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Abstract

DNA methylation, and specifically the reversible addition of methyl groups at CpG dinu-
cleotides genome-wide, represents an important layer that is associated with the regulation of
gene expression. In particular, aberrations in the methylation status have been noted across a
diverse set of pathological states, including cancer. With the rapid development and uptake of
large scale sequencing of short DNA fragments, there has been an explosion of data analytic
methods for processing and discovering changes in DNA methylation across diverse data types.
In this mini-review, we aim to condense many of the salient challenges, such as experimen-
tal design, statistical methods for differential methylation detection and critical considerations
such as cell type composition and the potential confounding that can arise from batch effects,
into a compact and accessible format. Our main interests, from a statistical perspective, in-
clude the practical use of empirical Bayes or hierarchical models, which have been shown to
be immensely powerful and flexible in genomics and the procedures by which control of false
discoveries are made. Of course, there are many critical platform-specific data preprocessing
aspects that we do not discuss here. In addition, we do not make formal performance compar-
isons of the methods, but rather describe the commonly used statistical models and many of
the pertinent issues; we make some recommendations for further study.
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1 Introduction

Epigenomics can be defined as the genome-wide investigation of stably heritable phenotypes result-

ing from changes in a chromosome without alterations in the DNA sequence [1]. DNA methylation

(DNAme) is the most well-studied epigenetic mark and notably, the enzymatic mechanism for mi-

totically copying methylation status is well understood [2], unlike maintenance of chromatin state,

for example [3]. In this review, we focus on differential methylation (DM) for methyl groups added

to cytosines in the CpG dinucleotide context, since this is the predominant form observed in differ-

entiated mammalian cells [4]. However, depending on the biological question and the technology

used, some of the statistical methods discussed here can be applied more generally.

In the last decade, considerable progress in (observationally) characterizing epigenetic phenom-

ena across a wide spectrum of normal and disease states has been made, predominantly due to

emerging disruptive technologies, such as microarrays and large-scale sequencing of DNA. These

studies have highlighted the important role of DNA methylation, perhaps for its causal associations

with gene regulation, but also for its potential in diagnosing or stratifying patients according to their

combined genomic/epigenomic molecular state. As mentioned, emerging technologies are driving

these large-scale explorative studies and correspondingly, robust and efficient statistical and com-

putational frameworks must be developed to facilitate interpretation of the growing masses of data.

In the interrogation of CpG methylation, the main workhorse is treatment of DNA with sodium

bisulphite [5], which preserves methylated cytosines while converting unmethylated cytosines to

uracil. This transformation can allow high-throughput readouts, whether by hybridization of DNA

to probes on a slide or through sequencing of DNA, to quantify the (relative) level of methylation

(further discussion below).

While an individual’s (pathologically normal) genome is almost completely static in all cells,

the epigenome is highly dynamic both in time (e.g., through development) and across cell types.

Since the epigenome is a combinatorial assembly of regulatory factors (e.g., DNA methylation,

histone modifications, non-coding RNAs, etc.), comprehensively profiling the epigenome is orders

of magnitude more difficult than its genomic counterpart. Therefore, accurately measuring DNA
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methylation or other layers of the epigenome, unlike genome sequencing, require additional con-

siderations to ensure that detected changes are not confounded with external factors, such as cell

type.

Not surprisingly, the community has embraced consortium science to scale up data collection

efforts. Some prominent projects that involve large-scale profiling of DNA methylation include

the ENCODE Roadmap Epigenomics Consortium [6], The Cancer Genome Atlas and International

Cancer Genome Consortium [7, 8], the BLUEPRINT project [9] and the International Human

Epigenome Consortium [10].

2 Technologies

Present techniques for interrogating DNAme fall roughly into three categories: methylation-specific

enzyme digestion (ED), affinity enrichment (AE) and chemical treatment with bisulphite (BS), in

combination with a microarray or high-throughput sequencing readout; some of these techniques

have been used in combination (e.g. ED+BS, commonly known as RRBS; see 11). There was some

early demonstration of distinguishing methylcytosine from cytosine (and potentially other forms)

with third-generation technologies [12], such as Pacific Biosciences, but no commercially viable

offering has yet appeared. Importantly, depending on the interrogation technique and readout,

DNAme information comes at low (∼100-200 base pair) or high resolution (individual CpG sites)

and the costs vary widely. Each platform has its own limitations related to cost, resolution, scal-

ability and the amount of starting DNA [13, 11, 14]. For example, ED studies remain dependent

on the location and frequency of enzyme restriction sites, the prominent BS-based microarray plat-

form is only available for human, the sensitivity of AE approaches depends on CpG density while

genome-scale sequencing-based BS methods are costly and require sufficient computing resources.

Depending on the biological question and resources available, a platform may be selected based on

these tradeoffs.

Notably, BS-based methods cannot distinguish between methylcytosine and other variants, such

as hydroxymethylcytosine [15], although additional treatment steps can readily allow this [16].
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In principle, the methods we discuss below for determining differences in methylation status are

agnostic to this technicality, aside from specific biological questions regarding the interplay between

methylation states. Additionally, another biological phenomenon that we sidestep in this review is

that of methylation in non-CpG contexts, which has shown to be prominent in pluripotent cells [4].

Interestingly, in a recent report using whole genome BS-seq (WGBS) data across a broad range of cell

types and cell lines, it was shown that CpG methylation is only “dynamic” in approximately 20% of

sites genome-wide, suggesting that the expense of WGBS could be more directed. For example, the

combination of ED (and size selection) with BS-seq readout is already a favored method to reduce

the amount of sequencing required, but would be difficult to tailor to specific genomic regions. An

alternative reduced complexity strategy is to first capture fragments of interest, analogous to exome

capture for sequencing protein-coding regions of genomic DNA; options are commercially available,

such as the Agilent SureSelect system [17].

A popular, cost-efficient and scalable technology for profiling DNA methylation on a “genome-

scale” is the Illumina 450k microarray. The platform can be thought of as genotyping BS-treated

DNA to reveal the relative proportion of methylated and unmethylated alleles [18]. For every CpG

site, measurements are either made with two separate physical beads (Type I) or through a single

bead across two fluorescence channels (Type II); properties of these probe types are vastly different

and require careful normalization [19, 20].

With the rapid advances and decreasing costs of single-base resolution DNA methylation data,

AE techniques that capture methylated DNA fragments appear to have gone somewhat out of

favor. Standard methylated DNA immunoprecipitation (MeDIP) or methyl-binding domain (MBD)

enrichments share many features of chromatin immunoprecipitation experiments but are plagued

by strong biases in enrichment according to CpG density, some of which can be fixed in silico

[21, 22, 23]. Recently, a cost-effective combined MeDIP-seq and methylation-sensitive restriction

enzyme sequencing approach (MRE-seq), termed M&M, has become available, promising to quickly

compare methylomes at a fraction of the cost of WGBS-seq [24].

Table 1 summarizes the list of the methods reviewed and gives brief details on some of the

important features of a statistical framework: i) the type of data that they operate on; ii) whether
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they use predefined regions or are able to define differential regions themselves; iii) whether the

methods support adjusting for covariates.

Method Citation Designed for Determines regions Accounts for
or uses predefined covariates

Minfi [20] 450k determines yes
IMA [25] 450k predefined no
COHCAP [26] 450k or BS-seq predefined yes
BSmooth [27] BS-seq determines no
DSS [28] BS-seq determines no
MOABS [29] BS-seq determines no
BiSeq [30] BS-seq determines yes
DMAP [31] BS-seq predefined yes
methylKit [32] BS-seq predefined yes
RADMeth [33] BS-seq determines yes
Bumphunter [34] General determines yes
ABCD-DNA [35] MeDIP-seq predefined yes
DiffBind [36] MeDIP-seq predefined yes
M&M [24] MeDIP-seq+MRE-seq determines no

3 Experimental design

Ultimately, the same experimental design concepts that apply broadly to any scientific investiga-

tion, such as sampling, randomization and blocking, are assumed. In experiments involving well-

controlled cell culture conditions, populations of cells are typically uniform in their methylation

status and no additional considerations are necessary. Although some single-cell DNA methylation

studies are beginning to emerge [37], it is crucial to remember, especially in human epigenome-wide

association studies (EWAS) that every experimental unit represents a population of cells. This

implies that a consensus methylation estimate of 50% at any site or region could mean 50% of the

alleles are methylated in all cells (e.g., allele-specific methylation) or 50% of the cells (e.g., mixtures

of cell types) are fully methylated or various combinations in between. In particular, only BS-seq

data can properly decompose this information through the methylation status from individual DNA

fragments and at the same time, infer allele-specific patterns [38, 39]. But, there are limits: since

small fragments are observed, it still remains challenging, without additional haplotype information
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to relate the allelic methylation status at one loci to another genomically distant loci [40].

Unlike in genome sequencing studies, it is important in epigenome profiling projects to collect

relevant populations of cell types. Many population-scale profiling studies may consider using

readily accessible bodily fluids, such as blood, which itself represents a rich milieu of diverse cell

types that may vary in their composition across the experimental units being studied. If it is known

what cell types are of interest and cell surface markers are known, it may be beneficial to first sort

populations of cells into subpopulations and profile each subpopulation individually [41]. Doing

so will give a more focused interrogation of methylation and improved signal over noise. However,

there are many situations where pre-sorting is not possible. Importantly, profiling mixtures of cell

types and looking for changes in DNA methylation can be misleading when the cell composition is

associated with an external factor, such as age of the patient [42]. However, there are now various

emerging computational techniques to (estimate and) deconvolute the cell composition signals in

silico (see below).

Another design consideration for BS-seq experiments is whether to spend money towards deeper

sequencing or towards additional replicates. Because of the local smoothing frameworks available

(e.g., BSmooth, 43), it is indeed considered more beneficial to sequence more replicates than to

gather deep information on fewer samples, analogous to the available advice – replicates preferred

over depth – for differential expression in RNA sequencing experiments [44].

4 Finding differential loci

For single-base resolution assays (BS-seq, 450k array), we first focus on the methodology for discov-

ering individual differentially methylated CpG sites using statistical criteria. BS-seq data can be

summarized as counts of methylated and unmethylated reads at any given site. Many early BS-seq

studies profiled cells in the absence of replicates and used Fisher’s exact test (FET) to discern DM

[45]. While this strategy may be sufficient in comparing cell lines, we stress that the use of FET

should be avoided in the general case; most systems have inherent biological variation and FET

does not account for it. For example, in a two-condition comparison, FET requires the data to
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be condensed to counts for each condition, which completely ignores the within-condition variabil-

ity. This will underestimate the variability and overstate the evidence of the detected differential

regions, leading to a high false positive rate. Likewise, using the binomial distribution, such as a

logistic regression framework (e.g., methylKit; 32), also does not facilitate estimation of biological

variability, unless an overdispersion term is used. While BSmooth uses a “signal-to-noise” statistic

to quantify DM evidence at CpG site, this statistic is not used directly for inference; it is used

within a framework to discover differential regions (see below).

Perhaps the most natural statistical model for replicated BS-seq DNA methylation measure-

ments is the beta-binomial (BB) distribution. Conditional on the methylation proportion at a

particular site, the observations are binomial distributed, while the methylation proportion itself

can vary, according to a beta distribution, across experimental units (e.g., patients). It is therefore

no surprise that BB assumptions are made in several recently proposed packages, such as BiSeq [30],

MOABS [29], DSS [28] and RADMeth [33]. Similarly, empirical Bayes (EB) methods fit naturally

for modeling and inference across many types of genomic data and DNA methylation assays are

no different. MOABS and DSS both implement hierarchical models and use the whole dataset to

estimate the hyperparameters of the beta distribution; RADMeth and BiSeq use standard maxi-

mum likelihood without any moderation. While BiSeq and RADMeth do not moderate parameter

estimates, they provide facilities for complex designs through design matrices, which MOABS and

DSS do not currently offer. Inference for parameters of interest (i.e., changes in methylation) are

conducted using standard techniques, such as Wald tests (DSS, BiSeq) and likelihood ratio tests

(RADMeth). Notably, MOABS introduces a new metric, called credible methylation difference,

which is a conservative estimate of the true methylation difference, calibrated by the statistical

evidence available.

DNA methylation arrays, such as Illumina’s 27k or 450k array, give fluorescence intensities that

quantify relative abundance of methylated and unmethylated loci, in contrast to the count-based

modeling assumptions for BS-seq based profiling. In particular, the data used for downstream anal-

yses can be either i) log-ratios of methylated to unmethylated intensities, analogous to two-channel

expression arrays, or ii) the so-called beta-value, which gives the ratio of the methylated to the
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total of methylated and unmethylated intensities. Previous comparisons suggest that statistical

inferences based on log-ratios are preferred [46], perhaps not surprisingly since they can rely on

the successful moderated statistical testing strategies used for expression arrays (e.g., limma; 47).

Much of the recent effort for the 450k array has been dedicated to normalization and filtering (e.g.,

20, 48) and despite this early knowledge of statistical inferences on log-ratios versus beta-values,

various options for inferring DM sites from 27k/450k array data have been proposed. To test for

DM, IMA proposes Wilcoxon rank-sum tests on beta-values [25]. Similarly, COHCAP is a method

that operates both on methylation array data or BS-seq data, using beta-values or methylation pro-

portions, respectively, as input; they offer FET (see comment above), t-tests and ANOVA analyses

(without moderation), depending on the study design [26]. Ultimately, our intuition suggests that

moderated t/F-statistics on the normalized log-ratios of intensities seems most rigorous.

Many of the packages mentioned above and below provide tools to integrate with other genomic

layers, such as annotation databases, however these additional functionalities are not reviewed here.

5 Finding differential regions

Although there are examples where researchers are interested in relating single CpG sites to a

phenotype (e.g., 49), many methods, including downstream analysis of the statistics discussed in

the last section, are designed to detect DMRs as a more representative predictive (or diagnos-

tic/prognostic) feature. Another advantage is that while methylation differences at any individual

site may be small, if they are persistent across a region, there may be greater statistical power to

detect them at the region-level. In this space, one must distinguish between methods that operate

on predefined regions, with those that define regions of DM. The latter is considerably more dif-

ficult because ensuring control of the false discovery rate (FDR) at the region-level is non-trivial;

in particular, controlling false discoveries at the site-level does not give a direct way to controlling

false discoveries at the region-level when the region itself is also to be defined [50].

Therefore, the most straightforward approach is to use predefined regions, such as CpG islands,

CpG shores, UTRs and so on; statistical testing can be conducted fairly routinely at a region-level.
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Many of the packages mentioned above, such as IMA, COHCAP, DMAP and methylKit, do exactly

this. A special case is DMAP, which can operate on fragments (using the sampled MspI-digested

fragments as the region of interest) or according to predefined regions [31].

There are now a wide array of proposals for defining DMRs. Developed originally for specialized

methylation microarrays, Bumphunter can be applied quite generally across data types [34], perhaps

after transformation in the case of count data. Notably, it also integrates a surrogate variable

analysis [51] to simultaneously account for potential batch effects while permutation tests are used

to assign FDR at the region-level; notably, users are required to set a smoothing window size and

a threshold on the percentile of the smoothed effect sizes (or t-statistics) [34]. Similarly, BSmooth

searches for runs of smoothed absolute t-like scores beyond a threshold, however, does not suggest

a permutation strategy to control region-level FDR. Also from the same authors, minfi wraps

bumphunting into the suite of methods available for Illumina 450k arrays; in addition, a module

for block finding, essentially bumphunting with a much greater window size (e.g., 250kbp), is also

made available [20]. BiSeq proposes, via a Wald test statistic from the beta-binomial regression fit, a

hierarchical testing strategy that first considers target regions and controls error using a cluster-wise

weighted FDR strategy [30]; secondly, the differential clusters are trimmed using a second stage of

testing, analogous to that used for spatial signals [52]. A clustering method, A-clust, proposes first to

cluster CpG sites according to correlation in methylation signal across samples; within the clusters,

associations can be modeled with correlated error and fit using a generalized estimating equation

framework [53]. The DSS authors simply set some thresholds on the P-values, number of CpG sites

and length of regions, but they do not pursue a FDR control story [28]. The MOABS authors suggest

grouping DM sites into DMRs using a hidden Markov model or alternatively testing of predefined

regions, but no specific details are given. Most recently, RADMeth proposes a transformation of

P-values (from a standard likelihood ratio test) into a weighted Z test that builds in the correlation

of neighboring probes [33].

Enrichment assays, such as MBD-seq and MeDIP-seq, are by their very nature of capturing

fragments, only capable of finding regions of DM. Such packages, including MEDIPS [54, 55],

ABCD-DNA [35] and DiffBind [36], compare relative abundance of fragment counts by repackaging
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RNA sequencing statistical inference frameworks. In a related assay, the M&M algorithm models

normalized methylated counts (MeDIP-seq) and unmethylated counts (MRE-seq) as jointly Poisson

distributed, for non-overlapping genomic bins, with a shared parameter [24]. However, analogous

to the FET, the Poisson model does not account for biological variability [24].

6 Reducing the impact of batch, cell type composition or

other confounding effects

As briefly mentioned above, researchers need to carefully design studies that associate phenotypes

with DNA methylation (e.g., using blood). However, some aspects, such as cell type composition

cannot be readily controlled by design; patients and therefore individual DNA samples simply differ

in their cell type composition. A recent report has highlighted that many of the DNA methylation

markers that have been associated to age, are actually driven by changes in cell composition, which

are also associated with age [42]. Whole blood is a mixture of several cell types; using an indepen-

dent dataset of methylation profiles of the dominant cell types (Monocytes, CD4+ and CD8+ T

cells, Granulocytes, B cells, natural killer cells) from flow sorting, patient profiles were deconvoluted

using a reimplementation of the Houseman algorithm [42, 41]. First, from the methylation profiles

of pure cell populations, cell-type-specific markers are selected and then used to “calibrate” a re-

gression model that associates methylation observations to a response of interest [41, 56]. Of course,

this approach requires advance knowledge of the dominant cell types and methylation profiles for

them, preferably across multiple replicates to seed the deconvolution algorithm with appropriate

methylation markers. However, a recent study has highlighted that advanced statistical modeling

can correct for cell type composition without the need for pure-cell profiles; starting from uncor-

rected standard model fits, the method regresses principal components within a linear mixed model

until control for the inflation of the test statistics (e.g., relative to a uniform distribution of P-values)

is achieved [57].
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7 Discussion

In this review, we briefly explored the various methodologies available for deciphering differentially

methylated regions across the main data types and highlighted some of the common themes and

current challenges. The tradeoffs made by method developers are apparent. In fact, its a lot to

ask of a single statistical framework to be able to do everything: moderate parameter estimates

using genome-wide information or accurately and robustly smooth local estimates, accommodate

low coverage data, account for batch effects and cell type composition, allow complex experimental

designs and accurately control the FDR at the site- and/or region-level. In addition, identification

of DMRs is only the discovery step; validating these detections, perhaps by associating them with

other biological outcomes in silico requires additional frameworks, some of which have already been

integrated alongside the packages reviewed here.

On the statistical and computational side, the field is moving fast and several advanced methods

have been proposed. One of the next challenges will be to comprehensively compare method perfor-

mance, in terms of power to detect changes and ability to control FDR, robustness and scalability

to large datasets (e.g., whole genome BS-seq) and large studies (e.g., EWAS). Representative simu-

lation frameworks will be fundamental for this task. Given the large number of methods available,

this will already be a large undertaking. To avoid bias, these comparisons should be done either

independently of the method development process, or collectively with all method developers. Ad-

vanced deconvolution algorithms and batch effect removal strategies are, at present, targeted at

450k array data. The development and vetting of similar techniques that can be readily applied to

count data, such as BS-seq data, are well underway [58, 59].
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