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ABSTRACT 

How does the regulatory machinery of an animal cell ensure its survival during large-

scale biochemical and phenotypic transitions? When a cell is strongly perturbed by an 

environmental stimulus, it can either die or persist with compensatory changes. But what do the 

dynamics of individual genes look like during this process of adaptation? In a previous technical 

paper, two approaches (drug treatments and polysome isolation) were used in tandem to 

demonstrate the effects of perturbation on cellular phenotype. In this paper, we can use these 

data in tandem with a discrete, first-order feedback model that incorporates leaky components to 

better characterize adaptive responses of mRNA regulation related to information processing in 

the cell. By evaluating the dynamic relationship between mRNA associated with transcription 

(translatome) and mRNA associated with the polysome (transcriptome) at multiple timepoints, 

hypothetical conditions for decay and aggregation are found and discussed. Our feedback model 

allows for the approximation of fluctuations and other aspects of cellular information processing, 

in addition to the derivation of three information processing principles. These results will lead us 

to a better understanding of how mRNA provides variable information over time to the complex 

intracellular environment, particularly in the context of large-scale phenotypic change. 

 

 

INTRODUCTION 

As complex systems, cells produce, transform, and recycle materials using many different 

pathways [1]. This results in biochemical fluctuations that can be observed through gene 

expression trends over time [2]. While the manipulation of specific pathways can provide more 

explicit insights into cellular processes relative to specialized functions of a cell type, the 

manipulation of general mechanisms is superior in terms of understanding global functions such 

as phenotypic plasticity and cellular adaptation. 

 

To address the time-dependent and diversity-related properties of cell populations, 

measurements of mRNA half-life (e.g. decay, sequestration) will be modeled from a dataset that 

involved cells subjected to various drug treatments [3]. These drug treatments, which altered 

various mechanisms related to transcription and translation, are known as mechanism alterations. 

Measurements of the transcriptome (TST) and translatome (TLT) using mRNA and polysome 

recovery methods [3] provide us with data that require a greater degree of insight. To gain these 

broader insights, we introduce a model with which to assess changes to a cell population whilst 

responding to a stimulus. We propose that drug treatments can be used to interfere with normal 

cellular processes through mass arrest of mRNA synthesis and other normal processes. The 

effect of exposing transgenic fibroblasts to an AD treatment on both TLT and TST is shown in 

Figure 1.  

 

It has previously been shown that drug treatments are a blunt instrument for examining 

mRNA decay [4, 5], and stands in contrast to transgenic approaches which shut off specific 
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genes [6]. Yet drug treatments allow for multiple genes to be examined in the context of a single 

stimulus, and can thus reveal a diversity of regulatory responses that may correspond to the early 

stages of large-scale phenotypic changes. 

 

 

 
Figure 1. Decay curves (using a 2nd-order polynomial) for MMC treatment. Time (days, x-axis) 

vs. mRNA quantification (y-axis). Left: TST. Right: TLT. 

 

 We contend that changes over time due to the disruption of key cellular processes result 

in fluctuations in cellular mRNA that provide clues as to how cells process information. 

Information processing is a multivariate process related to regulatory events. The events include 

those that set up adaptive responses, determine changes in mRNA levels, and ultimately affect 

the phenotypic state and long-term viability of a cell [7]. However, we can use a first-order 

feedback model (Figure 2) that utilize point processes (Figure 3) and flows to represent the key 

components of RNA-related cellular complexity. This point process includes two sources (input 

and feedback) and two derivatives (feedforward and decay). Briefly, these nodes operate as 

steady-state capacity systems that must re-balance when there are fluctuations in the input of 

mRNA. When the Ct value decreases, it represents a loss of capacity. This results in a decay 

signal. Conversely, when Ct values increase, capacity increases and results in either a 

feedforward or feedback signal.  

 

Genes Measured for Model Input 

 The initial run of our model focused on fibroblast-specific genes. The selection of these 

was based on genome annotation data and prior literature [8, 9]. Fibroblast-specific genes are 

defined as: COL, FN, FB, and FGF4 (see Methods). Our list of candidates also included non-

specific genes such as UTF, LIN28, and GDF3/H19. All of these genes are thought to be 
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expressed in human fibroblasts [10]. These genes were used in the first experiment, which was 

conducted to investigate the effects of all three mechanism alteration options.  

 

 
Figure 2. Single node (TLT) in the first-order feedback model characterized as a point process. 

Flows representing components of this process (input, feedforward, feedback, and decay) are 

also shown. 

  

 
Figure 3.  Modes of operation for the semi-discrete dynamical model used to approximate 

cellular information processing. Inset A: components of model (A = input, B = FF, C = FB - 

TST, D = FB – TLT, unlabeled downward arrows = decay components). Inset A: examples of 

decay off and systems with both feedback and feedforward components. Inset B: calculation of 

model components using hypothetical Ct values as input. 

 

 The model was then re-run using data from a second experiment. As with the fibroblast-

specific genes, our criterion included genome annotation and prior literature [8, 9]. This was 

done to extend our results by investigating the potential for detecting unexpected regulatory 
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events using genes with no known function in fibroblasts. These include genes involved in ion 

channel regulation (hEAG, KCNQ1), Hox genes (HOTTIP), and developmental genes (MH2A1, 

MH2A2, and XIST). 

 

Outline for Analysis 

 We test our systems model (formally called a semi-discrete dynamical control model) on 

both an initial set of fibroblast vs. non-fibrobalst genes and a broader range of non-fibroblast 

specific genes. Using empirical data [2], we establish activity measurements to infer higher-order 

components of the regulatory environment (e.g. decay, feedbacks). The activity measurements 

consist of transformed Ct values that change based on the rules of our model. To go beyond 

validation in a single context, the second test was conducted to investigate further potential for 

our techniques using genes with known function (e.g. pluripotency regulation, ncRNAs, and ion 

channels). These genes should be largely downregulated in fibroblasts, and so should not 

demonstrate the same dynamics as evidenced by the fibroblast-specific and non-specific genes. 

 

RESULTS 

General features of the model 

A systems model was constructed to better understand the latency and decay dynamics of 

mRNA in cell populations. This model involved comparing latency in the presence of mRNA at 

both the transcriptional and translational levels between a control sample and treated samples 

measured over several days. Our model of choice was a semi-discrete dynamical control system 

that provides two inputs (TLT and TST) and two outputs (decay in the nucleus and cytoplasm, 

decay in the polysome). A schematic of this model is shown in Figure 3, inset A. The control 

model operates on a series of transition rules shown in the Supporting Information. The outcome 

of these transition rules is shown in Figure 3, insets A and B. 

 

Logical Rules for Discrete Dynamical Model 

 Our discrete, first-order feedback model operates based on a series of logical rules. Each 

condition governs activity for a specific component of the model. The first component is 

initialization of the model, which incorporates information about previous time steps. For the 

first time-point, this initialization value is 0. For subsequent initializations, the TST and TLT 

values for the previous time step are used. The second component involves calculation of the 

sink components. The sink components are residual values when comparisons between time 

points are used. The third component provides us with a feedforward (FF) mechanism, and is 

derived from the positive difference between TST and TLT at a single time step. When the 

difference between TST and TLT is negative, the FF component is 0. The fourth component 

provides us with a feedback (FB) mechanism, and is derived from the positive difference 

between TLT and TST at a single time step. When the difference between TLT and TST is 

negative, the FB component is 0. Table 1 demonstrates this using pseudocode. 

 

Test #1: Fibroblast-specific context 

 Using both fibroblast and non-fibroblast genes, we were able to establish inputs, 

feedbacks, and decay components for the model. Figure 4 shows activity measurements for three 

different conditions. These results are based on the application of the transition rules (see 

Supplementary Information) to data collected in our previous experiments. The TST sink is 

much more active in the SAP treatment examples. The MMC exhibit strong activity for COL, 
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FGF, and GAPDH at 3d, and the AD treatments exhibit almost universally strong activity at 3d. 

For the feedforward (FF) component, the SAP and AD treatments yielded very sparse activity. 

By contrast, MMC and exhibited fluctuation for COL, FB, and FN. The TLT sink exhibits a 

moderate degree of fluctuation for both MMC and AD. SAP samples feature 1d samples that are 

elevated above 2d and 3d samples. Finally, the feedback (FB) component is mostly sparse for 

MMC treatment, with the exception of FGF, GAPDH (3d), and UTF. AD and SAP treatments 

show a markedly distinct profile, with UTF being totally absent of activity for AD and FB 

showing the same result for SAP. Comparisons with the linear extrapolations of decay rate 

(cycles per day) as shown in Table 1 reveal no discernible relationships. What universally 

characterizes the dynamical control system is fluctuation over time for specific regulatory 

components. 

 

Table 1. Transition rules (presented in pseudocode) for discrete dynamical model. Rules are 

specific to initialization (1), sink components (2), FF mechanism (3), and the FB mechanism (4). 

Rule (#) Pseudocode 

Condition 1 

 

For t1, difference between input 

and TST or input and TLT. 

Condition 2 

 

For tn > 1, difference between 

TSTtn and TSTtn+1 or TLTtn and 

TLTtn+1 

Condition 3 

 

If TST > TLT, then FF > 0 

Condition 4 

 

If FFt-1 > FFt, then FB > 0. 

 

 Each treatment represents the suspension of a different cellular mechanism (e.g. 

suspension of cell division, RNA synthesis, and polysome degradation) which should result in 

more general trends for model components rather than specific genes. Figure 4 also shows 

different long-term trends tied to what each type of experimental manipulation does to the cell’s 

phenotype. For example, the treatment that suspends RNA synthesis (AD) exhibits enhanced 

activity for the TST sink and FB components, but very little activity in the FF component. A 

similar type of inference does not hold as true for the MMC and SAP treatments, which suggests 

that there might be multiple responses to a specific type of manipulation. For example, SAP 

treatment (polysome degradation) shows a lot of activity among the TST sink and FF 

components. This suggests that newly-synthesized RNA does not make it to the polysome. 

However, the FB component also exhibits activity for many genes, which may be result from a 

signal to make more gene product, even though the resulting mRNA cannot make it to its 

destination. 

 

Test #2: Broader context 

A second test was done to establish the model for a broader range of non-fibroblast 

specific genes. In Figure 5, a comparison was made between fibroblast-specific and non-specific 

genes for cell lines harvested 2d after treatment with SAP. When compared to non-specific 

genes, normalized expression of fibroblast-specific genes is clearly greater in both TLT and TST. 

For untreated controls, this difference is even more dramatic. The only exceptions to this 

showing 2-fold or greater upregulation are the following: FB (for both TST and TLT), FN 
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(TLT), and KCNQ1 (TLT). This may suggest a differential decay response similar to what is 

revealed for AD treated cell lines at 2d post-treatment, and provides some evidence that 

sequestration is detectable even when the polysome has been disrupted. Alternately, this may 

suggest that our techniques are vulnerable to a false-positive signal for select genes. However, 

given the results of the first experiment, we feel confident that these results are a real (if not 

noisy) biological phenomenon. 

 

 
Figure 4. Activity measurements for different components of the semi-discrete dynamical model 

for each drug treatment, gene, and timestep. Y-axis represents change in Ct value from the 

previous timestep. From top: TST sink, feedfoward (FF) component, TLT sink, and feedback 

(FB) component. Order of bars for each gene, from left: 1d (blue), 2d (red), 3d (green). Units = 

Ct value. 

 

Figure 6 shows the effects of our SAP treatment at courser time scales on the control 

model components. In this case, a measurement taken for cells before treatment are compared to 

cells sampled 2d post-treatment. This is done for the model inputs (TST, 0d; TLT, 0d), the 

feedforward component (TST, 0d; TLT, 2d), the feedback component (TST, 0d; TST, 2d), and 

the residual components (empirical measurements of decay when compared to model inputs - 

TST, 2d; TST, 2d).  

 

The results exhibit variability in a gene-dependent manner for the one fibroblast-specific 

(FN) and several non-specific (hEAG, HOTTIP, KCNQ1, MH2A1, MH2A3, and XIST) genes. 

This graph confirms the results of the first SAP treatment: sequestration is observed in the TLT 

among genes that are both expected (FN) and not expected (KCNQ1 and XIST) to result in 

protein synthesis (Figure 5, upper right – feedforward component). While this is a bit 

unexpected, it also suggests that cellular processes that fundamentally alter a phenotype may 
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produce unusual but transient outcomes. This interpretation is further supported by comparing 

TST and TST at the same time point (Figure 6, lower right – residual component).  

 

 
Figure 5. Confirmation of gene expression (Ct values) for TST and TLT. Genes labeled with a 

star (COL, FB, FN, and GDF3) at far left are measured at 0d (untreated), while all other genes 

assayed at 2d. UPPER RIGHT: Image of cells 2d post-treatment. NOTE: For this analysis, the 

data were normalized using the mean values of GAPDH across replicates. 

 

 
Figure 6. Direct comparisons of TST and TLT components of the semi-discrete dynamical model 

using data from experiment #2. Upper Left: inputs to model (TLT, 0d; TST, 0d); Upper Right: 

feedforward component over 2d time interval (TLT, 0d; TLT, 2d); Lower Left: feedback over 2d 

time interval (TST, 0d; TST, 2d); Lower Right: residual values for TLT and TST (TLT, 2d; TST, 

2d). NOTE: For this analysis, the data were normalized using the mean values of GAPDH across 

replicates. 
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For the results shown in Figure 7, only a single moment of feedback, feedforward, and 

decay were calculated. While the decay for both TLT and TST were significant and variable 

across all genes examined, the feedback component was very sparse. This suggests that 48 hours 

of treatment is enough to produce significant decay of mRNA associated with the polysome, 

even when there is a measurable amount of mRNA being actively transcribed. That this held true 

for non-coding RNA genes confirms that our TLT signal is detecting regulatory events 

associated with translation of mRNA to proteins.  

 

Additional Findings 

 In this paper, we have found that treatment using drug compounds produced dynamics 

that are much more complex than simple decay. Using a discrete, first-order feedback modeling 

approach, we can better understand cellular information processing. Given our results, we can 

also propose three cellular information processing principles. These principles are suggestive of 

potential mechanisms within cells that enable adaptive responses to environmental and other 

challenges. One outcome suggests that the dynamic (2nd-order polynomial) and decay (linear 

regression) components of mechanism disruption seem to be semi-independent phenomena. Not 

all genes conform to a pattern of linear decay, which was investigated statistically. The outcome 

of the discrete, first-order feedback model leads us to propose information processing principle 

#1, which is that cells may exhibit mechanism- and gene-specific disruption-driven nonlinear 

responses. This stands in contrast to dose-dependent responses generally associated with linear 

control. A second outcome suggests that across all forms of mechanism disruption, TST and TLT 

exhibit a relatively strong positive correlation at 2d when compared to 1d and 3d.  

 

 
Figure 7. An example of discrete, first-order feedback modeling for assorted non-specific genes. 

FN and GAPDH used as controls, hEAG and KCNQ1 are ion channel genes, and HOTTIP, 

MH2A, and XIST represent non-coding RNA. TOP: feedback component, MIDDLE: 

feedforward component, LOWER LEFT: TST sink component, LOWER RIGHT: TLT sink 

component). 
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 This and allied evidence leads us to propose information processing principle #2, 

which is that cells may exhibit transient sequestration and compensatory production of 

mRNA. This was tested on a series of cell-type, process-type, and non-specific genes, with 

outcomes suggestive of transient and compensatory effects being related to function. A third 

outcome leads us to propose information processing principle #3, which is that the regulation 

of mRNA is centered around maintaining cellular identity. This is suggested by the first two 

principles: cellular identity requires signatures of both complex and transient regulation. We 

propose that cellular identity is the focus of what functional processes act upon. Taken together, 

these findings and principles might help guide not only future applications of our proposed 

techniques, but also puzzling findings in areas ranging from cellular reprogramming to cancer 

research. 

 

Due to the importance of cellular identity, we also propose that drug treatments are a way 

to hold constant the effects of intrinsic cellular noise [11, 12]. MMC, AD, and SAP can be used 

to affect cell division, mRNA synthesis, and ribosomal survival (integrity), respectively. 

Manipulating these pathways and then sampling TLT and TST at 24h after initial treatment 

should allow us to approximate the nature of mRNA turnover and aggregation [13] which plays a 

key role in processes of cellular change. Patterns of decay across three or four samples across 

time can be assessed using linear and nonlinear statistical curve-fitting techniques [13, 14], 

which when applied in tandem at a time-scale of days can reveal finer-scale fluctuations not due 

to intrinsic noise. We further propose that the effects of such a manipulation will be gene-

specific. For example, cell-type specific genes should be affected differently than housekeeping 

genes. To better understand our experimental data, we can turn to a a discrete, first-order 

feedback model [15-17] that allows us to understand aggregation and decay in terms of 

intracellular noise (mRNA sinks) and feedback mechanisms that affect mRNA measurements 

over time in response to a stimulus. 

 

While our model reveals a generalized pattern of decay with some spiky dynamics over 

time, more intermediate timepoints are needed to clarify the role of biological noise and other 

systematic mechanisms that may strongly influence mRNA dynamics. In this sense, our model is 

an idealized one with a purpose of demonstrating both potential fluxes in mRNA over time due 

to cellular perturbation and the indirect effects of these fluxes. Particularly, the components of 

our model may reveal instabilities that grow time, or uncover subtle relationships between 

translation and transcription. We have attempted to approximate these factors by interpolating 

values representing the sub-hour timescale for each model component as shown Figure 8.  

 

Since we should expect an overall pattern of decay for each treatment, the data were 

resampled and smoothed (using interpolation via a cubic spline) to reveal the decay components 

independent of fluctuations at different time-scales. As these cellular mechanisms are noisy 

processes, our sink components for each node (TLT and TST) are implicitly representative of 

stochastic processes, measurement error, and intrinsic noise. A more explicit approach would be 

to add a noise term (δ) to each node and component (FF, FB, TLT sink, and TST sink) by using 

the standard deviation from across multiple experimental observations to establish minimum and 

maximum noise thresholds over time. Future work will be required to establish the validity of 

directly assessing noise in this manner. 
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Figure 8. Components of the discrete, first-order feedback model (hour-by-hour values) 

interpolated by cubic spline. From left: TST (TST) sink, TLT (TLT) sink, feedback. TOP ROW: 

SAP, MIDDLE ROW: AD, BOTTOM ROW: MMC. 

 

Broader Regulatory Implications 

To better understand exactly what the observed nonlinear responses mean in terms of a 

regulatory mechanism that operates continuously with respect to time, we may turn insights 

discrete dynamical equations (DDEs). DDEs have been used to better understand network-level 

control and stability in cellular systems [17, 18]. In this case, we propose that a DDE with 

conditions that represent second-order responses (see Figure 9) can better approximate delays as 

shifts in a continuous function. These curves can then be interpreted as indicative of delays 

within the transcription and translation process for a specific gene. For example, a delay in 

transcription will lead to steep decay with later recovery of mRNA in TST. By contrast, a delay 

in translation will result in an observed aggregation of mRNA in either TLT or TST. It is of note 

that this response was not observed in TLT for any of the assayed genes. The DDE approach 

may serve as a gateway to future studies involving dynamic processes such as direct cellular 

reprogramming, tissue regeneration, and carcinogenesis. 

 

Conclusions 

Overall, quantitative analysis of TST- and TLT-related mRNA can reveal gene- and 

treatment-dependent fluctuations in mRNA with respect to cellular control mechanisms. The 

addition of specific delay components (in the form of DDEs) to our discrete, first-order feedback 

model may provide an even better approximation of mRNA regulation. The coarse-grained 

nature of our approach may provide a robust solution to the problem of understanding cellular 

complexity. For example, while decay mechanisms are mostly responsible for controlling the 

rate of degradation, it has been found that at least one other pathway (miRNAs and siRNAs) also 

controls and stabilizes translation [19, 20]. The effects of these and other biological phenomena 
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may be directly measured in future experiments, thus increasing our knowledge regarding how 

information is processed and regulated by the cell. However, the overdetermination of cellular 

complexity in the context of the discrete, first-order feedback model may provide more noise 

than useful information.  

 

In conclusion, our discrete, first-order feedback mRNA modeling combined with discrete 

dynamical modeling of hidden or incompletely measurable components helps to make the 

quantitative comparison of TLT and TST more than just a useful tool. Done in a selective 

manner using either candidate genes or high-throughput (e.g. next-gen sequencing) analysis, the 

approach presented here can bring us closer to understanding the information processing and 

perhaps even biological decision-making principles [21] behind how these molecules are used as 

regulatory information, and ultimately how genotypic information results in phenotypic changes. 

 

 
Figure 9. A demonstration of potential information processing delays in the context of 

transcription and translation. A: delays expressed as a conditional discrete dynamical equation 

(DDE). B: pseudo-data demonstrating the dynamics of linear decay, aggregation, and nonlinear 

decay. C: interpreting the observed nonlinearities as a signature of delays in specific biological 

mechanism (in this case, transcription and translation). 
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METHODS 

 

Cell Lines and Quantitative analysis 

 All cell lines and their identification are located in the Methods section of the technical 

paper (see reference 3) for this project. 

 

All data handling, statistical analysis, and computational modeling are done using Matlab 

and Excel. The analyses involved both systems modeling of mRNA dynamics and the 

approximation of select model outputs (e.g. spline-based interpolation). Dataset is located on the 

Figshare repository at http://dx.doi.org/10.6084/m9.figshare.689894, and MATLAB code is 

located on the Github repository at https://github.com/balicea/RNA-discrete-dynamical-

modeling.git. 

 

Normalized Ct. The normalized Ct [22] is calculated as residual Ct value after subtracting away 

the Ct value of the control (GAPDH and/or the untreated condition). The Normalized Ct (CtNORM) 

was calculated using the following equation 

 

                             [1] 

 

where G is the gene of interest and IC is the control. 

 

2 
-∆∆Ct

 Normalization. The 2 
-∆∆Ct

 normalization (derived from [23]) is done to determine the up- 

or down-regulation of a gene/condition combination given changes in the control gene (GAPDH 

and/or untreated condition). This normalization is defined as 

 

 

         
               
  

      
       

  

 

[2] 

 

where GA is the normalized Ct for one gene of interest, GB is the normalized Ct of a second gene 

of interest, and ICA and ICB are the respective internal controls. 

 

Sample size and data processing strategy. For the first experiment, we use a dataset consisting of 

three experiments representing AD, MMC, and SAP treatments, all assayed at four time points 

(untreated control, 1d, 2d, 3d). Exploratory data analysis is conducted on this dataset. For the Q-

Q analysis, all Ct values are z-transformed and rank ordered according to their position in the 

distribution. For the second experiment, we use a dataset consisting of one experiment 

representing SAP treatment, assayed at four time points (untreated control, 1d, 2d, 3d). For 

experiment #1, two technical replicates and three biological replicates per treatment were used 

for mRNA recovery. For experiment #2, two technical replicates and two biological replicates 

per treatment are used for mRNA recovery. For purposes of qPCR analysis, the two technical 

replicates are averaged together. All non-exploratory data analysis does not include outlier 

values. Outliers were replaced by the mean value for the treatment, time point in question. Data 

were normalized using the corresponding replicate values of GAPDH and/or the control 

condition unless otherwise noted. 
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Computational model 

We use a dynamical control model that treats our measured components (TST, TLT) as 

discrete components which change according to flows representing the procession of our 

measured time-course, from 0d of treatment (control conditions) to 3d of treatment. Paths 

between our measured components are calculated as differences between the discrete 

components at either the same point in time (feedforward - FF) or subsequent points in time 

(feedback – FB). Sinks are calculated by computing the residual of each discrete component for a 

single timestep. For example, when the value predicted for feedback to TST from TLT at 2d does 

not match the observed value for TST at 3d, the remainder of this discrepancy is the decay for 

the 3d timepoint. Values are interpolated using a cubic spline to predict hourly measurement 

intervals up to one day (4d) beyond the time-course. This produces functions for the model 

output comparable with the 2
nd

-order polynomials generated from the raw data (see 

Supplementary Figure, S3). 

Abbreviation Convention for Figures and Tables 

The abbreviation convention for mRNA fractions will be as follows: TST (TST), TLT (TLT). 

The abbreviation convention for primers will be as follows: Collagen-1A2 (COL), Fibulin-5 

(FN), Fibrillin-1 (FB), Fibroblast Growth Factor-4 (FGF4), Undifferentiated Transcription 

Factor-1 (UTF-1), Growth Differentiation Factor-3 (GDF3), imprinted maternally expressed 

transcript (H19), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH).  

 

Abbreviation Convention for Supplementary Figures and Tables 

The abbreviation convention for mRNA fractions will be as follows: TST (TST), TLT (TLT). 

The abbreviation convention for primers will be as follows: Collagen-1A2 (COL), Fibulin-5 

(FN), Fibrillin-1 (FB), Fibroblast Growth Factor-4 (FGF4), Undifferentiated Transcription 

Factor-1 (UTF-1), Growth Differentiation Factor-3 (GDF3), imprinted maternally expressed 

transcript (H19), Human Ether-a-Go-Go (hEAG), KCNQ1 (KCNQ1), HoxA13 (HOTTIP), 

Macro H2A (MH2A), XIST (XIST), and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH).  
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