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Abstract

Motivation:
RNA sequencing enables allele specific expression (ASE) studies that
complement standard genotype expression studies for common vari-
ants and, importantly, also allow measuring the regulatory impact of
rare variants. The Genotype-Tissue Expression project (GTEx) is col-
lecting RNA-seq data on multiple tissues of a same set of individuals
and novel methods are required for the analysis of these data.
Results:
We present a statistical method to compare different patterns of ASE
across tissues and to classify genetic variants according to their im-
pact on the tissue-wide expression profile. We focus on strong ASE
effects that we are expecting to see for protein-truncating variants,
but our method can also be adjusted for other types of ASE effects.
We illustrate the method with a real data example on a tissue-wide
expression profile of a variant causal for lipoid proteinosis, and with a
simulation study to assess our method more generally.
Availability:
MAMBA software: http://birch.well.ox.ac.uk/ rivas/mamba/
R source code and data examples: http://www.iki.fi/mpirinen/
Contact:
matti.pirinen@helsinki.fi
rivas@well.ox.ac.uk
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1 Introduction

Advancements in sequencing technologies are enabling unprecedented possi-
bilities to study the transcriptome. In RNA-sequencing studies, it is possible
to distinguish between transcripts from the two haplotypes of an individ-
ual using heterozygous sites. This approach, called allele specific expression
(ASE) analysis, allows an alternative way to quantify cis-regulatory varia-
tion, complementary to eQTL analysis. Additionally, ASE has been utilized
to analyze transcriptome effects of nonsense-mediated decay triggered by pre-
dicted loss-of-function variants (MacArthur et al., 2012; Montgomery et al.,
2011; Lappalainen et al., 2013).

The Genotype-Tissue Expression (GTEx) project is establishing a re-
source database and tissue bank for the scientific community to study the
relationship between genetic variation and gene expression in human tis-
sues (GTEx-Consortium, 2013), with an aim to interpret GWAS findings
for translational research. The project is analyzing gene expression from
various perspectives, including transcript structure, expression quantity and
diversity, eQTLs, and allele specific expression differences. Furthermore, as
medical genetics pursues exploration of rare variants, insights gained from
the study of DNA and RNA sequencing data in the GTEx project will be-
come important for functional interpretation of rare variants (Rivas et al.,
2011, 2013; Zuk et al., 2014).

To date, some methods have been proposed for the analysis of allele
specific expression data, but these methods largely focus on a single tis-
sue (Romald et al., 2005; Zhang et al., 2009; Degner et al., 2009; Sun, 2012)
although some could be applied also to multiple tissues (Skelly et al., 2011).
The multi-tissue aspect is important for interpreting disease association find-
ings (Grundberg et al., 2012; McCarroll et al., 2008) since eQTL and early
ASE studies suggest widespread tissue specific effects of cis-regulatory vari-
ants (Dimas et al., 2009; Gutierrez-Arcelus et al., 2013). Currently, more
sophisticated methods for cross-tissue eQTL analysis are emerging (Flutre
et al., 2013). However, eQTL analysis requires large sample sizes, while ASE
analyses can be conducted with significantly smaller data sets.

In this paper we present novel statistical methods for analyzing ASE
patterns from RNA-seq data across multiple tissues. Our main motivation
are phenomena such as nonsense-mediated decay that are expected to lead
to strong ASE where one of the alleles is expressed only a little if at all.
From a statistical point of view an advantage of strong ASE is that it can


https://doi.org/10.1101/007211
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/007211; this version posted July 17, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

be studied even with a single individual and without very large read counts.
(See Middle panel of Fig. 4 for an example data set.)
We address three main questions:

e In which tissues does a heterozygous site show ASE?
e Which tissues show similar ASE effects at the site studied?

e What proportion of a certain class of variants (such as, e.g., protein
truncating variants) show ASE in all tissues, only in some tissues, or
in no tissues?

For the first question, a standard frequentist version of the binomial test is
commonly used. However, an interpretation of such a test depends on fac-
tors like the read count and simultaneous analysis of multiple tissues is very
challenging. Hence, we require that our statistical framework allows a simul-
taneous comparison between several cross-tissue models for observed data.
For example, we want to weigh relative support of the model where all tissues
show ASE to the models where only a single tissue shows ASE and to the
null model where none of the tissues show ASE. For this purpose, we adopt a
Bayesian model comparison framework. Among its favorable properties are
natural ways to compare models with differing number of parameters and
to fully account for the amount of available data when evaluating relative
support of the models.

2 Methods

2.1 Grouped tissue model (GTM)

We consider RNA-seq read counts overlapping a particular genomic position
from multiple tissues of one individual who is heterozygous at that position.
(See the Discussion and Supplementary Information for extensions to mul-
tiple sites and individuals.) For tissue s = 1,...,T, let y5 and ysx be the
number of reads supporting the reference and non-reference allele, respec-
tively, and let ng = ys1 + ys2. We classify the tissues into three groups: no
ASE (N), moderate ASE (M) and strong ASE (S) and denote the group
of tissue s by vs € {N, M,S}. (See Middle panel of Fig. 4 for an exam-
ple data set that motivates us to use the three groups chosen.) For each
group G € {N, M, S}, we denote the proportion of the transcripts with the
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reference allele by 0(G). We use a binomial sampling model for the data
conditional on the group indicators:

yslh/s ~ Bin(”sv 9(78)) (1)

Possible expression states of the tissues differ in the prior assumptions about
parameters 6(-). We use the following priors (Fig. 1) to describe different
groups:

B(N) ~ Beta(2000, 2000)
1 1
O(M) ~ §Beta(36, 12) + 5Beta(12, 36)

1 1
6(S) ~ 5Beta(80, 1) + EBeta(l, 80)

Under no ASE model N both alleles are expressed (almost) equally and
hence (N) ~ 0.5. As in Skelly et al. (2011), our N/ model allows small
deviations from exact point value of 0.5 in order to be robust against some
technical measurement bias as well as very small ASE effects that are not a
main focus in this study. The parameters for Beta distributions have been
chosen in a way that clearly separates the three groups from each other
(Fig. 1) and thus gives an informative framework to classify the tissues into
three groups (see the Supplementary Information for further discussion on
the prior specification and extensions to truncated priors and independence
across tissues). Our implementation allows user to easily modify the prior
parameters as well as use one-sided versions of the prior distributions instead
of the two-sided versions used in our simulation experiments. For example,
when studying nonsense-mediated decay, we may require that the reference
allele is expressed more strongly, and hence consider only the one-sided ASE
states. On the other hand, the two-sided ASE states are tailored for the
situations where we do not want to make an assumption about which allele
might be dominating. This is useful, for example, when studying imprinting.

Configurations.

For fixed prior distributions, the model space consists of 37 configurations
represented by 7 = (v1,...,7r) vector where each tissue specific indicator

vs € {N, M, S}.


https://doi.org/10.1101/007211
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/007211; this version posted July 17, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

50

40

density
30

20
1

0.00 0.25 0.50 0.75 1.00
proportion (6)

Figure 1: Densities of the prior distributions for the proportion of reference allele
for the three groups: N, M, and S.

We partition the space of configurations into five ASE states:

NOASE = {7| for all s: 7, = N}
MODASE = {7| for all s : v, = M}
SNGASE = {7| for all s: v, =S}
HETO = {#7| exist s,t: v, =N and v, # N}
HET1 = {7 exist s,t: v, # 7 and for all u : v, # N},

where the states represent configurations for no ASE (NOASE), moderate
ASE (MODASE), strong ASE (SNGASE), heterogeneity with at least one
tissue showing no ASE (HETO0) and heterogeneity with all tissues showing
some ASE (HET1). We also consider a tissue specific sub state of the het-

erogeneity states:
TIS_SPE = {7| exist s,t: vs # vy and for all uw £t : v, = s}

In order to do probabilistic comparison between the states we need to
define prior probabilities for each state. We do this by defining prior for
each configuration in a way which depends on its distance from homogeneity.
We define a distance d(7) for each configuration 7 as the smallest number
of tissues whose group indicators need to be changed in order to turn %

into a homogeneous configuration (either NOASE, MODASE or SNGASE).
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Formally, d(7) =T — max{ly, 1, s}, where {y, ¢y, and g are the number
of tissues that 7% assigns to N, M, and S, respectively. In particular, the
configurations with d = 0 are the three homogeneous configurations and the
configurations with d = 1 form the set TIS_SPE.

We specify the total prior probability for each possible value of d =
0,...,7 — [T/3] and then distribute it equally among the configurations
with the same distance. This prior allows us to easily implement the idea
that among the vast space of configurations we favor a priori the parsimo-
nious ones, i.e., those where many tissues are similar. Our prior distribution
extends the one recently used for muti-tissue eQTL setting (Flutre et al.,
2013) to the case of more than two expression states. In the results reported
in this work, we have set a prior mass of 0.75 to d = 0 (i.e., 0.25 for each of
NOASE, MODASE and SNGASE) and the remaining 0.25 has been divided
equally among all possible values of d = 1,...,T — [T/3]. This choice was
made because it gives an equal prior weight for the four main patterns of
ASE: three homogeneous states and general heterogeneity.

For settings where many variants are available for a joint analysis, we
extend GTM to a hierarchical model GTM* that learns from the data the
proportion of variants belonging to each of the five states and thus avoids the
need to fix prior probabilities of the states. We describe GTM* and compare
it to GTM in the Supplementary Information.

2.2 Computation

We use a standard Gibbs sampler to explore the posterior distribution of the
configuration indicators 7 under GTM (see the Supplementary Information
for details).

The basic building block for model comparison is the Bayes factor between
configuration 7 and the NOASE state

_ p(y[7)

BE() = 5 NOASE)" @)
where y = (y1.,...,yr.). Evaluation of BF(¥) can be done analytically by
using Beta-binomial likelihood separately for the numerator and the denom-
inator. Thus we can quickly evaluate the Bayes factor for any particular
configuration and compare even hundreds of configurations. However, when
the number of tissues is large (say 7" > 10), the number of possible configu-
rations grows too large to be exhaustively evaluated (analogous to a problem
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with eQTLs in Flutre et al. (2013)). This becomes problematic in particu-
lar when assessing heterogeneity (either HET0 or HET1), which in principle
would require a consideration of all those groupings that assume differences
between some tissues. Therefore, we introduce an approximation that avoids
enumerating all groupings when assessing heterogeneity, by focusing on only
configurations that are strongly supported by the data. Thus we assume
that the configurations with d > 1 that have not been visited by the Gibbs
sampler and are not among a few dozen top heterogeneity models defined
by tissue specific group membership probabilities, have negligible marginal
likelihood and can be ignored. This leads to a lower bound for the marginal
likelihoods of the heterogeneity states. In practice, a comparison to the exact
values for cases where exact values can be calculated (7" < 10) shows that
the lower bound is actually a good estimate in most cases (see Results).

By combining the Bayes factors with the prior probabilities of the states
we have the posterior probabilities of the states.

2.3 Q-statistic for heterogeneity

We compare GTM to a standard heterogeneity measure

L ny (0, —
Q= ZAl

s=1

Q’) Cb\

)

fn

where @ = ys1/ns and 6 are the empirical proportion of the reference allele at
tissue s and across all tissues, respectively. (If ys; = 0, we set ys; = 0.5 and
Ys2 = ns — 0.5 to avoid numerical problems.) The idea is that this measure
increases with the heterogeneity of the tissue specific 6, parameters, and can
thus be used as a measure of heterogeneity. An empirical P-value of the
Q-statistic is estimated by simulating data sets where the number of tissues
and reads match with the observed data and where all tissues have the same
value for 0, = 6.

3 Results

We first assess performance of GTM on simulated data and compare it with
a standard heterogeneity measure. Second, we illustrate GTM on a real
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Table 1: Scenarios for simulations.

| | N | M | S | STATE |

1] T 0 0 | NOASE

2] 0 T 0 | MODASE
3] 0 0 T | SNGASE
AT-1] 0 1 HETO0

5] 1 0 |T-1] HETO

6] 0 |[T-1] 1 HET1

71 0 1 [T-1] HETI1

8 [T/2] [ [T/2]] © HETO

9] 0 [[T/21]T/2]| HETI

For each of the nine scenarios, Table shows how many tissues (out of total T')
belong to each of the three possible groups, ', M and S, whose 0 parameters are
0.5, 0.75 and 0.99, respectively. The STATE column shows to which of the five
combined states each scenario belongs.

data example taken from the Genotype-Tissue Expression (GTEx) project.
Results of GTM* are presented in the Supplementary Information.

Data simulation. For three values for the number of tissues (7' =
5,10,30) and two values for the number of reads per each tissue (ngs = 10, 50,
for all s), we simulated 1,000 data sets for nine scenarios given in Table 1.
The reference allele read count for each tissue s was sampled from Bin(ng, 6,),
where 6, is 0.5 for group N, 0.75 for group M and 0.99 for group S.

GTM results. We applied GTM on the simulated data sets with 2,000
Gibbs sampler iterations and show results in Figure 2. The run time was 8,
16 and 53 seconds per data set, for "= 5,10 and 30, respectively (Intel i7 /
3.40 GHz).

For the homogeneous scenarios 1, 2 and 3, the detectability of the true
state increases with the number of tissues, and in general is already high with
only 5 tissues and 10 reads per each tissue. In particular, when the true state
is SNGASE (scenario 3), there is no noticeable uncertainty about the correct
state in any of the data sets, while for NOASE (scenario 1) and MODASE
(scenario 2) the data are not equally decisive. This is related to the fact that
the variance in the read counts is larger for § = 0.5 (NOASE) and 6 = 0.75
(MODASE) than it is for the extreme value of § = 0.99 (SNGASE).
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Figure 2: Each of the nine simulation scenarios (Table 1) is represented by three
numbers of tissues (5, 10, 30) and two values for number of reads (10, left column
and 50, right column). Each bar is divided into five colors (map given at the
bottom) according to the (average) posterior probability of the five states when
GTM was applied to the simulated data sets.
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Our scenarios 4, 5, 6 and 7 consider the smallest possible amount of
heterogeneity: a single tissue is different from the others. In these scenarios
we see an opposite trend from the homogeneous ones: the true heterogeneous
state becomes harder to distinguish from the closest homogeneous one as the
number of tissues increases. This behavior implements an idea that if one
tissue seems to deviate from the others, we believe more in that distinction
if only a couple of other tissues are analyzed, than if there are tens of other
tissue, that are all similar to each other. Information about the true state
increases with the number of reads per tissue, and the overall heterogeneity
probability (HET0 + HET1) is high for all heterogeneous scenarios for read
count 50.

The scenarios 8 and 9 represent stronger heterogeneity where about half
of the tissues belong to one group and the remaining half to another. When
the true underlying groups are N and M (scenario 8), then 10 reads is
not yet enough to clearly separate the true pattern from the homogeneous
states (NOASE and MODASE), while 50 reads is enough for this purpose.
In the scenario 9, where tissues are divided between M and S, the overall
heterogeneity probability is always fairly large, but it is difficult to exclude
the possibility that at least one tissue belongs to N, especially when many
tissues are available. As a consequence, the HETO state gets a considerable
probability even though the true underlying state is HET1. To distinguish
between the two heterogeneity states in this scenario requires read counts
larger than 50.

Taken together, the results in Figure 2 show that the model is correctly
able to distinguish between all five combined states but an amount of infor-
mation required for accurate classification varies between scenarios.

Comparisons with Q-statistic. To show differences between our GTM
heterogeneity probability and Q-statistic in detecting heterogeneity we show
ROC curves for two settings (Fig. 3). In the first one, we use the 1,000
data sets from simulation scenario 1 to represent a homogeneous state and
the 1,000 data sets from scenario 4 to represent a heterogeneous state, with
T = 30 tissues and n = 10 reads per tissue. The ROC curve on the left panel
of Figure 3 shows how those 2,000 data sets are ranked by the posterior
probability of HETO+HET1 state from GTM and by the empirical P-value
of Q. The right panel in Figure 3 shows similar results when comparing the
homogeneous scenario 3 to the heterogeneous scenario 7. In both settings
GTM is slightly better in detecting heterogeneity than the Q-statistic: ROC
curve of GTM is consistently above that of Q. We discuss the difference
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SCENARIO 4 vs SCENARIO 1 SCENARIO 7 vs SCENARIO 1

TRUE POSITIVE RATE
TRUE POSITIVE RATE

00 02 04 06 08 1.0
00 02 04 06 08 1.0

0.0 0.2 0.4 0.6 0.8 1.0

FALSE POSITIVE RATE FALSE POSITIVE RATE

Figure 3: ROC curves for detecting heterogeneity using GTM and Q-statistic on
simulated data sets. Left: scenario 1 (homogeneity) vs scenario 4 (heterogeneity).
Right: scenario 3 (homogeneity) vs scenario 7 (heterogeneity). Parameters are
T = 30 tissues and n = 10 reads per tissue. Heterogeneity statistics are the
posterior probability of HETO+HET1 from GTM and the empirical P-value from
the Q-statistic.

between the two approaches in Discussion.

Accuracy of approximation. To assess how accurate our approxima-
tion for marginal likelihoods of the heterogeneity states is, we compared the
posterior probabilities of the five states from GTM with the exact values
on all 9,000 data sets simulated with 7" = 10 tissues and n = 10 reads per
tissue. As a measure of accuracy we use the total variation distance (TV),
which for discrete distributions (p;) and (g;) is defined as $ >, |p; — ¢;|. TV
describes how much of the probability mass needs to be relocated in order
to turn the first distribution into the other, and also gives an upper bound
for the maximal difference in probability that the two distributions assign to
any one state.

We observed (Table 2) that 95% of the data sets had TV < 0.05, and
0.5% had TV > 0.10, with maximal TV being 0.168. As TV less than 0.10 is
unlikely to change our inference on the underlying state, our approximation
works well for a great majority of the data sets tested. However, there
are large differences in the accuracy between the scenarios with scenario 8
(5 tissues in A and other 5 in M) showing the strongest discrepancy. An
explanation for this is that with only 10 reads per tissue the scenario 8 assign
non-negligible posterior probability to so many of the configurations showing
heterogeneity between N and M groups that some of them are missed during
our default number of 2,000 Gibbs sampler iterations.

In Discussion we propose an additional heterogeneity measure to comple-
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Table 2: Accuracy of GTM.

| SCENAR | TV< 0.01 [ TV < 0.05 | TV< 0.10 | max |

1 0.462 0.972 1 0.092
2 0.452 0.959 0.995 0.129
3 1 1 1 0.006
4 0.160 0.986 0.999 0.105
5 0.997 1 1 0.011
6 0.327 0.973 1 0.070
7 0.994 1 1 0.012
8 0.081 0.663 0.962 0.168
9 0.565 1 1 0.025

For each of the nine scenarios, Table shows the proportion of simulated data sets
(out of total 1,000 with 7" = 10 tissues and n = 10 reads per tissue) for which
total variation (TV) distance between GTM estimates and the exact posterior
distribution of the five states is less than 0.01, 0.05 or 0.10. The max column
shows the maximum TV distance observed.

ment our approximation for the posterior probability of heterogeneity states,
especially for data sets with large number of tissues.

3.1 A protein truncating variant in FCM1

We consider read count data on SNP rs121909115 in chromosome 1, whose
non-reference allele (T) introduces a stop codon in some transcripts of the
gene FCM1. This is an example of a protein-truncating mutation that we
expect to experience nonsense-mediated decay (NMD) leading to a reduction
in the transcripts from the non-reference allele. However, the strength of
NMD and its consistency across different tissue types is unknown. In the
currently available GTEx data we have one individual who is heterozygous
at this SNP and Figure 4 shows the data and GTM results across 7 tissues.

The results show that, as expected, most tissue types show ASE where
the non-reference allele has lower read counts than the reference allele. In
addition, there is evidence of heterogeneity between the tissue (p(HETO|y) =
0.93) and that heterogeneity could result from a tissue specific effect where
the skin tissue escapes ASE (p(TIS_SPE|y) = 0.24). None of the tissues
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Figure 4: Data on rs121909115. Top panel shows the posterior probabilities for
six states as defined in Methods. The tissue specific state (TIS_.SPE) is a sub-
set of the heterogeneity states (HET0O and HET1) and the probabilities of the
other five states sum to one. Middle panel shows the point estimates of the non-
reference allele frequency among RNA-seq reads across seven tissue types (named
at the bottom) together with their 95% credible intervals. Bottom panel shows
the posterior probability distribution of the group indicator (vs) for each tissue
type, where white, gray and black denote groups N, M and S, respectively. Tis-
sue types: ARTTBL=Artery tibial, NERVET=Nerve tibial, ADPSBQ=Adipose
subcutaneous, HRTLV=Heart ventricle, MSCSKL=Muscle skeletal, SKINS=Skin

sun exposed.
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shows strong evidence for complete ASE (group §), but rather the other six
tissue types (apart from skin) are likely to belong to either the moderate
ASE group M, or to no ASE group (nerve and adipose).

The non-reference allele (T) at the SNP rs121909115 is one of the known
protein truncating mutations in FCM1 that in homozygous carriers lead to
lipoid proteinosis, also known as Urbach-Wiethe disease, (OMIM 247100),
(Hamada et al., 2003). The symptoms of this disease include scarring and
infiltration of skin and mucosae (Hamada, 2002). Therefore, it is an inter-
esting observation that in our data the allele with the nonsense mutation is
expressed more strongly in the skin tissue than in several other tissue types.

4 Discussion

We have introduced a statistical framework to assess similarities and differ-
ences in allelic specific expression (ASE) between tissue types. A motiva-
tion for our work comes from ongoing RNA-sequencing projects such as the
GTEx project (GTEx-Consortium, 2013) that generates data on up to 30
tissue types per individual with read counts per tissue and per site starting
from around 10.

We have chosen a Bayesian approach because it leads to a consistent
probabilistic quantification of the support that the data provide for each of
the competing models. We see this as an advantage over a series of separate
analyses, such as, for example, would be needed by an approach that first
assessed heterogeneity using the Q-statistic and if no (statistically significant)
heterogeneity was observed, would further classify the data set into one of the
homogeneous states. Previously, two excellent studies on Bayesian models
for expression data have been published by Skelly et al. (2011) and Flutre
et al. (2013).

Skelly et al. (2011) consider a three-stage hierarchical model for allele read
counts from genome-wide RNA-seq data of one individual. They observe al-
lele counts at each heterozygous SNP (1st level) which are assigned to genes
(2nd level) whose common properties are controlled by genome-wide parame-
ters (3rd level). Their model would be directly applicable also to multi-tissue
RNA-seq data where tissue specific allele counts replace SNP-specific allele
counts and sites replace genes at the second level of the model. Suppose,
for example, that we had multi-tissue RNA-seq data on a set of individuals
who are heterozygous for at least one protein-truncating variant (PTV). The
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model of Skelly et al. (2011) would produce posterior distribution on the
global proportion of the PTVs that show ASE in at least one tissue type,
as well as variant specific posterior probability of ASE. However, it would
not give as refined characterization of ASE at each PTV as our hierarchical
model GTM* (Supplementary Information) and it would not do inference on
tissue specific group indicator parameters (;) that allow probabilistic model
comparison between different patterns of ASE.

Flutre et al. (2013) developed a method for a joint eQTL analysis across
multiple tissues. They work with micro-array expression data using a linear
model that is not directly applicable to the data sets we have in mind: read
count data from several tissues of a single individual. They use tissue spe-
cific binary indicator parameters that tell whether a variant is an eQTL in
each tissue and introduce three ways to assign prior probabilities to differ-
ent configurations of the indicators. Their “lite” model gives positive prior
on only those configurations whose distance from homogeneity is at most 1.
Their “BMA” model is similar to what we have used in that the prior of a
configuration depends only on its distance from homogeneity and that the
total prior probability corresponding to each value of distance is the same.
Finally, their most complex “BMA-HM” model treats the weights of the
configurations as random variables and estimates them across genes using a
hierarchical model. Similar hierarchical model, that would learn joint ASE
patterns between tissues by a simultaneous analysis of a set of genetic vari-
ants (e.g. PTVs) is also an important topic for further development of our
hierarchical model GTM*.

Even though hierarchical models, such as our GTM* and those of Skelly
et al. (2011) and Flutre et al. (2013), are conceptually attractive, we believe
that GTM’s ability to analyze one PTV at a time has its merits from a
practical point of view: it is quick to run, easy to understand and requires
read count data on only one variant.

Heterogeneity measures.

Our model assumes that all tissues in a same group have the same reference
allele read frequency 6. In practice, we expect that our model is robust to
some heterogeneity within each group, since the priors for different groups
are so clearly separable from each other (Fig. 1 and Supp Fig. 1). Our main
interest is to assign tissue types into (three) broad categories of ASE, and
consequently we call a data set heterogeneous only if some pair of tissues
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show fairly strong difference in the non-reference allele frequency. Standard
heterogeneity measures, such as (), ask a slightly different question of whether
parameters 6, have exactly the same value across the tissues. A frequentist
answer to this latter question is given by an empirical P-value of heterogeneity
measures () or p(HET|y) estimated under the null hypothesis that all tissues
have the same value for 6 parameter which is estimated from the data. By
this approach, heterogeneity P-values in the FCM1 example of Figure 4 are
0.011 and 0.006 by using @ and p(HETO|y), respectively, as a test statistic.
While these P-values point to general heterogeneity between the tissue types,
our GTM analysis leads to more detailed information considering the type
of heterogeneity: we see heterogeneity where at least one tissue type escapes
ASE (our HETO state).

Our heterogeneity probabilities are based on a lower bound of the true
marginal likelihoods of the heterogeneity states. We showed that in a large
majority of our data sets (with 10 tissues) the approximation is accurate,
but the approximation may not always work as well with larger number of
tissues. Therefore, in addition to the heterogeneity probabilities, we also
compute, for each pair of tissues, a posterior expectation of the distance
between them. Here we define the distance between two tissues to be 0 if
they belong to a same group and 1 otherwise. Maximum of all pairwise
distances gives an indication whether there is heterogeneity between tissues.
By further defining the distance between the ASE groups M and S to be
0, we have a measure for particular kind of heterogeneity (HETO0) where at
least one tissue belongs to the no ASE group N.

4.1 Application of the Method

Nonsense-mediated decay. We envisage that a primary application of
our method will be in analyzing nonsense-mediated decay (NMD). Protein
truncating variants are usually subject to NMD, a cellular mechanism that
detects premature termination codons and prevents expression of truncated
proteins. Integrated genome and transcriptome sequencing studies in lym-
phoblastoid cell lines have demonstrated that allele specific expression can
be used for testing variants predicted to trigger NMD (Montgomery et al.,
2010; MacArthur et al., 2012; Montgomery et al., 2011; Lappalainen et al.,
2013). To test whether the predicted NMD truly happens, we can use the
one-sided ASE models rather than the two-sided ones to explicitly require
that an ASE signal is present only if the minor allele, and not the major al-
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lele, is silenced. We applied the one-sided approach in our example analysis
of a PTV in ECM]1.

Imprinting. Genomic imprinting is a phenomenon where only an allele
inherited from the parent of a particular sex is expressed (Babak et al., 2008).
To assess imprinting for one tissue type one could consider a common coding
variant of the gene of interest in that tissue across multiple heterozygous
individuals. If the gene is imprinted, then in about half of the individuals
the allele 1 should be silenced, because we expect that in about half of the
individuals the allele 1 at this locus is inherited from the mother and in the
other half it originates from the father. We could extend our framework to
such a case by allowing each ASE group to be divided into two subgroups

with proportion parameters # and 1—6, respectively, where 6 has a Beta-prior
as in our GTM model.

Modest ASE effects. An interesting application of allele specific expres-
sion is in the study of cis-regulatory variants in LD with coding variants.
When regulatory variants have only modest effects (Dimas et al., 2009), we
could modify our prior on ASE states to reflect this. With this approach we
envision that researchers are able to study the effect of cis-regulatory variants
on transcription across a broad range of tissues where the number of samples
per tissue may be limited. However, compared to strong ASE effects, more
modest effects require much larger read counts per tissue and decrease the
ratio between biological signal and possible technical noise (Degner et al.,
2009).

Multiple individuals. Suppose we have RNA-seq data on the same tissue
types from several individuals who are heterozygous at a particular variant.
We could first assess, for each tissue type, whether the individuals are het-
erogeneous in their ASE status. If there is no evident heterogeneity, a simple
approach is to combine the reads from the same tissue type across the indi-
viduals before analyzing the data across the tissues. A more refined model
that accounts for possible individual specific effects that are shared across
the tissues requires further work.
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5 Conclusion

We have presented grouped tissue model (GTM) and its multi-site extension
(GTM*), to (i) classify tissues into three groups at each site according to
their allele specific expression (ASE) patterns and (ii) classify the sites into
five combined ASE states according to their tissue-wide ASE profiles. We see
major applications of our approach in assessing homogeneity, heterogeneity
and tissue specificity across a group of genetic variants assumed to have
similar properties, e.g. variants predicted to trigger nonsense-mediated decay,
variants in genes with evidence of imprinting, or variants in LD with GWAS
loci for a particular disease.

As an example, we presented an application of the method to read count
data from the GTEx project for one heterozygote carrier of a premature
truncating mutation (p.R53X, rs121909115) in the ECM1 gene. For this
variant, which in homozygous form is known to cause lipoid proteinosis, we
identified heterogeneous gene expression effects across tissues and evidence
for a complete escape from nonsense-mediated decay in skin tissue.

The identification and characterization of ASE, in particular for protein
truncating variants with a putative complete loss of function effect, will pro-
vide a better understanding of the biological mechanisms that are involved
in transcriptional regulation and will improve our computational models for
annotating variants identified in case-control or clinical genome sequencing
studies.
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