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Abstract

With the recent increase in study sample sizes in human genetics, there has been growing interest
in inferring historical population demography from genomic variation data. Here, we present an
efficient inference method that can scale up to very large samples, with tens or hundreds of thou-
sands of individuals. Specifically, by utilizing analytic results on the expected frequency spectrum
under the coalescent and by leveraging the technique of automatic differentiation, which allows us
to compute gradients exactly, we develop a very efficient algorithm to infer piecewise-exponential
models of the historical effective population size from the distribution of sample allele frequencies.
Our method is orders of magnitude faster than previous demographic inference methods based on
the frequency spectrum. In addition to inferring demography, our method can also accurately es-
timate locus-specific mutation rates. We perform extensive validation of our method on simulated
data and show that it can accurately infer multiple recent epochs of rapid exponential growth, a
signal which is difficult to pick up with small sample sizes. Lastly, we apply our method to analyze
data from recent sequencing studies, including a large-sample exome-sequencing dataset of tens of
thousands of individuals assayed at a few hundred genic regions.

Software: We have implemented the algorithms described in this paper in an open-source software
package called fastNeutrino, which stands for fast Ne (effective population size) and mutation
rate inference using analytic optimization. It is publicly available at https://github.com/

anand-bhaskar/fastNeutrino.
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Introduction

A commonly used null model in population genetics assumes that individuals are randomly sampled
from a well-mixed population of constant size that evolves neutrally according to some model of
random mating (Ewens 2004). However, several recent large-sample sequencing studies in humans
(Coventry et al. 2010; Nelson et al. 2012; Tennessen et al. 2012; Fu et al. 2012) have found an excess
of single nucleotide variants (SNVs) that have very low minor allele frequency (MAF) in the sample
compared to that predicted by coalescent models with a constant effective population size. For
example, in a sample of approximately 12,500 individuals of European descent analyzed by Nelson
et al. (2012), over 74% of the SNVs have only one or two copies of the minor allele, and that over
95% of the SNVs have MAF less than 0.5%. On the other hand, assuming a constant population size
over time, Kingman’s coalescent predicts that the number of neutral SNVs is inversely proportional
to the sample frequency of the variant (Fu 1995). Keinan and Clark (2012) have suggested that
such an excess of sites segregating with low MAF can be explained by recent exponential population
growth. In particular, a rapid population expansion produces genealogical trees which have long
branch lengths at the tips of the trees, leading to a large fraction of mutations being private to a
single individual in the sample. Motivated by these findings and rapidly increasing sample sizes in
population genomics, we here tackle the problem of developing an efficient algorithm for inferring
historical effective population sizes and locus-specific mutation rates using a very large sample,
with tens or hundreds of thousands of individuals.

At the coarsest level, previous approaches to inferring demography from genomic variation data
can be divided according to the representation of the data that they operate on. Full sequence-
based approaches for inferring the historical population size such as the works of Li and Durbin
(2011) and Sheehan et al. (2013) use between two to a dozen genomes to infer piecewise constant
models of historical population sizes. Since these approaches operate genome wide, they can take
into account linkage information between neighboring SNVs. On the other hand, they are computa-
tionally very expensive and cannot be easily applied to infer recent demographic events from large
numbers of whole genomes. A slightly more tractable approach to inferring potentially complex de-
mographies involves comparing the length distribution of identical-by-descent and identical-by-state
tracts between pairs of sequences (Palamara et al. 2012; Harris and Nielsen 2013).

The third class of methods, and the one that our approach also belongs to, summarizes the
variation in the genome sequences by the sample frequency spectrum (SFS). The SFS of a sample
of size n counts the number of SNVs as a function of their mutant allele frequency in the sample.
Since the SFS is a very efficient dimensional reduction of large-scale population genomic data that
summarizes the variation in n sequences by n− 1 numbers, it is naturally attractive for computa-
tional and statistical purposes. Furthermore, the expected SFS of a random sample drawn from the
population strongly depends on the underlying demography, and there have been several previous
approaches that exploit this relationship for demographic inference. Nielsen (2000) developed a
method based on coalescent tree simulations to infer exponential population growth from single
nucleotide polymorphisms that are far enough apart to be in linkage equilibrium. Coventry et al.
(2010) developed a similar coalescent simulation-based method that additionally infers per-locus
mutation rates, and applied this method to exome-sequencing data from approximately 10,000
individuals at 2 genes. Nelson et al. (2012) have also applied this method to a larger dataset of
11,000 individuals of European ancestry (CEU) sequenced at 185 genes to infer a recent epoch of
exponential population growth. The common feature of all these methods is that they use Monte
Carlo simulations to empirically estimate the expected SFS under a given demographic model, and
then compute a pseudo-likelihood function for the demographic model by comparing the expected
and observed SFS. The optimization over the demographic models is then performed via grid search
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procedures. More recently, Excoffier et al. (2013) have developed a software package that employs
coalescent tree simulations to estimate the expected joint SFS of multiple subpopulations for in-
ferring potentially very complex demographic scenarios from multi-population genomic data. The
problem of demographic inference has also been approached from the perspective of diffusion pro-
cesses. Given a demographic model, one can derive a partial differential equation (PDE) for the
density of segregating sites at a given derived allele frequency as a function of time. Gutenkunst
et al. (2009) used numerical methods to approximate the solution to this PDE, while Lukić et al.
(2011) approximated this solution using an orthogonal polynomial expansion.

The main novelties of our method
Similar to the inference methods of Nielsen, Coventry et al. and Excoffier et al., we also work in
the coalescent framework rather than in the diffusion setting. However, our method differs from
existing methods in several ways. First, our method is based on an efficient algorithmic adaption
of the analytic theory of the expected SFS for deterministically varying population size models
that was developed by Polanski et al. (2003) and Polanski and Kimmel (2003). This is in contrast
to expensive Monte-Carlo coalescent simulations employed by the aforementioned coalescent-based
methods. As a result, our approach is much more efficient and allows us to more thoroughly search
the space of demographic models of interest. In a related work, Marth et al. (2004) developed
analytic expressions for the expected SFS of piecewise-constant population size models, and used
them for inferring piecewise-constant population size histories for European, Asian and African-
American populations. However, their analytic expressions are not numerically stable for sample
sizes larger than about 50 individuals, and, moreover, do not extend to more general population size
models. On the other hand, our approach utilizes numerically stable expressions for the expected
SFS developed by Polanski and Kimmel (2003) which extend to arbitrary variable population size
models.

Second, our method uses the Poisson Random Field (PRF) approximation proposed by Sawyer
and Hartl (1992). Under this approximation, the segregating sites within a locus are assumed to be
far enough apart to be completely unlinked. This is also the same approximation made by numerical
and spectral methods for inference under the Wright-Fisher diffusion process (Gutenkunst et al.
2009; Lukić et al. 2011), and by the coalescent method of Excoffier et al. At the other extreme,
the method of Coventry et al. assumes that all the segregating sites in a locus are completely
linked and hence share the same underlying genealogy. Both these model simplifications — the
assumption of perfectly linked or completely independently evolving sites within a locus — are
biologically unrealistic. However, as we demonstrate in our results on simulated data, our method
can recover demographic parameters accurately even when the data are generated under realistic
recombination rates that are inferred from human genetics studies. Working in the PRF model
also confers our method a significant computational benefit. Under this assumption, we can derive
efficiently computable expressions for the maximum likelihood estimate of the mutation rates at
each locus. This contrasts with coalescent simulation-based methods where either the mutation
rate is assumed to be known (Excoffier et al. 2013), or a grid search has to be performed over
the mutation rates (Coventry et al. 2010; Nelson et al. 2012). This makes our method orders of
magnitude more efficient.

Third, our method has advantages over the diffusion-based methods of Gutenkunst et al. (2009)
and Lukić et al. (2011). By working in the coalescent framework, the running time of our method
is independent of the population size. Furthermore, by leveraging analytic and numerically stable
results for the expected SFS under the coalescent, our computations are exact. On the other
hand, the method of Gutenkunst et al. (2009) must carefully discretize the allele frequency space
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to minimize the accumulation of numerical errors, while the method of Lukić et al. (2011) has to
choose a suitable order for the spectral expansion of the transition density function of the diffusion
process.

Finally, since our method is based on a likelihood function that is computed exactly, we can take
advantage of the technique of automatic differentiation (Griewank and Corliss 1991) to compute
exact gradients of the likelihood function. This is one of the key novel features of our approach,
and obviates the need for doing a grid search over the parameters. Instead, we take advantage of
efficient gradient-based algorithms for optimization over the space of demographic parameters.

Statistical identifiability
Before one can perform any meaningful demographic inference from SFS data, it is worth examining
whether the statistical problem is well defined. Myers et al. (2008) showed that, in general, the
historical effective population size function is not uniquely determined by the SFS, no matter
how large the sample size considered. In particular, they showed that there are infinitely many
population size functions that can generate the same expected SFS for all sample sizes. While
this non-identifiability result might seem like a barrier to statistical inference, it was recently
shown (Bhaskar and Song 2013) that if the amount of fluctuation in the effective population size is
bounded, then the expected SFS of even a moderate-size sample can uniquely identify the underlying
population size function. In this work, we perform inference under the assumption that the true
population size function is piecewise defined, where each piece has either a constant or exponentially
growing/declining size. Since our method relies on analytic theory for the expected SFS that extends
to any variable population size model, it can be easily extended to perform inference under any
parametric demographic model that is identifiable from the expected SFS of a finite sample; general
bounds on the sample size sufficient for identifiability were obtained by Bhaskar and Song (2013).

Software
We have implemented the algorithms described in this paper in an open-source software pack-
age called fastNeutrino, which stands for fast Ne (effective population size) and mutation rate
inference using analytic optimization. It is available at https://github.com/anand-bhaskar/

fastNeutrino.

Method

In this section, we provide an overview of our method. More involved computational details are
provided in the Supplemental material. In our work we utilize automatic differentiation (Griewank
and Corliss 1991), a technique that allows one to compute exact gradients numerically without
requiring explicit symbolic expressions for the gradient. This technique has not been widely adopted
in population genetics, so we include a brief exposition of it here.

Model and Notation
We assume that our data are drawn according to Kingman’s coalescent from a single panmictic
population having population size N(t) haploids at time t, where t is increasing in the past. Without
loss of generality, we assume that the sample is drawn from the population at the present time t = 0.
We shall also assume the infinite-sites model of mutation, where mutations occur at a low enough
rate that any segregating site in the sample has experienced at most one mutation event.
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The data we wish to analyze, denoted by D, consist of the sample frequency spectrum (SFS)
for n haploid (or n/2 diploid) individuals at each of L loci located sufficiently far apart along the

genome. The SFS at locus l is a vector s(l) = (s
(l)
1 , . . . , s

(l)
n−1), where s

(l)
i is the number of segregating

sites which have i copies of the mutant allele among the n alleles at that site. We are also given

the length m(l) of each locus l. For notational convenience, let s(l) =
∑n−1

i=1 s
(l)
i be the total number

of segregating sites in the sample at locus l. Given the data D, our goal is to infer the haploid
effective population size function N(t) and the per-base locus-specific mutation rates µ(l). We use Φ
to denote a vector of parameters that parameterize the family of piecewise-exponential demographic
models. Note that such a family also contains piecewise-constant population size functions. While
we describe our method assuming knowledge of the identities of the ancestral and mutant alleles,
we can just as easily work with the folded SFS which counts the segregating sites as a function of
the sample minor allele frequency, if the identity of the ancestral allele is not known.

Likelihood
Let us first restrict attention to a single locus l. For a locus with length m bases and per-base
per-generation mutation rate µ, let θ/2 denote the population-scaled mutation rate for the whole
locus. Specifically,

θ = 4Nrmµ,

where Nr denotes a reference population size which is used as a scaling parameter.
We wish to compute the probability of the observed frequency spectrum s = (s1, . . . , sn−1) at

locus l under the infinite-sites model. (We omit the superscript l for ease of notation.) If all the
sites in the locus are completely linked and the n individuals in the sample are related according
to the coalescent tree T , then the probability of observing the frequency spectrum s is given by

P(s | T,Φ, θ) =
n−1∏
i=1

exp

[
−θ

2
τn,i(T )

] [ θ
2τn,i(T )

]si
si!

, (1)

where τn,i(T ) is the sum of the lengths of branches in the coalescent tree T which subtend i
descendant leaves. The explanation for (1) is as follows: in the infinite-sites mutation model,
mutations occur on the coalescent tree according to a Poisson process with rate θ/2, where every
mutation generates a new segregating site. A mutation creates a segregating site with i mutant
alleles if and only if it occurs on a branch that subtends i descendants in the sample. To avoid
unwieldy notation, we drop the dependence on the tree T for the branch lengths τn,i(T ). To
compute the probability of the observed frequency spectrum s, we need to integrate (1) over the
distribution f(T | Φ) of n-leaved coalescent trees T under the demography Φ. Let Tn denote the
space of coalescent trees with n leaves. Then, abusing notation, the probability P(s | Φ, θ) can be
written as

P(s | Φ, θ) =

∫
Tn

P(s | T,Φ, θ)f(T | Φ) dT

=

∫
Tn

[
n−1∏
i=1

exp

(
−θ

2
τn,i

) ( θ
2τn,i

)si
si!

]
f(T | Φ) dT

=

∫
Tn

[
n−1∏
i=1

(
θ
2τn,i

)si
si!

]
exp

(
−θ

2
τn

)
f(T | Φ) dT
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P(s | Φ, θ) =

∫
Tn

(
s

s1, . . . , sn−1

)[n−1∏
i=1

(
τn,i
τn

)si]
exp

(
−θ

2
τn

) ( θ
2τn
)s

s!
f(T | Φ) dT, (2)

where s =
∑n−1

i=1 si. In (2), τn =
∑n−1

i=1 τn,i(T ), the total branch length of the tree T on n haploid
individuals. It is not known how to efficiently and exactly compute (2), even when Φ represents
the constant population size demographic model. Most works approximate the integral in (2) by
sampling coalescent trees under the demographic model Φ. In order to find the MLE for θ, they
must repeat this Monte-Carlo integration for each value of θ in some grid.

Poisson Random Field approximation
In our method, we use the Poisson Random Field (PRF) assumption of Sawyer and Hartl (1992)
which assumes that all the sites in a given locus are completely unlinked, and hence the underlying
coalescent tree at each site is independent. Under this assumption, the probability of the observed
frequency spectrum s is given by

P(s | Φ, θ) =

n−1∏
i=1

(
θ
2EΦ[τn,i]

)
si!

si

exp

(
−θ

2
EΦ[τn]

)

= C

n−1∏
i=1

(
θ

2
EΦ[τn,i]

)si
exp

(
−θ

2
EΦ[τn]

)
(3)

where the expectations EΦ[·] in (3) are taken over the distribution on coalescent trees with n leaves
drawn from the demographic model parameterized by Φ, and C =

∏n−1
i=1

1
si!

is a data-dependent
constant that can be ignored for maximum likelihood estimation.

Hence, under the PRF approximation, the problem of computing the likelihood in (3) reduces
to that of computing the expectations EΦ[τn,i] and EΦ[τn] for the demographic model given by
Φ. Using analytic results for the SFS for variable population sizes developed by Polanski et al.
(2003) and Polanski and Kimmel (2003), we can develop an efficient algorithm to numerically
stably and exactly compute EΦ[τn,i] and EΦ[τn] for a wide class of population size functions N(t).
In this work, we consider inference in the family of piecewise-exponential functions with either a
prescribed or variable number of pieces. The details of computing EΦ[τn,i] and EΦ[τn] for such
a class of population size functions is given in the Supplemental material. Inference under other
families of parametric demographic models can just as easily be performed if one can efficiently
compute the integral expressions given in the Supplemental material.

Taking logarithms on both sides in (3), we get the following log-likelihood for the demographic
model Φ and mutation rate θ at this locus:

L(Φ, θ) = logP(s | Φ, θ) =

n−1∑
i=1

si (logEΦ[τn,i] + log θ)− θ

2
EΦ[τn] + constant(s), (4)

where constant(s) depends on s but not on the parameters Φ, θ.
Assuming the loci are all completely unlinked, the log-likelihood for one locus given in (4) can

be summed across all loci l = 1, . . . , L to get a log-likelihood for the entire dataset D:

L(Φ, {θ(l)}Ll=1) = logP(D | Φ, {θ(l)}Ll=1)

=

L∑
l=1

[
n−1∑
i=1

s
(l)
i

(
logEΦ[τn,i] + log θ(l)

)
− θ(l)

2
EΦ[τn]

]
+ constant(s). (5)

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2014. ; https://doi.org/10.1101/006742doi: bioRxiv preprint 

https://doi.org/10.1101/006742
http://creativecommons.org/licenses/by-nc-nd/4.0/


It is easy to see that L is a concave function of the mutation rates θ(l), since the Hessian H of L
with respect to θ = (θ(1), . . . , θ(L)) is given by

Hl,l′(θ) =
∂2L

∂θ(l)∂θ(l′)
= −δl,l′

1

[θ(l)]
2

n−1∑
i=1

s
(l)
i , (6)

showing that H(θ) is negative definite for all θ � 0. Hence, the mutation rates of the loci that
maximize L are the solutions of

0 =
∂L
∂θ(l)

=
1

θ(l)

n−1∑
i=1

s
(l)
i −

1

2
EΦ[τn], (7)

yielding the following maximum likelihood estimate for the mutation rate θ(l) at locus l given the
demographic model:

θ̂(l) =
2
∑n−1

i=1 s
(l)
i

EΦ[τn]
. (8)

Note that for a constant population size, (8) is the same as Watterson’s estimator θ
(l)
W for the

mutation rate (Watterson 1975), namely

θ
(l)
W =

∑n−1
i=1 s

(l)
i∑n−1

i=1
1
i

,

since for a constant population size, E[τn] = 2
∑n−1

i=1
1
i . Substituting the MLE for θ(l) in (8) into

(5), we obtain the log-likelihood with the optimal mutation rates:

L(Φ) =
n−1∑
i=1

[(
L∑
l=1

s
(l)
i

)
log

(
EΦ[τn,i]

EΦ[τn]

)]
+ constant(s). (9)

If we define the discrete probability distributions p = {pk}n−1
k=1 and ξn(Φ) = {ξn,k(Φ)}n−1

k=1 by

pk =

∑L
l=1 s

(l)
k∑n−1

i=1

∑L
l=1 s

(l)
i

and

ξn,k(Φ) =
EΦ[τn,k]

EΦ[τn]
,

then we see that the demographic model Φ̂ that is the MLE of the likelihood function L(Φ) in (9)
is given by

Φ̂ = arg max
Φ

L(Φ)

= arg min
Φ

KL(p || ξn(Φ)), (10)

where KL(P || Q) denotes the Kullback-Liebler divergence of distribution Q from P .
Hence, for a given demographic model Φ, we can compute the log-likelihood using (9), and infer

the optimal mutation rate at each locus independently according to (8). We compute the gradient
of L(Φ) with respect to Φ using automatic differentiation (Griewank and Corliss 1991), detailed
below. Once we have access to the gradient of L(Φ), we can more efficiently search over the space
of demographic models using standard gradient-based optimization algorithms.
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Some computational details
For a sample of size n and a piecewise-exponential demographic model with M epochs, the terms
EΦ[τn,i] in (9) can be computed in O(nM) time for each value of the index i, 1 ≤ i ≤ n− 1. Hence,
the time complexity for evaluating the log-likelihood function in (9) is O(n2M). However, since we
would like to use our method for large sample sizes on the order of tens to hundreds of thousands
of individuals, in practice, and for the results reported in Results, we evaluate (9) by using only
the leading entries of the SFS which account for some significant fraction of the segregating sites
in the observed sample. In particular, for the results on simulated and real datasets reported in
Results, we use the first k entries of the SFS which account for 90% of the segregating sites in the
observed data and collapse the remaining n− k− 1 SFS entries into one class when computing the
KL divergence in (10).

Confidence intervals
If we ignore the fact that we are using the PRF assumption to treat the sites within each locus
as freely recombining, (9) is the log-likelihood function of L independent samples from a multino-
mial distribution with n − 1 categories and probabilities ξn(Φ) = (ξn,1(Φ), . . . , ξn,n−1(Φ)), where
ξn,i(Φ) = EΦ[τn,i]/EΦ[τn], and

∑n−1
i=1 ξn,i(Φ) = 1. Since the probability models specified by the

likelihood function L(Φ) are identifiable for a sufficiently large sample size n that depends on the
number of parameters being inferred (Bhaskar and Song 2013), and since ξn(Φ) is differentiable
with respect to Φ, it follows from the asymptotics of maximum likelihood estimators that

√
s(Φ̂− Φ0)

d−−−→
s→∞

N (0, I−1(Φ∗)), (11)

where Φ∗ is the true underlying demographic model, and I(Φ∗) is the expected Fisher information
matrix of a single observation. The elements of I(Φ∗) are given by

I(Φ∗)a,b = −EΦ∗

[
∂2L(Φ)

∂Φa∂Φb

∣∣∣∣
Φ∗

]
, (12)

where Φi denotes the ith element of the demographic parameter vector Φ. For the log-likelihood
function L(Φ) in (9), using EΦ∗(pk) = ξn,k(Φ

∗), it is straightforward to show that (12) simplifies to

I(Φ∗)a,b =

n−1∑
k=1

∂ξn,k(Φ)

∂Φa

∂ξn,k(Φ)

∂Φb

1

ξn,k(Φ)

∣∣∣∣∣
Φ=Φ∗

. (13)

We calculate the partial derivatives in (13) via automatic differentiation during the computation
of p(Φ) (Griewank and Corliss 1991). This allows us to construct asymptotic empirical confidence
intervals for Φ∗. An asymptotic 100(1− α)% confidence interval for the parameters of Φ∗ is given
by

Φ̂a ± zα/2
√
I−1(Φ̂)a,a, (14)

where zα/2 is the 100(1− α/2)th percentile of a standard normal distribution.
If the loci being analyzed are long with low levels of intralocus recombination, then (9) is a

composite log-likelihood function rather than a true likelihood function. In such cases, we compute
empirical confidence intervals for the demographic parameters using a nonparametric block boot-
strap procedure (Efron and Tibshirani 1986). In particular, we subsample L loci with replacement
from the original dataset of L loci, where each locus is sampled with probability proportional to
the number of segregating sites in it. We examine the performance of the asymptotic confidence
interval procedure and the block bootstrap on simulated data in Results.
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Automatic differentiation
Since our inference algorithm and asymptotic confidence interval estimation procedure rely heavily
on computing gradients via automatic differentiation, we briefly describe this technique here to keep
the paper self-contained. Automatic differentiation (AD) is a powerful technique for computing
the gradient (and higher-order derivatives) of a mathematical function that is implemented in a
computer program. The basic idea in AD is to track the values and gradients of the intermediate
variables in a computer program evaluated at the desired value of the independent variables, where
the chain rule of calculus is repeatedly employed to compute the gradients. For example, suppose we
had the mathematical function f(x) = sin(x2 + x) that is implemented via the following computer
function f(x):

function f(x) {

y = x * x

z = y + x

w = sin(z)

return w

}

To calculate the numerical value of df/dx, we augment the intermediate variables in this program
to create a new variable per existing variable that will track the derivative with respect to x,
evaluated at the value passed for the argument x. In particular, in this program, we define x′ =
dx/dx (which will be trivially initialized to 1), y′ = dy/dx, z′ = dz/dx, and w′ = dw/dx. Suppose
we wish to evaluate f and its gradient (with respect to x) at x = 1/2. The desired df/dx evaluated
at x = 1/2 is equal to w′ evaluated at x = 1/2. The key idea in AD is to evaluate y′, z′, and w′

at the same time that y, z, and w are being evaluated for the input variable value x = 1/2. These
augmented variables y′, z′, and w′ can be computed using the chain rule of calculus. The evaluation
of the original and augmented variables of the function at x = 1/2 proceeds as follows:

(x, x′) = (1/2, 1).

(y, y′) = (x× x, x× x′ + x′ × x) (15)

= (1/2× 1/2, 1/2× 1 + 1× 1/2) = (1/4, 1).

(z, z′) = (y + x, y′ + x′) (16)

= (1/4 + 1/2, 1 + 1) = (3/4, 2).

(w,w′) = (sin(z), cos(z)× z′) (17)

= (sin(3/4), cos(3/4)× 2).

Note that the chain rule was invoked in (15), (16), and (17) to calculate y′, z′, and w′ at x = 1/2.
Using features of modern programming languages such as function and operator overloading, the
chain rule calculations for common mathematical functions can be abstracted away in a library, thus
requiring minimal changes to the user’s program. In our demographic inference software package,
we used the AD library ADOL-C (Walther and Griewank 2012).

AD offers advantages over both symbolic and numerical methods for gradient evaluation. Since
one does not have to derive and implement potentially complicated expressions for the symbolic
gradient of the original mathematical function, AD helps reduce the chances of implementation
errors. At the same time, AD computes exact gradients as opposed to approximate numerical
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methods like finite-difference schemes. The description provided above is called forward-mode AD;
there are also other evaluation orders for the terms in the chain rule computation in AD. We refer
the interested reader to Griewank and Corliss (1991) for a more detailed survey of this topic.

Results

In this section, we perform extensive validation of our method on simulated data using several sets
of demographic models similar to those inferred by recent large-sample studies. We also apply our
method to the neutral region dataset of Gazave et al. (2014) and the exome-sequencing dataset of
Nelson et al. (2012) to detect signatures of recent exponential population growth.

Simulated demographic models
To validate our inference algorithm, we simulated data under the coalescent with recombination
with the following two demographic scenarios:

• Scenario 1 — This demographic scenario models two ancestral population bottlenecks fol-
lowed by an epoch of exponential growth. We simulated datasets with several values for the
growth duration t1 and per-generation growth rate r1 such that the population expansion
factor (1 + r1)t1 is fixed at 512, which is close to the estimated population expansion factor
inferred by Nelson et al. (2012) in the CEU subpopulation. The ancestral population bot-
tlenecks reflect the out-of-Africa bottleneck and the European-Asian population split, and
these parameters were set to those estimated by Keinan et al. (2007). The population size
functions for this scenario are shown in Figure 1(a).

• Scenario 2 — In this scenario, there are two epochs of exponential growth, the older of which
(called epoch 2) lasts for t2 = 300 generations with a growth rate of r2 = 1% per generation,
and a recent epoch (called epoch 1) of more rapid growth lasting t1 = 100 generations with
a growth rate of r1 = 4% per generation. This model also incorporates the two ancestral
population bottlenecks inferred by Keinan et al. (2007), and is shown in Figure 1(b).

For each demographic scenario, we simulated several datasets using the coalescent simulator ms

(Hudson 2002) with 10,000 diploid individuals and 100 unlinked loci each of length 10 kb, while
using a realistic recombination rate of 10−8 per base per haploid per generation within each locus.
We used a mutation rate of 2.5× 10−8 per base per haploid per generation at each locus.

Maximum likelihood estimates
We applied our method to estimate the exponential growth rate and onset times for Scenario 1
and Scenario 2 while assuming that the details of the ancestral population bottlenecks is known.
We did not try to estimate the ancestral population bottlenecks because our focus was on inferring
recent population expansion events which are not detectable with small sample sizes. To infer
ancient demographic events such as bottlenecks, we think that genome-wide methods such as those
of Li and Durbin (2011) and Sheehan et al. (2013) will be more powerful. Figure 2 shows violin
plots of the inferred values of the duration and rate of exponential growth for each of the simulation
parameter settings in Scenario 1, with the joint distribution over the inferred parameters shown
in Figure 3. In each simulation parameter combination in Scenario 1, the population expands
by a factor of 512 in the epoch of recent exponential growth. The solid red curves in Figure 3
represent the exponential growth parameter combinations that have this same population expansion
factor, while the dashed red curves are the parameter combinations having 25% higher and lower
population expansion factors. As can be seen from the tight clustering of points along the red curves
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in Figure 3, the jointly inferred exponential growth parameter combinations quite accurately reflect
the exponential population expansion factor — i.e. when the inferred growth onset time is large,
the inferred growth rate is correspondingly lower so that the population expands by the same factor
in the inferred demographic model as in the true demographic model. Similarly, Figure 4 shows
the marginal distribution of the inferred values of the growth onset times and rates for each of the
two epochs in Scenario 2, with the joint distribution of the inferred parameters for each of the
two epochs shown in Figure 5. Since most points in Figure 5 fall within the dashed red curves,
this indicates that the population expansion factors from the inferred estimates match the true
population expansion factor in each epoch quite well.

We also applied the coalescent simulation-based method of Excoffier et al. (2013) to the simulated
datasets used in Figures 2–5, the results of which are shown in Figure 6. Since we are working with
large sample sizes here, we restricted the method of Excoffier et al. to use 200 and 500 coalescent
tree simulations per likelihood function evaluation for Scenario 1 and Scenario 2, respectively,
and at most 40 rounds of conditional expectation maximization (ECM cycles). Note that in their
work, Excoffier et al. (2013) use 105 coalescent tree simulations per likelihood function evaluation
and 20–40 ECM cycles. There is substantially more bias in the estimated growth onset times and
more uncertainty in the growth rates compared to our method (see Figure 2), which should decrease
if one uses more coalescent tree simulations to evaluate the likelihood at each point. However, if we
had used 105 trees per likelihood computation as was done in Excoffier et al. (2013), the inference
would have taken an estimated 21 CPU days per dataset for Scenario 1 and 47 CPU days per
dataset for Scenario 2 on average. In contrast, our method takes on average 15 CPU seconds per
dataset for Scenario 1 and 45 CPU minutes per dataset for Scenario 2.

Per-locus estimated mutation rates
Using (8), we can compute the MLE for the mutation rate at each locus while estimating the
optimal population size function parameters. The inferred mutation rates for each set of parameters
in Scenario 1 and for Scenario 2 are shown in Figure 7. Since the mutation rates are estimated
using the inferred demography, uncertainty in the demographic estimates will lead to uncertainty
in the mutation rate estimates, as can be seen for the estimates for Scenario 2 in Figure 7. For
Scenario 1 with t1 = 100 gens and r1 = 6.4% per gen, we also simulated datasets where the
mutation rate at each locus is randomly chosen from the range 1.1×10−8 to 3.8×10−8 per base per
gen per haploid, and then held fixed across all the simulated datasets. This is the range of mutation
rates estimated from family trio data by Conrad et al. (2011). Figure 8 shows the performance of
our method on simulated datasets with 100 loci each of length 10 kb, and demonstrates that our
procedure can accurately recover the mutation rates.

Confidence intervals
Our inference algorithm described in Method assumes that the sites within each locus are unlinked,
in which case the function L(Φ) given in (9) is a true log-likelihood function. However, since actual
genomic data (and our simulated datasets) involve non-trivial linkage within a locus, the function
L(Φ) in (9) is a composite log-likelihood function. Hence, the asymptotic confidence interval
expressions in Confidence intervals will not necessarily be well calibrated. To understand this issue
a bit better, we simulated datasets under Scenario 1 with t = 100 gens and r1 = 6.4% per
gen. We generated datasets with sequence length of 106 bp by simulating 106/m unlinked loci of
length m bp each and with recombination rate of 10−8 per base per gen per haploid. We did this
for m ∈ {100, 103, 104} bp. By linearity of expectation, the expected total number of segregating
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sites is independent of the locus length m. Hence, for small locus lengths m, we expect fewer
segregating sites per locus, and thus more independence between the segregating sites across the
sequence. In such cases, we expect the function in (9) to be close to the true log-likelihood function.
Figures 9(a) and 9(b) show asymptotic confidence intervals for the inferred growth onset times and
growth rates over 100 simulated datasets. According to those figures, the asymptotic confidence
interval procedure in Confidence intervals are close to an idealized confidence interval estimation
procedure when the locus length m is shorter than 1 kb. For longer locus lengths of m = 10 kb,
we performed a resampling block bootstrap procedure with 200 bootstrap resamples per dataset
to estimate confidence intervals for the exponential population growth parameters. As shown in
Figures 9(c) and 9(d), the bootstrap confidence intervals are much more faithful to an idealized
confidence interval estimation procedure and are better calibrated than those produced by the
asymptotic confidence interval estimation procedure.

Application to real data I: Neutral regions
The dataset of Gazave et al. (2014) consists of 15 carefully curated loci from 500 individuals
of European ancestry that were sequenced at a high coverage depth of 295X. These loci were
chosen to be distant from known or potential coding regions, as well as regions believed to be
under selection. These 15 loci contain 1,746 segregating sites that were sequenced in at least 450
individuals. Gazave et al. employed coalescent simulations to fit several demographic models
incorporating recent exponential population growth to this dataset. In their models, they assumed
that the ancient European demography has two population bottlenecks that were inferred by Keinan
et al. (2007). Incidentally, these are also the same bottlenecks that were used in our simulation
study (Scenarios 1 and 2) described above. Gazave et al.’s best-fit model (Model II) had a growth
rate of 3.38% per generation starting about 140 generations in the past.

We applied our inference program to fit a model of exponential growth fixing the ancient bot-
tlenecks to that inferred by Keinan et al. (2007). We inferred the following three parameters: the
rate and the onset time of recent exponential growth, and the population size just before the onset
of exponential growth. We inferred that the population grew exponentially at a rate of 3.89% per
generation starting 130 generations in the past, resulting in a present effective population size of
about 820 thousand individuals. Figure 10 shows the inferred demographic model, while Table 1
summarizes the point estimates and 95% confidence interval for the inferred parameter values. The
confidence intervals for the demographic parameters were generated using 1000 block bootstrap re-
samples. These confidence intervals have significant overlap with those estimated by Gazave et al.
in their best-fit model.

Application to real data II: Exome-sequencing
Nelson et al. (2012) sequenced over 14,000 individuals from several case-control studies at 202
coding regions that are of interest for drug targeting. This dataset includes the SFS of a sample
of 11,000 individuals of European ancestry containing ≈ 2,600 segregating sites among ≈ 43,000
four-fold degenerate sites in 185 genes (Nelson et al. 2012, Database S3). Using the demographic
estimates of Schaffner et al. (2005) for modeling the ancient demography of the CEU population,
Nelson et al. employed the coalescent simulation-based approach of Coventry et al. (2010) to fit
an epoch of recent exponential growth to their data. They estimated that the effective population
size of the CEU subpopulation expanded from 7,700 individuals 375 generations ago to about 4
millions individuals at the present time at a rate of about 1.68% per generation.

We also applied our method to this dataset to infer an epoch of recent exponential growth while
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fixing the ancient demographic model to that estimated by Schaffner et al. (2005). We inferred an
epoch of exponential growth lasting 372 generations with a growth rate of 1.50% per generation.
This results in a present effective population size of approximately 1.9 million individuals. We
computed empirical confidence intervals for these parameter estimates using a resampling block
bootstrap procedure with 1000 bootstrap resamples. Our point estimates and 95% confidence
intervals for the demographic parameters are summarized in Table 2 with the inferred effective
population size function shown in Figure 11. There are several reasons for the difference in demo-
graphic estimates between our method and that of Nelson et al.’s. First, the coalescent simulations
of Nelson et al. were performed assuming that all sites within a locus are completely linked, while
we make the opposite extreme assumption that all sites are freely recombining and evolve indepen-
dently. Second, Nelson et al. used 400 simulated coalescent trees to approximate the likelihood for
each combination of demographic parameters, resulting in a noisy likelihood surface. Our method,
in contrast, uses exact computation to determine the expected SFS for a given demographic model.
Third, they computed the log-likelihood on a discretized grid of demographic parameters, which
might result in their procedure being far from the maximum likelihood estimate if the log-likelihood
function is fairly flat. Our approach mitigates this problem by employing sophisticated gradient-
based algorithms that can adapt their step size to the likelihood landscape.

We also estimated the mutation rate at each locus using the Watterson estimator given in (8).
Figure 12 shows our mutation rate estimates and 95% confidence intervals, and compares them
to those reported by Nelson et al. Our estimates are close to those of Nelson et al. while being
systematically larger. This systematic difference can be explained by noting that our inferred
population growth rate is slower than that inferred by Nelson et al., resulting in a higher mutation
rate being needed to explain the same number of rare variants.

Discussion

Aside from being of historical interest, demography is important to study because it influences
genetic variation, and understanding the intricate interplay between natural selection, genetic drift,
and demography is a key aim in population genomics. For example, the human census population
has expanded more than 1000-fold in the last 400 generations (Keinan and Clark 2012), resulting in
a state that is profoundly out of equilibrium with respect to genetic variation. Recently, there has
been much interest in studying the consequences of such rapid expansion on mutation load and the
genetic architecture of complex traits (Gazave et al. 2013; Simons et al. 2014; Lohmueller 2013).

Beyond developing more accurate null models of neutral evolution in order to identify genomic re-
gions subject to natural selection (Boyko et al. 2008; Lohmueller et al. 2008; Williamson et al. 2005),
the problem of inferring demography from genomic data has several other important applications.
In particular, the population demography is needed to correct for spurious genotype-phenotype
associations in genome-wide association studies due to hidden population substructure (Campbell
et al. 2005; Clayton et al. 2005; Marchini et al. 2004); to date historical population splits, migra-
tions, admixture and introgression events (Gravel et al. 2011; Li and Durbin 2011; Lukić and Hey
2012; Sankararaman et al. 2012); to compute random match probabilities accurately in forensic
applications (Balding and Nichols 1997; Graham et al. 2000); and so on.

In this paper, we developed a method that can leverage genomic variation data from samples
involving tens of thousands of individuals to infer details of very recent changes in the effective
population size. Our method is based on efficient exact computation of the expected SFS of a
sample, and scales well to the large sample sizes that are common in genomic sequencing studies
today. Taking advantage of the fact that a wide class of parametric demographic models are
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uniquely determined by the SFS of even moderate size samples, we focused on inferring piecewise-
exponential models of recent population size changes. Our inference procedure was derived under
an assumption that different sites evolved in an independent fashion.

Our approach suggests several directions for future research. It would be interesting to investigate
other families of parametric population size functions that might better fit human genetic data.
For example, Reppell et al. (2014) studied more general population growth models which allow for
super- and subexponential growth through the incorporation of an acceleration parameter. Such
richer parametric families might allow one to fit demographic models with fewer number of pieces
to the data. It is easy to extend our method to such parametric families, since the only dependence
on the functional form of the population size function is in the integral expressions given in the
Supplemental material.

It would also be useful to extend the analytic coalescent theory of the SFS to more realistic demo-
graphic models that incorporate multiple populations with migrations and time-varying population
sizes. This would enable one to develop demographic inference algorithms that are potentially
more efficient than coalescent simulation-based methods or numerical diffusion-based methods. A
natural extension to the SFS which captures variation in samples from multiple subpopulations is
the joint population SFS which counts the number of segregating sites in the sample as a func-
tion of the sample allele frequency in each subpopulation. Chen (2012) has developed analytic
expressions for the expected joint population SFS of multiple subpopulations when the migrations
are instantaneous exchanges of individuals between subpopulations. Even more fundamentally, it
would be interesting to characterize the statistical identifiability of complex demographic models
from the joint population SFS of random samples.

Another direction for research is understanding how the uncertainties in the inference of different
parameters are related to each other. For example, the violin plots in Figure 2 show that when
there is more uncertainty in the inference of the exponential growth rate, there is less uncertainty
in the inference of the growth duration, and vice versa. A similar observation can be made from
Figure 4 for the inference of the exponential growth parameters of the two epochs in Scenario 2.
It would be interesting to understand if there is a fundamental quantifiable uncertainty relation that
is independent of the inference algorithm, or if this behavior is specific to our inference procedure.
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Figure Legends

Figure 1. Population size N(t) as a function of time (measured in generations) for (a) several
choices of t1 and r1 in Scenario 1, and (b) Scenario 2. The present time corresponds to t = 0.

Figure 2. Violin plots of the (a) duration and (b) rate of exponential growth in the population size
for each of the six simulation parameter settings of Scenario 1. Each violin plot is generated using
100 simulated datasets with 100 unlinked loci of 10 kb each over 10,000 diploid individuals. The
green lines indicate the true values for the simulation parameters. The median inferred parameter
values match the true parameter values very well.

Figure 3. Joint and marginal distributions of the inferred duration and rate of exponential growth
for several parameter settings in Scenario 1. Each point in each plot represents a simulated
dataset with 100 unlinked loci of length 10 kb each over 10,000 diploid individuals. The green
vertical and horizontal lines denote the true simulation parameter values for the duration and rate
of exponential population growth. In Scenario 1, the present population size is 512 times larger
than the ancestral population size. The solid red curves (dashed red curves) in each plot are the
combinations of parameter values which have this same ratio (resp., higher and lower by 25%) of
present to ancestral population size. (a) t1 = 100 gens, r1 = 6.44% per gen, (b) t1 = 300 gens,
r1 = 2.10% per gen, (c) t1 = 500 gens, r1 = 1.26% per gen, (d) t1 = 600 gens, r1 = 1.05% per gen.

Figure 4. Violin plots of the (a) onset times t1 and t2, and (b) exponential growth rates r1

and r2 for the two epochs of exponential growth in Scenario 2 (see Figure 1(b)). Each violin
plot represents 100 simulated datasets with 100 unlinked loci of 10 kb each over 10,000 diploid
individuals. The green lines indicate the true values for the simulation parameters.

Figure 5. Joint distribution of the inferred growth onset time and growth rate in Scenario 2
for (a) epoch 1 with t1 = 100 gens and r1 = 4% per gen, and for (b) epoch 2 with t2 = 400
gens and r2 = 1% per gen. These plots were generated using 100 simulated datasets with 100
unlinked loci of 10 kb each over 10,000 diploid individuals. The green lines indicate the true values
for the simulation parameters. In Scenario 2, the population expands about 50-fold and 20-fold
in epochs 1 and 2, respectively. The solid red curves are the combinations of parameter values
which have these same population expansion factors in epochs 1 and 2, while the dashed red curves
are the combinations of parameter values which are higher and lower by 25% compared to the
true population expansion factors in each epoch. The inferred parameter combinations reflect the
population expansion factors very well.

Figure 6. Violin plots of the (a) duration and (b) rate of exponential growth in the population
size using the method of Excoffier et al. (2013) for 100 simulated datasets for each of the simulation
parameter settings in Scenario 1. These are the same simulated datasets used to generate Figure 2
and Figure 3. When applying the method of Excoffier et al., due to computational reasons, we used
200 and 500 coalescent tree simulations for Scenario 1 and Scenario 2 per likelihood function
estimation and limited the number of rounds of conditional expectation maximization (ECM cycles)
to 40. On one of these 100 simulated datasets, their method appeared to have a runaway behavior
and produced unreasonable estimates after 40 ECM cycles; this dataset was excluded from these
plots.

Figure 7. Violin plots of the inferred mutation rates for each of the six simulation parameter
combinations of Scenario 1, and for Scenario 2. Each plot represents 100 simulated datasets
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with 100 unlinked loci of 10 kb each over 10,000 diploid individuals. All loci were simulated using a
mutation rate of 2.5×10−8 per bp per gen per haploid. The uncertainty in the inferred mutation rate
is significantly higher for Scenario 2 due to the higher uncertainty in the demographic parameters
being simultaneously estimated (see Figure 4).

Figure 8. Inferred mutation rates for simulated datasets with 100 loci from 10,000 diploids under
Scenario 1 with t1 = 100 and r1 = 6.4%. The mutation rates at the 100 loci were drawn randomly
from the range [1.1 × 10−8, 3.8 × 10−8]. The loci are sorted in ascending order of the simulated
mutation rates. The green line indicates the mutation rates used in the simulation, while the red
circle and blue error bars denote the median and one standard deviation of the inferred mutation
rate over 100 simulated datasets.

Figure 9. Calibration plots for (a)–(b) asymptotic, and (c)–(d) bootstrap confidence intervals of
the duration and rate of exponential growth for Scenario 1 with t1 = 100 gens and r1 = 6.4% per
gen for 200 simulated datasets of 10,000 diploids, each with 100 unlinked loci of length m. For each
confidence level α on the x-axis, the y-axis counts the fraction of datasets where the true parameter
estimates lie outside the 100(1−α)% predicted confidence interval. The black lines denote the plot
that would be obtained from an idealized confidence interval estimation procedure.
(a) & (b): Asymptotic confidence interval calibration plots for the inferred (a) duration and (b)
rate of exponential growth. As the locus length m increases, linkage disequilibrium causes the
composite log-likelihood approximation in (9) to become increasingly inaccurate, thus leading to
poorly calibrated asymptotic confidence intervals for m = 10 kb.
(c) & (d): Bootstrap confidence interval calibration plots using 200 bootstrap replicates per sim-
ulated dataset for the inferred (c) duration and (d) rate of exponential growth. The bootstrap
confidence intervals are much better calibrated than those produced by the asymptotic confidence
interval estimation procedure.

Figure 10. Demographic model inferred by our program on the neutral regions dataset of Gazave
et al. (2014). We inferred a model with three parameters: the rate and onset of recent exponential
growth, and the population size just before the onset of exponential growth. The ancient bottlenecks
were fixed to those inferred by Keinan et al. (2007).

Figure 11. Demographic model of recent population expansion inferred by our program on the
CEU exome-sequencing dataset of Nelson et al. (2012). The ancient demographic model before
the epoch of exponential growth was fixed to that inferred by Schaffner et al. (2005). The two
population bottlenecks 2,000 and 3,500 generations in the past correspond to the European-Asian
population split and the out-of-Africa bottleneck, respectively. Our method infers an epoch of
exponential population growth beginning 372 generations in the past resulting in the effective
population size expanding from 7,700 individuals to 1.9 million individuals at a rate of 1.5% per
generation.

Figure 12. Mutation rates inferred by our method for each of the 185 genes in the exome-
sequencing dataset of Nelson et al. (2012). The green line connects our point estimates for the
mutation rate while the light blue lines denote 95% confidence intervals that were constructed by
a resampling block bootstrap procedure with 1000 bootstrap samples. The red line connects the
point estimates of the mutation rate inferred by Nelson et al. (2012). While the mutation rates
estimated by our method and that of Nelson et al. are very close to each other, the mutation
rates estimated by our method is systematically higher at each locus owing to the lower population
expansion rate inferred by our method.
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Table 1: Point estimates and 95% confidence intervals for the demographic parameters inferred
from the neutral regions dataset of Gazave et al. (2014).

Parameter Point estimate 95% confidence interval

Population size before growth onset (diploids) 5,769 (4,802, 8,785)
Growth rate (% per gen) 3.89% (2.97%, 6.96%)
Growth onset time (gens) 129.8 (99.2, 162.6)
Population size after growth (diploids) 818,786 (492,068, 6,527,975)
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Table 2: Point estimates and 95% confidence intervals for the demographic parameters inferred
from the exome-sequencing dataset of Nelson et al. (2012).

Parameter Point estimate 95% confidence interval

Growth rate (% per gen) 1.50% (1.29%, 1.77%)
Growth onset time (gens) 371.6 (314.0, 439.9)
Population size after growth (diploids) 1,957,982 (1,754,013, 2,336,228)
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