserved
within smaller clades. Control of gene expression by transcription factors, miRNAs and
other factors is known to turn over rather quickly [56, 57, 58]. Most probably, functional
dependencies between genes lead to shared expression patterns over large evolutionary
distances. Further research will be needed to reveal which expression similarities
between tissues are caused by homology and which are caused by convergent evolution.
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Methods

Detection of orthologous proteins

To determine orthology relations between genes, we assembled groups of orthologs
(OGs) using the eggNOG pipeline [59] on the genomes of the choanoflagellate Salpin-
goeca rosetta and 67 animals. We then computed gene trees for all OGs using GIGA
[60], which we then analyzed to extract 1:1 orthologs and duplication events.

Expression data pre-processing

Datasets were obtained either from repositories like ArrayExpress and GEO, from
supplementary materials or the respective websites of the resources. Expression
profiles were then mapped to our set of genes by one of the following methods (see
Table S1): If possible, genes were mapped by given identifiers, such as Affymetrix,
Ensembl or WormBase identifiers. If identifiers could not be used for microarrays, we
mapped probe sequences to transcripts using exonerate [61], allowing for up to three
mismatches and discarding probes that mapped to multiple genes. In the case of
RNA-seq data without matching identifiers, we trimmed adapters and mapped reads to
annotated transcripts using tophat2 and cufflinks 2.1.1 [62, 63] and used the resulting
FPKM counts.

In initial small-scale tests, we tested several normalization methods [11, 64], and settled
on a z-like normalization of expression vectors x, which corresponds to the Euclidean
normalization of x minus its median value x̃.

ni =
xi − x̃√∑
i(xi − x̃)2

(2)

RNA-seq data, e.g. the Drosophila modENCODE dataset, contained zeros, which were
of course not suitable for logarithmic analysis. For these datasets, we determined the
expression value of the 1/1000th quantile of all genes with non-zero expression. All
expression values were incremented by this value.

Mapping of tissue expression patterns

For each pair of datasets, individual linear models were fitted for each tissue of the
target species, using the tissues of the source species as input. (Note that due to the
normalization, one tissue is redundant and therefore left out. This also implies that the
coefficients of the linear model are not directly interpretable.) The set of 1:1 orthologs
between the two species was used as to fit the linear models. When there were multiple
probes per gene, all combinations of probes were added to the tissue expression matrix.
When there were many tissues in the source species, but few 1:1 orthologs, there
was the danger of over-fitting. We therefore allowed only one predictor (i.e. one tissue
from the source species) per 15 samples (i.e. 1:1 orthologs) [65]. For each pair of
species, the safe number of predictors was calculated. If there were too many tissues,
we combined tissues using k-means clustering and used the centers of the clusters
as predictors. This situation only occurred for six out of 1260 dataset pairs. The fitted
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models were then applied to all genes of the source species, yielding corresponding
predicted expression patterns in the target species. Since 1:1 orthologs are used for
training, we used predictions from a 10-fold cross-validation for these genes.

Mathematical description of expression mapping

To illustrate our approach, we describe it for a specific pair of datasets, namely mapping
expression values from fly to mouse (dataset “MOE”). The same procedure can be
applied to all pairs of species. To predict tissue expression patterns of the 51 mouse
tissues based on the 26 fly tissues, we fitted 51 separate linear models for each mouse
tissue based on 1:1 orthologs.

A given dataset of gene expression values across many tissues of a species can be
treated as an expression matrix: Rows correspond to genes and tissues to columns.
Hence, it is possible to look at gene expression vectors that correspond to a single row,
and tissue expression vectors that correspond to a single column. Consider the matrices
of normalized expression values for fly F0 and mouse M0. F0 contained 13,264 rows
corresponding to 12,225 genes and 26 columns. M0 contained 23,624 rows for 14,307
genes and 51 columns. From the 3120 1:1 orthologs, sub-matrices F and M were
constructed such that the same row in the two matrices corresponds to a given pair of
1:1 orthologs. When multiple expression measurements per gene were available, the
matrices contained all possible combinations of measurements. (E.g. if there were three
probes corresponding to one gene, and two for the ortholog, a total of six rows were
dedicated to this pair of orthologs.) Due to these combinations, F and M each had 4447
rows. A single linear model to fit expression values in mouse tissue t for genes g was
thus found by minimizing the errors ε:

mg,t =

25∑
s=1

βs,tfg,s + β0,t + εg,t (3)

Only 25 parameters were needed in the sum, because the normalization produced a
matrix with equal row sums. Therefore one variable was redundant. This approach
can also be formulated as a matrix multiplication, using B = [βs,t] as parameter matrix,
B0 = [β0,t] for the offsets, and E = [εg,t] as error matrix:

M = F×B + 1×B0 + E (4)

Once B and B0 have been determined, they can be applied to the full expression matrix
F0 to create a matrix V of virtual expression values for fly genes in mouse tissues:

V = F0 ×B + 1×B0 (5)

Cross-species correlations between expression patterns

For each fly gene x with its corresponding gene expression vector (F 0
x,1, F

0
x,2, . . . , F

0
x,25),

an expression vector based on mouse tissues had been predicted: X = (Vx,1, Vx,2, . . . , Vx,51).
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Thus, for any mouse gene y with expression vector Y = (M0
y,1,M

0
y,2, . . . ,M

0
y,51), the

weighted sample Pearson correlation coefficient rx,y could be calculated (Fig. 2A):

rx,y =

∑n
i=1 wi(Xi − X̄)(Yi − Ȳ )√∑n

i=1 wi(Xi − X̄)2
√∑n

i=1 wi(Yi − Ȳ )2
(6)

X̄ =
1

n

n∑
i=1

wiXi (7)

Ȳ =
1

n

n∑
i=1

wiYi (8)

Weights on the tissues were calculated using the Gerstein-Sonnhammer-Chothia (GSC)
weighting scheme to reduce the effect of uneven coverage of different anatomical regions
[66]. For example, in the mouse tissue dataset, there were many different brain tissues
with highly correlated expression patterns. Hence, a gene that was well predicted in
one brain tissue was likey to be well-predicted in other brain tissues. When multiple
measurements were available for the source or target gene, we reported the maximum
of all pairwise correlations.

Computation of expression distances

For each pair of datasets, we computed a matrix of predicted expression patterns of
all genes from the source species. We observed a strong correlation between the
cross-species expression correlation and the number of coexpressed genes in the target
species (Fig. S3). This strong correlation indicated that predictions were biased towards
the average target gene (i.e. the average expression profile of all genes considered in
the target species), which in turn was similar to many target genes. As a consequence,
these “close-to-average” target genes had higher correlations with mapped source
genes, and thus seemed more conserved. To counter this effect, target genes were split
into ten bins according to the number of coexpressed genes in the target species (Fig. 9).
For each bin, we separately determined the distribution of cross-species expression
correlations between all genes. Given this distribution, we determined a conversion
function from the cross-species expression correlation to the corresponding quantile.

Thus, there exist ten conversion functions from weighted Pearson correlation to an
uncorrected expression distance. For a given pair of genes, the final expression distance
is interpolated from the two adjacent bins. We determined the number of coexpressed
genes for each target gene as follows: we first computed all pairwise correlations
among the target genes of the training set. Then, we determined the correlation cutoff
corresponding to the top 10%, and counted for each gene how many other target genes
were among the global top 10% correlations. For technical reasons, we sampled one
million pairs of background genes, such that the lowest possible expression distance is
1e-6.
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Figure 9: Conversion from correlations to expression distances. For each pair of datasets,
all pairwise Pearson correlations between the actual expression patterns and the mapped patterns
were computed. This complete matrix of correlations was then split into ten parts, according to the
number of coexpressed target genes. For each bin, we separately calculated the ECDF, i.e. the
conversion function between correlations and quantile. To retrieve the expression distance of a
given pair of source and target genes, the number of coexpressed genes for the target gene was
used to select the two closest bins and their ECDFs. To reduce the effect of small differences in the
number of coexpressed genes, the expression distance was then computed by interpolating the
quantiles returned by the two ECDFs. (Edge cases, where only the first or last bin are appropriate,
were treated separately.)

Data access

Protein sequences, normalized datasets, assignments and expression distances of 1:1
orthologs have been deposited at http://dx.doi.org/10.6084/m9.figshare.1362211.
Separately, all pairwise mappings of expression patterns between datasets are available
at http://dx.doi.org/10.6084/m9.figshare.1362240.
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Figure S1: Lineage-specific expression shifts do not change expression patterns. Proteins
that have been reported to have lineage-specific changes in expression, e.g. between primates and
non-primate species [10] have highly correlated expression patterns even across the expression
shift if the expression pattern has been fixed before (fourth quantile, purple).

Lineage-specific expression shifts and relative expression patterns

In the main text, we investigated changing and conserved expression patterns. A
previous analysis of expression patterns in six tissues across eight mammals and
chicken concluded that while the expression of most genes is under purifying selection,
there are also many cases of lineage-specific expression shifts [10]. However, in a
re-analysis of this data, we found that these changes occurred mainly on an absolute
expression level and that even across the expression shifts, the expression patterns
which were reported in the original data set stayed highly correlated (Fig. S1): For
the set of genes with significant expression shifts, we found a median correlation of
0.68 between the expression patterns of the species with the expression shift and the
species with unchanged expression (“outgroup”). We suspected that for some genes,
the expression pattern only becomes fixed after the expression shift. Indeed, when we
divided the genes into quartiles according to the median correlation within the set of
proteins in outgroup, we found that in the bottom quartile the median correlation across
the expression shift is 0.25, while in the top quartile the median correlation is 0.95.
In other words, once an expression pattern becomes fixed, it is retained even across
lineage-specific expression shifts.
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Figure S2: Correlation between dataset quality and mapping quality. For each pair of
datasets, the median expression distance of 1:1 orthologs (Fig. 4) can be treated as the mapping
quality. For each dataset, we then calculated the median mapping quality over all dataset pairs
for which the given dataset is either the source or target dataset. We further distinguish between
dataset pairs of the same clade (e.g. two vertebrates) versus pairs from different clades. (Dataset
pairs within a clade are only considered for clades of at least three species.) In all combinations,
there is a correlation between v50 and the mapping quality. We therefore use this measure to
exclude five datasets. (Blue line: linear fit; shaded area: 95% confidence interval.)
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Properties of proteins that influence the mapping

It is to be expected that properties of the considered genes have an effect on how
well the genes’ expression patterns can be mapped. For instance, it seems likely that
genes that are well-conserved on the protein sequence level should also have conserved
expression patterns. Conversely, 1:1 orthologs may appear to have dissimilar expression
patterns either due to biological reasons (e.g. functional divergence) or due to technical
reasons (e.g. measurement noise, inability to map the expression pattern correctly). We
therefore tested eight different properties to which extent they are correlated with ex-
pression similarity (using Spearman’s rank correlation coefficient). The tested properties
were: number of (same-species) proteins with similar expression pattern, degree in the
STRING 9.1 protein–protein interaction network (using experimental and text-mining
evidence and a confidence score threshold of 0.5) [67], number of isoforms (according
to data from Ensembl, WormBase and FlyBase), number of residues, tissue specificity
[68], absolute expression level, sequence similarity between the considered proteins,
and pleiotropy (for mouse proteins [69]). Almost all properties had a significant influence
(Fig. S3). The effects of sequence similarity, total expression level and degree were
consistent with previous findings that these factors are inversely correlated with gene
loss [70].
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Figure S3: Gene properties correlated with expression similarity. Different properties of the
source (red) or target gene (blue) influenced the distribution of expression distances. To measure
this influence, we computed the correlation between the gene properties and the expression
similarity of 1:1 orthologs. When the correlation between mapped and actual expression patterns
was used as the expression similarity (dashed lines), there was a very high correlation with
the number of coexpressed target genes. That is, when a target gene had many genes with
similar expression patterns, then the expression correlation with its 1:1 ortholog tended to be high.
Correcting for this (solid lines), this correlation became lower. Genes corresponding to proteins
with high degree (i.e. number of interactions) could be mapped better, while target genes with
many isoforms resulted in a worse mapping.
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Figure S4: Prediction of 1:1 orthologs from best hits. For each 1:1 ortholog between fly and
C. elegans, the source genes expression pattern was mapped to C. elegans and compared to the
top two BLAST hits. If the mapped expression pattern was more similar to the actual ortholog, it
was counted as correctly identified. Thus, a perfect prediction method would be a vertical line.
Ordering the predictions by the difference between the two expression distances was the most
successful strategy.

Benchmark 1: Identification of 1:1 orthologs

In a first benchmark, we tested whether the expression similarity could be used to
identify 1:1 orthologs from top BLAST hits. For each dataset pair, we used BLAST to
find the top two hits for each protein of the source species, discarding proteins with
only one hit. After training the expression mapping on an independent set of genes as
outlined above, we then computed the expression similarities for the top two hits, and
checked whether the gene with the lower expression distance corresponded to the actual
1:1 ortholog. For example, mapping from fly to C. elegans, 67.5% of 2014 one-to-one
orthologs could be correctly identified (p-value of Binomial test: 5e-57; median across
all dataset pairs: 60%). Predictions could be ordered in different ways according to the
expression distances between the two pairs of genes: by the lowest expression distance,
by the difference of the expression distances or their ratio. Of these, the difference
between the expression distances performed best in distinguishing confident predictions
from less confident predictions (Fig. S4).
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Figure S5: Correlation between expression distance and shared protein folds. Proteins
that belong to structural families with few members are more similar in their expression patterns
than proteins from large families. Red dots denote the median when at least five superfamilies
have the same number of proteins per species. Here, the mapping from fly to C. elegans is shown.

Benchmark 2: Analysis of 3D protein structure

As a further test, we checked if genes corresponding to proteins with the same structure
were more likely to have lower expression distances than unrelated proteins. Using
the Gene3D database [45], we determined CATH folds for all proteins that we could
map to the database (resulting in 15 species and 23 datasets). For each dataset pair,
we then analyzed each homologous superfamily, computing the median expression
distance for all proteins of the superfamily. The superfamilies contain varying numbers of
proteins, and we found a correlation between the expression distance and the size of the
superfamilies (Fig. S5): Those with many members (and thus more different functions)
had more diverse expression patterns. For example, mapping fly to C. elegans, the
Spearman correlation between the number of proteins per species (using the maximum
of the two species) and the median expression distance was 0.40. Between human and
mouse (GNF dataset), the Spearman correlation was 0.46. Across all dataset pairs, the
median Spearman correlation was 0.28.

Benchmark 3: Phenologs

Finally, we used functional information to evaluate our method. We applied the phenolog
concept [46] to validate that genes from different species with similar tissue expression
are functionally related. Based on orthologous genes, related pairs of functional anno-
tations (Gene Ontology terms, FlyBase and WormBase phenotypes) are predicted by
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Figure S6: Benchmarking based on phenologs. For each OG between fly and C. elegans,
we selected the phenolog with the lowest p-value. We then tested whether the gene pair with
the lowest expression distance shared the functional annotation predicted by the phenolog.
Predictions were ordered by the difference between the lowest and second lowest expression
distance. Randomly choosing gene pairs from the OGs results in the grey line.

looking for significant overlap between OGs that correspond to the functional annota-
tions. This leads to phenologs, i.e. pairs of functional annotations with a certain p-value
that represents their cross-species similarity. For each pair of well-annotated species
(mouse, human, fly, C. elegans), we tested all OGs excluding 1:1 orthologs. For each
OG, we found the phenolog with the lowest p-value. For all cross-species gene pairs
in this OG, we then determined their expression distance and whether their functional
annotation matched the phenolog pair.

First, we noted that the distributions of expression distances differed between gene pairs
with matched and mismatched annotations: For fly and C. elegans, the Wilcoxon rank
sum test p-value was 6e-19 (median p-value across all dataset pairs: 2e-9). Second, for
each OG, we looked at the gene pair with the lowest expression distance and checked
if both genes matched the expected functional annotation based on the phenolog.
We ordered OGs by the difference between the lowest and second lowest expression
distances. Mapping fly to C. elegans, 47.7% of all top predictions had matching functional
annotations, compared to an expected fraction of 40.2% (Fig. S6). This corresponds to
a relative increase of 19% over the expected fraction. Between human and mouse (GNF
dataset), this increase is 34%. The median increase among all dataset pairs is 10%.
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Figure S7: Conservation of expression patterns throughout the metazoans and
choanoflagellates. In this version of Fig. 4, all datasets are shown without any filters for dataset
quality. Therefore, five additional datasets are shown: Hydra vulgaris, Amphimedon queens-
landica, Bombyx mori, Brugia malayi and Ascaris suum. For these species, the quality of the
datasets prevented better mapping performance.
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Figure S8: Most conserved expression across animal clades. As in Fig. 5, the median
expression distances of 1:1 orthologs are shown. However, instead of the median across all
datasets, the median expression distance of the best dataset pair is used. Charts at species
branches show how well expression patterns could be mapped between different datasets of the
same species.
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Figure S9: Distribution of conserved expression for best dataset pairs. For each internal
node, the distribution of expression distances is shown for the datasets given. These datasets
show the highest degree of conservation for the respective internal node. See Table S1 for a
description of the abbreviated dataset names.
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Figure S10: Expression distances of beta catenins. The heatmap shows the expression
distances of beta catenins throughout the animal kingdom as color scale. Individual cells are
shaded in grey according to a measure of mapping quality of the pair of datasets, namely the
median expression distance of 1:1 orthologs (Fig. 4). Genes were clustered according to the gene
tree built from a multiple sequence alignment. The colored band along the edge of the heatmap
denote the ten groups of proteins which have been analyzed in Fig. 8. Genes that belonged to
low-quality datasets or showed divergent expression patterns to their closest neighbors were
discarded.
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