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Abstract 
Cancer genomics has been instrumental to determine the genetic alterations that are 

predictive of various tumor conditions. However, the majority of these alterations 

occur at low frequencies, motivating the need to expand the catalogue of cancer 

signatures. Alternative pre-mRNA splicing alterations, which bear major importance 

for the understanding of cancer, have not been exhaustively studied yet in the context 

of recent cancer genome projects. In this article we analyze RNA sequencing data for 

more than 4000 samples from The Cancer Genome Atlas (TCGA) project, including 

paired normal samples, to detect recurrent alternative splicing isoform switches in 9 

different cancer types. We first investigate whether alternative splicing isoform 

changes are predictive of tumors by applying a rank-based algorithm based on the 

reversal of the relative expression of transcript isoforms. We find that consistent 

alternative splicing isoform changes can separate with high accuracy tumor and 

normal samples, as well as some cancer subtypes. We then searched for those changes 

that occur in the most abundant isoform, i.e isoform switches, and are therefore more 

likely to have a functional impact. In total we detected 244 isoform switches, which 

are associated to functional pathways that are frequently altered in cancer and also 

separate tumor and normal samples accurately. We further assessed whether these 

isoform changes are associated to somatic mutations. Surprisingly, only a few cases 
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appear to have association, including the putative tumor suppressor FBLN2 and the 

tumor driver MYH11, which show association of an isoform switch to mutations and 

indels on the alternatively spliced exon. However, the number of observed mutations 

is in general not sufficient to explain the frequency of the found isoform switches, 

suggesting that recurrent isoform switching in cancer is mostly independent of 

somatic mutations. In summary, we present an effective approach to detect novel 

alternative splicing signatures that are predictive of tumors. Moreover, the same 

methodology has led to  uncover recurrent isoform switches in tumors, which may 

provide novel prognostic and therapeutic targets.  

Software and data are available at: https://bitbucket.org/regulatorygenomicsupf/iso-

ktsp and http://dx.doi.org/10.6084/m9.figshare.1061917 

 

Introduction 
Cancer genome projects are instrumental to describe the genetic heterogeneity of 

tumors and to uncover recurrent alterations that may serve as new biomarkers for 

prognosis and therapeutic targets (TCGA 2012a-d, TCGA 2013).  However, known 

actionable alterations tend to occur at low frequency or are often absent in an 

individual tumor sample, which hinders the choice of appropriate therapeutic 

strategies (Vogelstein et al. 2013, Hudson 2013). There is therefore a need to expand 

the catalogue of molecular signatures in cancer. Alternative splicing alterations, 

which bear major importance in terms of the understanding and treatment of cancer 

(Bonomi et al. 2013), have not been exhaustively studied yet in the context of recent 

cancer genomics efforts. Alternative splicing may confer a selective advantage to the 

tumor, such as angiogenesis (Amin et al. 2011), proliferation (Bechara et al. 2014), 

cell invasion (Venables et al. 2013) and avoidance of apoptosis (Izquierdo et al. 2005). 

Some of these alterations may be caused by somatic mutations (Ward and Cooper 

2010), but can also take place as a result of changes in expression, amplifications and 

deletions in splicing factors (Karni et al. 2007, Furney et al. 2013). This suggests that 

similar splicing alterations may have different genetic origins and still confer 

equivalent tumorigenic properties to cells. Accordingly, to uncover potential markers 

of prognosis and targets of therapy, it is of utmost relevance to describe the patterns 

of alternative splicing in tumors.  
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Numerous genome wide surveys have highlighted the role of alternative splicing 

patterns in tumors. These have mostly been based on the measurement of local 

patterns of splicing, encoded as events, and studied using microarrays (Thorsen et al. 

2008, Lapuk et al. 2010, Misquitta-Ali et al. 2011), RT-PCR platforms (Klinck et al. 

2008), or RNA sequencing (Liu et al. 2012). The description of alternative splicing in 

terms of simple events facilitates the validation using PCR methods and the 

characterization of regulatory mechanisms using sequence analysis and biochemical 

approaches. However, alternative splicing takes place through a change in the relative 

abundance of the transcript isoforms expressed by a gene, and splicing alterations 

important for tumor progression may involve complex patterns that are not easily 

described in terms of simple events. Accordingly, to ultimately determine the 

functional impact of splicing alterations, it is important to describe these in terms of 

transcript isoforms changes. This has been shown to be relevant for TP53, which 

produces multiple isoforms with complex variations and with different roles in tumors 

(Bourdon et al. 2005). Similarly, recent analyses have shown that there are transcript 

isoforms specific of lung and breast cancers (Kalari et al. 2012, Eswaran et al. 2013), 

and that transcript analysis can improve expression-based tumor classification (Zhang 

et al. 2013, Pal et al. 2014). Additionally, transcript isoform changes can be essential 

to detect resistance to anti-tumor drugs (Mitra et al. 2009, Poulikakos et al. 2011). 

Thus, the detection of transcript isoform changes characterizing specific tumor types 

can provide new cancer signatures and could be crucial for the development of 

diagnostic, prognostic and therapeutic strategies.  

With the aim to describe the transcript isoform changes that are characteristic of 

tumors, we have analyzed more than 4000 RNA sequencing (RNA-Seq) samples 

available from the Cancer Genome Atlas (TCGA) project. In order to perform an 

analysis that is robust to the variability between samples from different individuals, 

we have applied a new rank-based algorithm that searches for consistent reversals of 

relative isoform expression. This algorithm provides the minimal set of isoform-pairs 

with relative expression changes that can accurately separate tumor from normal 

samples. Moreover, the obtained isoform-pairs can accurately classify unseen tumor 

data. We have applied the same algorithm to breast, lung and colon cancer subtypes to 

obtain isoform signatures that separate subtypes from each other. In particular, we 

found a highly significant signature for basal-like breast tumors that distinguish them 
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from other breast cancer subtypes. We also found that a number of the identified 

significant isoform changes correspond to transcript isoform switches, for which the 

relative expression change occurs in the most abundant isoform, and are therefore 

more likely to have a functional impact. We found a total of 244 isoform switches in 

all cancer types. These switches can also accurately separate tumor and normal 

samples, and occur in genes belonging functional pathways frequently altered in 

cancer. Interestingly, only a few of these switches can be explained by somatic 

mutations in the gene locus, suggesting that recurrent isoform switching in cancer is 

mostly independent of somatic mutations. On the other hand, we found that for at 

least one case the isoform switch is mutually exclusive with mutations affecting the 

protein-coding region of the transcripts, suggesting that splicing alterations represent 

an alternative route towards cellular transformation. Our analyses show that recurrent 

transcript isoform switches represent important novel signatures in cancer that can 

serve as molecular markers and could lead to the development of new therapeutic 

targets.  

 

Results 
Systematic analysis of splicing isoform changes in cancer 

Changes in the relative abundance of the alternative transcripts from a gene translate 

into a variation in their relative order in the ranking of transcript expression. 

Accordingly, the problem of finding alternative splicing changes in cancer can be 

reformulated in terms of the consistency of the reversals of their relative expression of 

transcript isoforms from the same gene. For this purpose we developed Iso-kTSP, 

which extends the principle of consistent expression reversals for gene expression 

(Geman et al. 2004, Tan et al. 2005, Price et al. 2007) to alternative splicing isoforms. 

The Iso-kTSP algorithm stores the ranking of isoform expression from multiple 

samples separated into two classes (Figure 1A). All possible isoform pairs from the 

same gene are sorted according to the sum of frequencies of the two possible relative 

orders occurring separately in each class, defined as score S1 (Methods). This score 

provides an estimate of the probability for the isoforms to change relative order 

between the two classes. The top scoring isoform pairs are therefore the most 

consistent changes in isoform relative abundance for a gene between two classes, 
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tumor and normal, or between two tumor subtypes. Each one of these isoform pairs 

provides a classification rule based on the relative expression order, with a 

discrimination power related to the consistency of this reversal across samples.  

Using cross-validation, the ranking of isoform-pairs is calculated at each iteration step 

on a balanced set leaving out one sample from each class, which are used for testing 

(Figure 1B). The prediction class for a new sample is obtained by evaluating the 

expression ranking in the new sample against the isoform pair rules. At each iteration 

step in the cross-validation, the top k-pairs (k=1… kmax, with k odd) are evaluated on 

the test set. Each isoform-pair from the same gene defines a rule, where each gene is 

only used once. The rule is defined such that for a pair, if the first isoform has lower 

expression than the second the sample is predicted to be normal, otherwise is 

predicted to be a tumor. Accordingly, the first isoform is defined as the tumor isoform, 

and the second as the normal isoform. Significance of the isoform-pair rules is 

measured by performing 1000 permutations of the sample labels (Figure 1C). At each 

permutation, the algorithm is run as before keeping only the pair with the highest 

score S1. An isoform-pair is defined as significant if its score S1 and information gain 

(IG) are larger than the maximum ones obtained from the permutation analysis. The 

global ranking of isoform-pairs and permutation analysis yields the list of significant 

isoform changes (Figure 1D). From this set, we derive a minimal classification model 

with the smallest odd number of isoform-pairs with the highest average performance 

(Figure 1E). The final classification is based on simple majority voting with an odd 

number of isoform pairs. On the other hand, some of the isoform-pairs from the list of 

significant cases are in fact isoform switches, for which the relative expression change 

occurs in the most abundant isoform of the gene, and which we detect by the anti-

correlation of the relative inclusion levels or PSIs of the isoforms (Figure F). Finally, 

to further assess the accuracy of the minimal classification model, or that of a set of 

isoform switches, a blind test is carried out on samples that were not used for cross-

validation (Figure 1G). On this set we measure the proportion of samples correctly 

labeled by the classifier, as well as the number of correct votes for each prediction.  
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Table 1. Number of analyzed paired and unpaired tumor samples from each cancer 

type: Breast carcinoma (BRCA), colon adenocarcinoma (COAD), head and neck 

squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear-

cell carcinoma (KIRC) lung adenocarcinoma (LUAD), lung squamous cell carcinoma 

(LUSC), prostate adenocarcinoma (PRAD), and thyroid carcinoma (THCA). All 

datasets were obtained from https://tcga-data.nci.nih.gov/. For the paired samples we 

also used the corresponding normal samples from the same patients. For the list of 

samples used see Supplementary File 1.  

 

 

 

 

 

 

 

 

 

TCGA 
acronym 

Cancer type Paired 
samples 

Unpaired 
tumor 
samples 
 

Reference 

BRCA Breast Invasive Carcinoma 107 929 (TCGA 2012c) 

COAD Colon adenocarcinoma 26 236 (TCGA 2012a) 

HNSC Head/neck squamous cell carcinoma 38 384 (Stransky et al. 2011) 

KICH Kidney Chromophobe 21 41 https://tcga-data.nci.nih.gov/ 

KIRC Kidney renal clear cell carcinoma 71 434 (TCGA 2013) 

LUAD Lung adenocarcinoma 57 431  (Ding et al. 2008) 

LUSC Lung squamous cell carcinoma 50 433 (TCGA 2012b) 

PRAD Prostate adenocarcinoma 48 247 https://tcga-data.nci.nih.gov/ 

THCA Thyroid carcinoma 58 439 https://tcga-data.nci.nih.gov/ 
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Recurrent alternative splicing isoform changes can separate tumor and normal 

samples 

We downloaded the available RNA-Seq datasets for tumor and paired normal samples 

from TCGA for 9 cancer types (Table 1). Prediction of tissue types from gene 

expression with URSA (Lee et al. 2013) was used to detect and filter out outliers in 

the samples (Supplementary Figure 1). The tumor and paired normal samples that 

were kept show a remarkably similar pattern of tissue expression in BRCA, COAD, 

KIRC, PRAD and THCA (Supplementary Figure 1), and partly in KICH. On the other 

hand, LUAD, LUSC, and HNSC show heterogeneous patterns of predicted tissue 

types, probably due the mixed cellular origins (Lundin et al. 2013). The list of 

samples used for further analyses are given in Supplementary File 1.  

For each cancer type, the Iso-kTSP algorithm was applied to the paired samples to 

obtain minimal classifiers to separate tumor and normal samples, and the blind test 

performed on the remaining unpaired tumor samples. This yielded different predictive 

models for the 9 cancer types (Figure 2A and Supplementary Figure 4A), with PRAD, 

THCA and KIRC having the lowest average accuracies, and LUSC, LUAD, COAD 

and KICH having 100% average accuracy. Moreover, the blind tests of these models 

on the unpaired tumor samples show overall accuracies greater than 84% (Figure 2B 

and Supplementary Figure 4B). These models provide a minimal set of isoform pairs 

whose relative expression can separate tumor and normal samples with high accuracy 

despite the variability of the transcript expression measurement across samples 

(Supplementary Figures 3-8) (Model files are given in Supplementary File 2). All the 

isoform-pairs in the derived models are significant according to our permutation 

analysis (Supplementary Figure 9). This significance also depends in general on the 

number of samples available and on the heterogeneity of the tumor samples. 

Permutation analysis for a varying number of input samples indicates that in order to 

obtain significant isoform changes, more than 13 samples are needed on average 

(Supplementary Figure 10), which is fulfilled by the cancer types analyzed. 

The isoform changes detected include FBLN2, which appears as a single gene model 

for COAD and is part of the BRCA model (Figure 3A). FBLN2 has been proposed 

before to be a tumor suppressor (Law et al. 2012) and its cancer-related function 

seems to be specific of the protein produced in tumor cells (Baird et al. 2013). We 
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found that FBLN2 undergoes an isoform change related to the skipping of a protein 

coding exon (Supplementary Figure 11). Additionally, this isoform switch occurs in 

more than 98% of the unpaired tumor samples in BRCA and COAD (Figure 1A). In 

the case of LUAD, surprisingly, we found that the most informative isoform change 

does not occur in NUMB, known to have a splicing switch related to proliferation 

(Misquitta-Ali et al. 2011, Bechara et al. 2014), but in QKI. In fact, the isoform 

change in QKI cannot be described in terms of a simple alternative splicing event 

(Figure 2C). In contrast, LUSC model involves a different set of genes compared to 

LUAD, including the gene ZNF385A (Figure 2), whose protein product interacts with 

TP53 thereby promoting growth arrest (Das et al. 2007). The isoform change found is 

related to the use of an alternative first exon and alternative 3’ splice-site 

(Supplementary Figure 12). Similarly to COAD, THCA and KIRC have single-gene 

models (Supplementary Figure 2). In particular, for THCA the model involves 

S100A13, which codes for a calcium binding protein and which has been proposed to 

be a new marker of angiogenesis in various cancer types (Massi et al. 2010). The 

isoform change involves an alternative first exon and classifies correctly 84.5% of the 

unpaired tumor samples (Supplementary Figure 13). Interestingly, S100A13 and 

another member of the S100 family, S100A16, also have isoform changes in KICH, 

even though they were not included in the KICH model (Supplementary Figure 13). 

The single isoform change in KIRC involves the production of an intron-retention 

transcript, annotated as non-coding in the gene CPAMD8 (Supplementary Figure 14). 

A similar case occurs in the gene NAGS, which is part of the KICH model 

(Supplementary Figure 2) and is related to an autosomal recessive urea cycle disorder 

(Häberle et al. 2003). We predict that a protein coding isoform changes in tumors into 

an isoform with a retained-intron that is annotated as non-coding (Supplementary 

Figure 15). Importantly, the loss of the protein coding isoform is predictive of 100% 

of the KICH tumor samples (Supplementary Figure 15). Other isoform changes are 

discussed in the supplementary material (Supplementary Figures 16-18). GFF tracks 

for the isoform-pairs in all derived models can be found in Supplementary File 3. 
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Changes in alternative splicing isoforms can discriminate tumor subtypes 

Cancers are generally classified into subtypes to facilitate patient stratification for 

more precise prognosis and selection of therapeutic strategy. In particular, breast 

cancer classification has been recently refined based on molecular information from 

multiple sources (TCGA 2012c).  We thus decided to investigate whether breast 

cancer subtypes are associated with consistent isoform changes when compared to 

each other. We separated the BRCA tumor samples into luminal A, luminal B, Her2+ 

and basal-like as labeled by TCGA (TCGA 2012c) (Supplementary File 1) and run 

the Iso-kTSP algorithm comparing each subtype against a pool from the rest. In order 

to maintain balanced sets for the comparison and avoid biases due to sample selection, 

we subsampled 100 times 45 arbitrary samples for a given subtype and a pool of 15 

from each of the other three subtypes together. At each iteration step, we performed 

permutation analysis of the labels to determine the significance of the detected 

isoform changes. We found that only basal-like tumors showed isoform changes that 

were significant in more than 80% of the sampling iterations (Figure 4A and 

Supplementary Figure 19). Among the most significant cases we found KIF1B, which 

has been implicated in apoptosis (Schlisio et al. 2008); ATP1A1, proposed to have 

tumor suppressor activity (Cao et al. 1997); ITGA6, found to be required for the 

growth and survival of a stem cell like subpopulation of MCF7 cells (Cariati et al. 

2008); and CTNND1, whose alternative splicing was previously related to cell 

invasion and metastasis (Yanagisawa et al. 2008) (Figure 4A). We selected the top 7 

isoform-pairs in basal-like that were significant in more than 80% of the iterations. 

This model classified correctly 93.6% of all the BRCA tumor samples, with 47% of 

the samples fulfilling all 7 isoform change rules (Figure 4B). Although this cannot be 

considered a blind test, it provides an estimation of the expected accuracy. For the 

other BRCA subtypes we found much lower consistency of the isoform changes and 

none of them were significant for more than 13% of the permutation tests 

(Supplementary Figure 20).  

Four different subtypes have been defined based on mRNA expression for the lung 

squamous cell carcinomas (LUSC): basal, classical, primitive and secretory; which 

have different clinical and biological characteristics (Wilkerson et al. 2010). We 

applied the same approach as above to the four LUSC subtypes using the subtype 

labeling from TCGA (TCGA 2012b), comparing 24 samples from each subtype 
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against the pool of three sets of 8 arbitrary samples from the other subtypes. The most 

relevant isoform change was found for gene GCNT2 in association to the classical 

subtype in at least 60% of the subsampling iterations, but significant only in 22% of 

them (Supplementary Figure 21 and 22). Interestingly, GCNT2 overexpression has 

been linked to breast and lung cancer metastasis (Zhang et al. 2011). All other found 

changes occurred at lower frequencies and showed significance in no more than 3% 

of the iterations.  Despite of the low recurrence of the isoform changes, tests on the 

entire set of LUSC tumor samples was able to separate correctly classical from other 

subtypes for more than 80% of them (Supplementary Figure 21). 

Colorectal cancers have been classified into hypermutated and non-hypermutated, 

where non-hypermutated tumors have generally worse prognosis (TCGA 2012a). 

Following previous definitions (TCGA 2012a), we labeled COAD samples as 

hypermutated if they had more than a total of 250 mutations, and as non-

hypermutated those with less than 250 mutations. We then compared both subtypes 

by subsampling 40 samples from each one 100 times. This analysis yielded specific 

isoform changes between the two types occurring in more than 40% of the iterations 

(Supplementary Figure 23), including a change in the long non-coding RNA gene 

antisense of NUTM2A (NUTMA2A-AS1), which appeared in 57% of the models. We 

tested two different models with the top 5 and 13 isoform-pairs, obtaining an accuracy 

of more than 80% on the total COAD dataset (Supplementary Figure 18). Models and 

GFF tracks for all subtype models are provided in Supplementary Files 2 and 3, 

respectively. 

 

A catalogue of alternative isoform switches in cancer 

The alternative isoform changes described above can separate tumor and normal 

samples, and in some cases specific cancer subtypes. However, these models are 

optimized to have the minimum number of isoform-pairs and maximum average 

accuracy, which is convenient for defining biomarkers with potential clinical 

applications. On the other hand, the frequency of these isoform changes does not 

imply functional relevance. However, among the recurrent isoform-changes, those 

more likely to be functionally relevant will be the ones for which the change occurs in 

the most abundant isoform, i.e. isoform switches (Figure 1F). Accordingly, in order to 
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obtain all the significant isoform changes with a possible functional relevance in 

cancer, we decided to calculate all the significant isoform switches between tumor 

and normal samples. We first retrieved all those genes with significant isoform 

changes according to our permutation analysis (Figure 1D). This yielded a total 1178 

genes for the 9 cancer types. We further filtered these genes by imposing a score S1 > 

0.5, which corresponds to selecting isoform-pairs with a change in more than 75% of 

the samples. To select for switches, we kept those cases for which the relative 

inclusion levels of the isoforms anti-correlate (Figure 1F), as observed for FBLN2, 

QKI and other genes (Figure 3 and Supplementary Figures 12-18). We thus selected 

those isoform-pairs having an anti-correlation of PSI values of R < -0.8 (Spearman). 

Finally, we kept only those with average expression per isoform of  > 1 TPMs in 

either tumor or normal samples.  

These criteria gave rise to a total of 244 isoform switches, with 59 of them appearing 

in more than one cancer type (Figure 5) (Supplementary File 4). The most common of 

the switches is the one described above for FBLN2. From the total 244 switches, 10 

occur in known cancer drivers (Figure 5). Moreover, we also found switches in genes 

whose splicing has been associated before with cancer, like CD44, which has been 

observed to be relevant in colon cancer initiation (Du et al. 2008), and SLC39A14, 

whose alternative splicing is regulated by WNT in colon cancer (Thorsen et al. 2011). 

LUAD, KIRC and LUSC are the cancer types with most switches, with 85, 65 and 54, 

respectively. LUSC and LUAD have 33 switches in common. In contrast, KIRC and 

KICH have only 2 switches in common. HNSC and PRAD are the cancer types with 

the fewest switches, 7 and 2 respectively. Although functional analysis did not yield 

any significantly enriched Reactome pathways (Croft et al. 2014), isoform switches 

appear frequently in signal transduction, immune system and metabolism related 

pathways (Figure 4 and Supplementary Figure 24). On the other hand, Gene-Ontology 

analysis shows enrichment of multiple categories, including actin activity in relation 

to cell motility and migration, in categories related to extracellular organization, as 

well as in response to estrogen and regulation of MAPK activity (Supplementary 

Figure 25).  

We also tested the accuracy of switches as predictive models by performing blind 

tests on the unpaired tumor samples (Figure 1G) and found accuracies of around 90% 

and higher (Supplementary Figure 26). These isoform switches are thus good 
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predictors of tumor samples. All details for the found isoform switches and 

corresponding GFF tracks are provide in Supplementary Files 4 and 5. 

 

Isoform switches in cancer are not frequently associated with somatic mutations 

As splicing changes may be triggered by somatic mutations (Ward and Cooper 2010), 

we thus investigated whether any of the detected isoform switches may be caused by 

recurrent somatic mutations in the same genomic locus. To this end, we tested 

whether in tumor samples there was any association between the presence of the 

isoform switch and somatic mutations in the region of the transcript isoforms 

undergoing the switch. Since in addition to intronic mutations, synonymous as well as 

non-synonymous mutations could alter the splicing of a gene (Sterne-Weiler & 

Sanford 2014), we considered all mutation types available in TCGA: coding-related 

(nonsense, missense, frameshift and indel) and non-coding-related (synonymous, 

splice-site and RNA) mutations. For each isoform-switch and for each cancer type, 

we calculated the Jaccard index across all samples for the association between the 

presence of the switch and the presence of somatic mutations (Figure 6A) (see 

Methods for details). These Jaccard indexes agree with mutual information and do not 

correlate with the average mRNA length of the switches (Supplementary Figure 27). 

This analysis shows genes FBLN2, MYH11, FLNA and TNC to have the strongest 

association between mutations and switches (Figure 6A and Supplementary Figure 

20). These four genes are also the ones with the highest frequency of mutated samples 

(Figure 6A). For FBLN2, we found several mutations in BRCA and COAD samples 

on the alternative exon and the flanking constitutive exons (Figure 6B). However, 

there are not enough mutations to explain all the switches observed. We also found 

frequent mutations in the alternatively spliced region of the oncogene MYH11. In 

particular, we found recurrent deletions and insertions on the alternative exon in 

COAD and BRCA tumor samples that coincide with the presence of the switch 

(Figure 6C). The location of these indels coincides with a region of low conservation 

and is next to a putative binding site for the splicing factor SRSF1 (Supplementary 

Figure 28). Nonetheless, the number of found mutations cannot explain either the 

frequency of the switches observed.  
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Somatic mutations could also affect the magnitude of the splicing change in specific 

samples. We therefore tested, for each isoform-switch, whether the presence of 

mutations is associated with a larger difference of PSI between the tumor and normal 

isoforms involved in the switch (Methods). Among the four most significant cases, 

we found FBLN2 and EHBP1 (Supplementary Figure 29). These two cases show 

some differences in the distributions of samples with and without mutations 

(Supplementary Figure 29). However, the proportion of mutated samples is very small 

to make a reliable comparison and after multiple-testing correction, none of the found 

cases remained significant. This suggests that, except for a limited number of cases, 

mutations may not be the main cause of the recurrent splicing switches we have found 

in cancer.  

We thus hypothesized that mutations and isoform switches may occur independently 

as two alternative mechanisms of functional transformation in cancer. To test this 

possibility, we measured how frequently mutations that affect the protein-coding 

region occur in tumor samples without the isoform switch in the same gene by 

defining a mutual-exclusion score based on the number of samples with no switch but 

with protein-affecting mutations (Methods). We found that in general the mutual 

exclusion score correlates with the overall proportion of mutated samples 

(Supplementary Figure 30). However, the number of samples with switch and 

mutation is generally comparable or higher, except for the gene Tenascin C (TNC), 

for which we find more samples with a protein-affecting mutation and no switch than 

with switch and protein-affecting mutation (Supplementary Figure 30). This indicates 

that there is no strong bias towards this mutual exclusion. We conclude that there are 

currently not a sufficient number of mutations that can provide an explanation of the 

described recurrent isoform switches. Nonetheless, there are a few cases for which 

this association may exist, as described for the genes FBLN2, MYH11 and TNC. 

 

Discussion 
We have applied the principle of relative expression reversals (Geman et al. 2009, 

Tan et al. 2005) to the search of recurrent alternative splicing isoform changes in 

tumors using available RNA-Seq data from the TCGA project for 9 different cancer 

types. In our implementation of this algorithm for isoforms (available at: 
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https://bitbucket.org/regulatorygenomicsupf/iso-ktsp) each classification rule is 

described in terms of the relative expression of a single pair of isoforms per gene. In 

this context, the principle of reversals has a natural interpretation as an alternative 

splicing change between two conditions. This algorithm provides robust classifiers 

despite of the variability of isoform expression across tumor samples, as the models 

are not dependent on parameterizations or on any normalization that would maintain 

the order of the isoform expression. This rank-base method is especially useful for 

isoform expression from RNA-Seq data, since between-sample normalization 

methods are not yet fully established. In fact, our approach is applicable to integrate 

data from heterogeneous platforms, as long as they provide a meaningful ranking of 

expression. Moreover, the method produces significant isoform changes from a 

relatively small number of samples, which makes it useful for medium-sized 

sequencing projects.  

 

We have derived classification rules based on isoform changes that can distinguish 

tumor from normal samples, and between some tumor subtypes. The predictive 

models show overall a high accuracy when tested on held-out datasets. Except for the 

cases of colon, thyroid and kidney carcinomas, individual isoform-pair rules do not 

show in general a strong predictive power. However, in combination, they accurately 

classify tumor samples in the blind test. This suggests that splicing alterations are 

heterogeneous in tumor samples, but in combination they provide characteristic 

signatures, similarly to the patterns of somatic mutations (Vogelstein et al. 2013). 

This heterogeneity is further highlighted by the fact that different cancer types share a 

small fraction of the found isoform changes. Although some of these changes may be 

explained by the differences in the cell composition of tumors (Venables et al. 2013, 

Mallinjoud et al. 2014), we observed an homogenous pattern of predicted tissue types 

in tumor and normal samples for most of the cancer types analyzed, suggesting that 

the splicing changes are not a consequence of differences in cell type composition.  

Comparative analysis between cancer subtypes only yielded a significant model for 

basal-like breast tumors, which includes genes with known functional relation to 

cancer. For the LUSC subtypes we did not find significant changes, and only the 

classical subtype showed frequent isoform changes in the gene GCNT2. Similarly, 

COAD subtypes, based on the mutations of the samples, did not show significant 
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isoform changes, but we observed frequent changes in a non-coding RNA gene 

antisense of NUTMA2A. These results indicate that most of the subtypes considered 

have similar alternative splicing patterns.  

Our initial analysis shows that isoform changes hold sufficient information to separate 

tumor and normal samples, and specific tumor subtypes. This suggests they could 

serve as effective molecular markers, as they would only require measuring the 

expression of two isoforms per gene, for a small number of genes. Furthermore, the 

application of this method to separate tumors according to clinical information will 

provide a useful prognostic tool. On the other hand, these signatures are not 

necessarily related to a biological effect specifically relevant for the tumor. To 

investigate this aspect, we selected all those significant isoform changes that are also 

isoform switches, i.e. the change occurs in the most abundant isoform, and therefore 

more likely to have a functional impact. We found 244 such isoform switches, which 

can also accurately separate tumor and normal samples, and some of which appear in 

multiple cancer types. Interestingly, many of the found isoform switches occur in 

pathways that are often altered in tumors, and some of them occur in known cancer 

driver genes, including CDKN2C, CTNNB1, ABI1 and MYH11. Additionally, we 

found that of the splicing switches cannot be described in terms of simple events. This 

is the case for QKI, for which we predict an isoform switch specific to lung 

adenocarcinoma. The found isoform switches provide an opportunity to develop 

experimental strategies based on the detection of specific protein isoforms. In 

particular, we found genes with isoform switches involved in cell communication 

pathways, including DST and FLNA, which could be potentially used for diagnostic 

or prognostic applications, or even for developing tumor-specific therapeutic targets 

with reduced cross-reactivity to other proteins.  

Surprisingly, we did not find strong associations of somatic mutations with the 

isoform switches. It has been recently proposed that synonymous mutations in known 

cancer drivers may contribute to the oncogenic process (Supek et al. 2014). However, 

a direct link was not made between the observed somatic mutations and specific 

splicing changes measured in the same tumor samples. We found only a handful of 

genes with significant association between the isoform change and somatic mutations 

occurring in the same samples. These include the putative tumor suppressor FBLN2 

and the cancer driver MYH11, the latter showing a recurrent indel in the alternative 
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exon in samples where it is skipped. Still, mutations alone cannot explain the splicing 

changes observed, as 99% of the transcripts analyzed appear mutated in less than 5% 

of the tumor samples, whereas the majority of switches occur in at least 50% of the 

samples. This could mean that there are many intronic mutations not represented in 

the currently available exome-based data, which could explain the observed variations. 

Alternatively, the recurrent switches could be explained by alterations in splicing 

factors. Although point mutations and indels on splicing factors do not occur with 

sufficient frequency to explain the switches (Furney et al. 2013), some splicing 

factors show frequent amplifications, deletions and changes in expression in tumors 

(Karni et al. 2007). Another interesting hypothesis is whether alterations in chromatin 

modifications or DNA methylation may be responsible for the observed changes. 

These alterations are frequent in cancers (Esteller 2007, Ellis et al. 2008) and can 

induce changes in splicing (Luco et al. 2010, Maunakea et al. 2013). Interestingly, the 

gene FBLN2, which presents a switch in various cancers, has been observed 

frequently methylated in breast and other epithelial tumors (Hill et al. 2010).  

Consistent isoform switching in tumors thus seems generally independent of somatic 

mutations; and moreover, only 10 of the detected 244 switches occur in known cancer 

drivers. This raised the question of whether these two alterations could be actually 

mutually exclusive. We found that only TNC, linked to cell invasion in tumors 

(Hancox et al. 2009), has this mutual exclusion pattern between the isoform switch 

and somatic mutations affecting the coding regions, suggesting that, albeit to a limited 

extent, splicing switches may provide an alternative mechanism towards functional 

transformation in cancer. In summary, we have detected recurrent alternative splicing 

isoform changes that are predictive of various tumoral conditions, and which may 

have potential applications for diagnostic and prognostic purposes. The same 

methodology has allowed us to uncover recurrent isoform switches in tumors, which 

are likely to have a functional impact, and which may be useful to explore novel 

therapeutic strategies. Further research will be necessary to determine the functional 

impact produced by the described isoform changes and how these may actually 

contribute to the tumor. We hypothesize that the observed recurrent changes in 

splicing, regardless of their cause, may contribute together with mutations and other 

alterations to explain tumor formation; hence, providing novel signatures for cancer.  
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Methods 

Available processed RNA-Seq data for tumor and normal samples was downloaded 

from the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/) for all cancer types 

together with the UCSC gene annotation from June 2011 (assembly hg19) and the 

somatic mutation data. To assess sample quality, the provided estimated read-counts 

per gene were analyzed using URSA (Lee et al. 2013) and sample pairs that did not 

cluster with the rest of the samples were removed (Supplementary Figure 1). The list 

of kept samples can be found in Supplementary File 1. 

The abundance of every transcript per sample was calculated in transcripts per million 

(TPM) (Li et al. 2010) from the transcript-estimated read counts provided by TCGA 

and the isoform lengths from the UCSC (June 2011) annotation. No further 

normalization on the TPM values was performed. For each transcript, the relative 

abundance (or PSI) per sample was calculated by normalizing the TPM by the sum of 

TPMs for all transcripts in the gene. Genes with one single isoform or no HUGO ID 

were removed for the Iso-kTSP analysis. 

The Iso-kTSP algorithm is based on the kTSP algorithm (Geman et al. 2004, Tan et al. 

2005). It stores the isoform expression rankings in samples from two groups, Cm, 

m=1,2. For every pair of isoforms Ig,i and Ig,j in each gene g, Iso-kTSP calculates a 

score based on the frequencies of the two possible relative orders in both classes:	  

S1(Ig,i, Ig, j ) = P(Ig,i > Ig, j |C1)+P(Ig,i < Ig, j |C2 )−1  

Where P(Ig,i > Ig,j |C1) and P(Ig,i < Ig,j |C2) are the frequencies at which the isoform Ig,i 

appears later than, or before, Ig,j in the expression ranking of classes C1 or C2, 

respectively. To avoid possible ties, a second score S2 is used, which is based on the 

average rank difference per class Cm for each isoform pair, as proposed previously 

(Tan et al. 2005). Defining R(Ig,i |Sa,Cm) as the rank of isoform Ig,i in sample Sa and 

class Cm, the average rank difference between two isoforms in a given class is 

calculated as 

 g(Ig,i, Ig, j |Cm ) =
1
|Cm |

R(Ig,i | Sa,Cm )− R(Ig, j | Sa,Cm )( )
a
∑
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where |Cm| denotes the number of samples in class Cm. The score S2  for an isoform-

pair is then defined as (Tan et al. 2005):	  

 

All possible isoform pairs are then sorted by the S1 score and in the case of a tie, by 

the S2 score. Moreover, only pairs of isoforms from the same gene are considered and 

only a single pair of isoforms per gene is listed in a ranking of isoform-pairs. 

Classification rules are given in terms of k isoform pairs. The classification of a new 

sample is performed by evaluating each isoform-pair rule against the ranking of 

isoform expression of the new sample. For each isoform-pair rule, the classifier 

selects the class for which the data fulfills the rule. The final decision for 

classification is established by simple majority voting, by selecting the most voted 

class from the k rules. In order to avoid ties in the voting, k is always odd. 

Significance of the computed isoform changes was evaluated by shuffling labels from 

the two classes 1000 times. For each shuffling step, the Iso-kTSP algorithm was re-

run and the top-scoring isoform-pair was selected. An isoform-pair is defined as 

significant if its Information Gain and Score S1 are larger than any of the values 

obtained from the 1000 shufflings of the same cancer type. The Iso-kTSP is 

implemented in Java. Software and documentation are available at 

https://bitbucket.org/regulatorygenomicsupf/iso-ktsp. 

For the purpose of finding associations, the number of samples for which a gene has a 

switch was compared with the number of samples for which the transcripts involved 

overlap mutations. Given the samples with one or more mutations M, and the samples 

with the isoform switch S, a Jaccard index J for the association of these two variables 

was calculated: 

J =
M∩S
M∪S

 

A Z-score from the Jaccard index was calculated by comparing each value J for an 

isoform switch to 100 genes with similar median isoform length. The above analysis 

was also repeated using only mutations that affect the protein sequence or considering 

the overlap with genes rather than transcript regions with similar results (see 

S2 (Ig,i, Ig, j ) = g(Ig,i, Ig, j |C1)− g(Ig,i, Ig, j |C2 )
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Supplementary Methods). The mutual information for the association of isoform 

switches and mutations, and corresponding z-score was also computed (see 

Supplementary Methods). The distribution of the differences between tumor and 

normal isoform PSIs was compared between mutated and non-mutated samples using 

a Mann-Whitney test. A mutual-exclusion between isoform switches and protein-

affecting mutations was measured as follows: given the number of samples having an 

isoform switch and no mutation (n10), and those having a mutation but no isoform 

switch (n01), a mutual-exclusion score was defined to be: 

2 min(n10,n01)
N

,  

where N is the total number of samples. A z-score was calculated similarly as above 

(see Supplementary Material). For the Reactome pathway analysis the ReactomePA 

package from Bioconductor was used. Further details and data are provided as 

Supplementary Material.  

 

Figure Legends 

Figure 1. Methodology for detecting significant transcript isoform changes in 

cancer. The method is illustrated with data from colon adenocarcinoma (COAD). (A) 

Samples are partitioned into two groups, here tumor (T) and normal (N). (B) Cross-

validation is performed by iteratively training in all but one pair of tumor-normal 

samples, and testing on this left-out sample pair.  At each step of the cross-validation, 

the top k=1,3,5, etc. isoform-pairs according to score S1 are tested on the left-out 

sample pair. (C) Significance is assessed by comparing to the expected values 

obtained from 1000 permutations of the class labels and by selecting at each 

permutation the isoform-pair with the highest score S1. (D) The result is a global 

ranking of isoform-pairs that change relative expression between tumor and normal 

samples more than expected by change.  (E) A minimal classification model is 

obtained by selecting the smallest number of pairs from the global ranking with the 

largest average accuracy calculated in the cross-validation. The example shows that 

for colon this is a single pair model in gene FBLN2. (F) From the global ranking of 

significant isoform-pairs, we predict as isoform switches those that anti-correlate 
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across samples. In the example, CD44 presents a clear switch between two isoforms 

even though it was not chosen in the minimal classification model. (G) The isoform-

pairs (either from the minimal classification model or from the set of isoform 

switches) are tested on a held-out dataset of unpaired tumor samples.  

 

Figure 2: Predictive isoform-pair models. (A) Minimal isoform-pair classifiers for 

BRCA, PRAD, LUAD and LUSC (models for KICH, KIRC, HNSC and THCA are 

given in Supplementary Figure 2). Each panel shows the score S1 and information 

gain (IG) for each isoform-pair in the model. All the isoform-pairs are significant 

according to the permutation analysis. Next to each cancer label the maximum 

expected accuracy is given, which is calculated from the cross-validation analysis. 

Plots of the expression values for each isoform pair are provided in Supplementary 

Figures 3-8. (B) Blind tests of the isoform-pair models on the unpaired samples for 

each cancer type. The barplots indicate the proportion of samples (y-axis) for each 

number of possible correct votes (x-axis), i.e., the number of isoform-pair rules from 

the model fulfilled by the tumor sample. A sample is labeled according to a majority 

vote from all isoform-pair rules.  

 

Figure 3. Examples of predictive isoform-pairs. (A) Relative inclusion values 

(PSIs) for the isoform-pair in FBLN2 predicted to separate well tumor from normal in 

BRCA and COAD. The x-axis represents the inclusion level values (PSI) for the 

normal isoform and the y-axis the value for the tumor isoform. Tumor samples are 

shown in red, whereas normal samples are shown in blue. The left panel shows the 

PSIs in paired samples, whereas the middle and right panels show these for the 

unpaired samples (B) Isoform change for QKI in LUAD samples. The gene locus of 

QKI is shown, indicating the exon-intron structures of the isoforms predicted to be the 

tumor and normal isoforms for LUAD. The zoom-in highlights the 3’ end region 

where the splicing variation takes place. The bottom left panel shows the PSI values 

for the normal (x-axis) and tumor isoforms (y-axis) for the normal (blue) and tumor 

(red) paired samples.  
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Figure 4. Isoform-pair rules for the basal-like breast tumors. (A) The top 7 

recurrent isoform changes found in the 100 comparisons of subsets of basal-like 

samples against a balanced pool set of the other subtypes (luminal A, luminal B and 

Her2+). The barplots indicate the frequency of iterations for which the isoform pair 

was significant according to the permutation analysis performed on the same 

subsampled sets. All these isoform-pairs are significant according to our permutation 

analysis. (B) Accuracy of the model for the classification of basal-like samples 

against other subtypes when tested on the entire set of 1036 BRCA tumor samples. 

The barplots show the proportion of samples (y-axis) with each possible number of 

correct votes (x-axis), from 0 to the number of genes in the model, and the percentage 

of all the samples correctly classified.  

Figure 5. Catalogue of isoform switches across various cancer types. Heatmap of 

the 244 isoform switches detected for the 9 cancer types, separated according to 

whether the genes had an annotated Reactome pathway (A) or not (B). The heatmaps 

show whether the isoform switch occurs in each cancer type, with the color code 

indicating the information gain (IG) of the switch: from light blue for low IG (0-0.2) 

to dark purple for high IG (0.8-1). In red we indicate whether the gene with the switch 

is annotated in COSMIC (Forbes et al. 2011) as a tumor driver. Regarding the 

mutations, we indicate the Jaccard index and the mutual-exclusion score with light 

green (0.01-0.02), medium green (0.02-0.03) and dark green (larger than 0.03). We 

also indicate the presence of a significant difference (p-value < 0.05) of the relative 

inclusion (PSI) difference between tumor and normal isoforms in mutated and non-

mutated tumor samples before multiple-testing correction (brown color). We further 

show the Reactome Pathway annotation for those genes for which this was available. 	  

 

Figure 6. Association between somatic mutations and isoform switches. (A) 

Jaccard index (x-axis) for the association of mutations with switches in tumor samples, 

and frequency of samples with mutations in the transcripts undergoing the switch (y-

axis). (B) Example of the tumor suppressor FBLN2. Mutations present in each cancer 

type are represented in red if the switch is present in the same sample, and blue if that 

sample does not have the switch. Each mutation is labeled with an identifier of the 

sample and the type of mutation. (C) Example of the oncogene MYH11. The relative 
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inclusion values (PSI) of the two isoforms in the switch (left panels) separate tumor 

and normal in COAD and can classify correctly 91.5% of the unpaired tumor samples. 

Mutations present in each cancer type (right panel) are represented in red if the switch 

is present in the same sample, and blue if that sample does not have the switch. Each 

mutation is labeled with an identifier of the sample and the type of mutation.  
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