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1 Abstract4

The gradual loss of diversity associated with range expansions is a well known pattern observed in many5

species, and can be explained with a serial founder model. We show that under a branching process6

approximation, this loss in diversity is due to the difference in offspring variance between individuals7

at and away from the expansion front, which allows us to measure the strength of the founder effect,8

dependant on an effective founder size. We demonstrate that the predictions from the branching process9

model fit very well with Wright-Fisher forward simulations and backwards simulations under a modified10

Kingman coalescent, and further show that estimates of the effective founder size are robust to possibly11

confounding factors such as migration between subpopulations. We apply our method to a data set of12

Arabidopsis thaliana, where we find that the founder effect is about three times stronger in the Americas13

than in Europe, which may be attributed to the more recent, faster expansion.14

2 Introduction15

We may think of a range expansion as the spread of a species or population from a narrow, geographically16

restricted region to a much larger habitat. Range expansions are a common occurrence in many species17

and systems, and they happen on time scales that differ by orders of magnitude. Viruses and bacteria may18

spread across the globe in a few weeks Brockmann and Helbing (2013), invasive species are able to colonize19

new habitats over decades (Davis, 2009); and many species migrated into their current habitat over the20

last few millenia, following changing environments such as receding glaciers (Hewitt, 1999; Taberlet et al.,21

1998).22
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The population genetic theory of range expansion is based on two largely distinct models. The first23

model, based on the seminal papers of Fisher (1937) and Kolmogorov et al. (1937) and often called24

the Fisher-KPP model, is based on the diffusive spread of alleles, and has been mostly explored from25

a statistical mechanics viewpoint. The other model, called the serial founder model, has its roots in26

the empirically observed decrease in genetic diversity from an expansion origin Austerlitz et al. (1997);27

Hewitt (1999); Ramachandran et al. (2005).28

The Fisher-KPP partial differential equation describes the deterministic change in allele frequency29

at a spatial location due to the individuals with a selected allele having more offspring than wild-type30

individuals. The model can be applied to range expansions by substituting the selected allele with31

presence of a species, and the wild-type allele as absence of a species(see e.g. Barton et al., 2013, for a32

recent review). Its solution is a travelling wave; similar to logistic growth , populations grow to some33

carrying capacity. This model has received more widespread attention recently due to the empirical34

tests by Hallatschek et al. (2007), who compared growing colonies of E. coli to the predictions from the35

Fisher-KPP equation.36

However, it is also apparent that some of the predictions of the Fisher-KPP model are inconsistent37

with many macroscopic systems. In particular, the Fisher-KPP model predicts that local populations38

start with extremely small population sizes. This leads to a very high amount of genetic drift, and,39

for example, in the experiments of Hallatschek et al. (2007), all local genetic variability was quickly40

eliminated, so that no polymorphisms were shared between individuals sufficiently far from each other.41

This is in strong contrast to humans, for example, where an expansion out-of-Africa is well supported42

(e.g. Ramachandran et al., 2005), but where we find many genetic variants shared between all human43

populations. This was part of the motivation for the development of the serial founder model, which44

is typically based on a variant of a stepping stone model (Kimura, 1964) in one or two dimensions.45

Typically, only a small subset of populiations is colonized at the beginning of the process, but over time46

subsequent populations are colonized, usually by means of some founder effect. There are multiple ways47

a founder effect has been modelled: Austerlitz et al. (1997) and Ray et al. (2010) chose to model the48

founder effect by local logistic growth, where each local subpopulation grows according to the logistic49

equation. A simpler model, favored by DeGiorgio et al. (2011) and Slatkin and Excoffier (2012), is to50

model the founder effect by a temporary reduction in population size.51

A complete serial founder model, including selection, founder events and migration between subpop-52
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ulations, has, so far, be proven to complex to be of use for analytical research. However, a recursion53

approach (e.g. Austerlitz, 1997) and simulations (e.g. Klopfstein et al. 2006, Travis & Burton 2010) have54

been successfully applied to investigate the behavior of the model. Other alternatives are models that do55

not model expansions explicitely, and make additional simplifications. Perhaps the simplest model of this56

kind is that of a demographic expansion without any spatial component, which can be fully described by57

a change in the rate of coalescence Gravel et al. (2011); Li and Durbin (2011), with the assumption made58

that the population is panmictic throughout the expansion. This model resembles a spatially explicit59

expansion, when migration between demes in the latter are very large. A more sophisticated model,60

incorporating spatial structure, is the infinite island approximation model of Excoffier (2004). In this61

model, an originally small, panmictic population expands instantly into a metapopulation with a large62

number of subpopulations. In contrast to the demographic expansion, in this model we can compare coa-63

lescent time distribution between demes and within demes (called the mismatch distribution), which has64

been used for inference previously. However, this model assumes that all subpopulations are exchangable,65

so that there is no difference in coalescence times with individuals at a wave front, when compared to66

individuals in the center of a population. A further step were the models of DeGiorgio et al. (2011) and67

Slatkin and Excoffier (2012). DeGiorgio et al. (2011) derived coalescence times under a serial founder68

model, using a small bottleneck as a founder event. In the model of Slatkin and Excoffier (2012), the69

expansion is modelled as a spatial analog of genetic drift, where each founder event corresponds to a70

generation in a standard Wright-Fisher model.71

So far, the theoretical models of range expansions have let to few applications that can be applied72

to interpret genetic data from non-model organisms. In this paper, we first develop a simple model of a73

range expansions based on a branching process approximation. The advantage of the simplicity of the74

model is that it leads to the development of an intuitive understanding of an expansion. We test the75

model using simulations, and discuss its limitations, and then show how it can be used for inference.76

We demonstrate the utility of our approach by re-analyzing SNP data of the model plant species77

Arabidopsis thaliana (L.) Heynh. (Horton et al., 2012). A. thaliana is a small, annual plant, thought78

to be native to Europe, but introduced in North America and other locations (Jorgensen and Mauricio,79

2004). The biogeograhy and population structure of A. thaliana has been well studied (Horton et al.,80

2012; Jorgensen and Mauricio, 2004; Nordborg et al., 2005) While earliest studies showed relatively little81

population differentiation on a global scale, genome-wide genetic data supports widespread population82
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structure and clear genetic differentiation between populations (Horton et al., 2012; Nordborg et al.,83

2005). The availability of genome-wide SNP-chip data from more than a thousand individual plants from84

hundreds of locations make A. thaliana an ideal test case for the genetic signatures of range expansions.85

However, the status of A. thaliana as a human commensialist and the fact that A. thaliana is a selfing86

plant, may make the analysis more challenging.87

3 Results88

3.1 Overview of theoretical results89

In this section, we will briefly outline our model and the main theoretical results. Details and full90

derivations can be found in the appendix. A schematic of the model studied is given in Figure 1. In91

brief, we assume a serial founder model on a one dimensional stepping stone grid, where initially only92

one deme is colonized. We compare the allele frequency of individuals in the same location as the origin93

of the population at time t, Xt, with individuals at the wave front at time t, which we denote by X̃t. In94

particular, we are interested in the difference in derived allele frequency between the population at the95

starting position and the expansion front, which we denote as Zt. In Appendix A.1, we show that the96

expected difference in allele frequency is97

EZt = f0

(

1

1− L̃(t)
− 1

1− L(t)

)

, (1)

where f0 is the initial frequency of an allele, and L(t) and L̃(t) are the probabilities that an allele is98

lost by time t at the origin of the expansion and the wave front, respectively.99

We can make this result more explicit assuming the populations evolve according to a branching100

process. A (Galton-Watson) branching process (Harris, 1954) models the evolution of a population101

by assuming that all individuals produce offspring independently from each other, with some offspring102

distribution F . In Appendix A.2 we use standard results from branching process theory to show that if103

each deme evolves according to a branching process, then (1) can be written as104

EZt =
1

2

(

Var(F̃ )−Var(F )
)

t+ o

(

1

t

)

, (2)

that is, the difference in allele frequency is expected to increase linearly with distance, and the slope is105
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half the difference in the variance of offspring distribution at the expansion front Var(F̃ ) and away from106

the expansion front Var(F ). Since we assume that founder effects occur at the expansion front, we expect107

it to have a higher offspring variance, corresponding to a lower effective population size. It is worth108

pointing out that the term of order t in EZt does not depend on f0, so that we expect the same slope109

independent of the initial allele frequency. As the higher order terms depend on f0, we will examine the110

accuracy of this result using simulations.111

In Appendix section A.3 we then use the offspring variance from a Wright-Fisher model to define an112

effective founder size ke, and show tat113

EZt =
1

2

(

Ne

ke
− 1

)

t. (3)

where Ne is the effective population size of a deme. In some cases, it might be possible to interpret Ne114

and ke directly. For example, if we think of a species colonizing a system of islands, Ne corresponds to115

the carrying capacity of that species on a given island, and ke to the number of founders. In most cases,116

however, subpopulations are not clearly defined and the population is relatively continuously distributed.117

Under these circumstances, it is not clear what Ne and ke represent. Therefore, we show in section A.4118

that it makes more sense to think about the distance over which the ratio ke

Ne

has a certain value (e.g.119

0.99), that is, how far apart demes need to be so that each founding population is 1% lower than the120

population at equilibrium. The larger this distance, the weaker the founder effect.121

Finally, in Appendix A.5 we show how we can estimate EZt from genetic data using the ψ statistic122

defined as123

ψ =
f21 − f12

f12 + f11 + f21
(4)

where fij is the (i, j) entry in the allele frequency spectrum. ψ was introduced by Peter and Slatkin124

(2013), and we show in Appendix A.5 why ψ is an useful estimator of EZt. Taken together, these results125

suggest that we can define and estimate the effective founder effect that describes the loss of genetic126

diversity with distance from the expansion origin, and that we can infer the strength of the founder effect127

using a simple linear regression on the allele frequency of shared alleles.128
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3.2 Simulations129

We validate our analytical results by performing extensive simulations under two different models. The130

first is the forward-in-time model stepping stone model described by Slatkin and Excoffier (2012). The131

second model is a backward-in-time stepping stone model, based on the Kingman coalescent (Wakeley,132

2009).133

3.2.1 Forward simulations134

We first validate our results using a discrete-time, forward-in-time Wright-Fisher model. In Figure 2, we135

give results for various initial allele frequencies f0, setting ke = 0.1N (first row), ke = 0.5N (middle row)136

and ke = 0.9N (bottom row). Using equation 3, we would predict Zt to be 4.5t, 0.5t and t/18, respectively.137

Those predictions are given by the red lines; the points represent data observed in simulations. We find138

that we get better estimates when i) the effective founder size is low, ii) the time after the expansion139

is low and iii) the effective population size is high. In particular, we find that we get a systematic bias140

when we have a very strong founder effect, and thus allele frequency differences are expected to be very141

large. In that case, many alleles will become fixed in the population, and the predictions between the142

Wright-Fisher and the branching process models are quite different.143

In Figure 3, we investigate the effect of demes growing to their carrying capacity via logistic growth,144

as opposed to instantaneous growth which we assume in most other cases. Here we can apply the result145

that under non-constant founder population sizes, the effective founder size is simply the harmonic mean146

of all founder sizes, divided by the number of generations. In Figure 3, simulations were performed with147

a carrying capacity of 10,000, and growth starting148

3.2.2 Backwards simulations149

We also performed backward-in-time simulations i) to test the robustness of the branching process pre-150

dictions to migration, ii) to test the effect of estimation from a subsample and iii) to to remove the initial151

allele frequency as an explicit parameter. Coalescent simulations were performed in a continuous-time152

model with discrete expansion events. In particular, most of the time lineages are allowed to merge153

according to the standard structured coalescent. The only exception are the expansion events, which are154

modelled as a single generation of Wright-Fisher mating, followed by moving all lineages in the newly155

colonized deme back to the founder deme. Thus, unlike the Kingman-coalescent, this model allows for156
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multiple mergers at the wavefront. Under this model,157

EZt =
1

4ke
, (5)

since the founder effects result in an increase of the offspring variance by a factor of (2ke)
−1. We estimate158

EZt using the ψ-statistic defined in (Peter and Slatkin, 2013), justification of this is given in Appendix A.5.159

Results are displayed in Figure 4. In the top row, we show samples taken immediately after the expansion160

reached the boundary of the habitat, in the bottom row, we show samples that were taken a very long161

time (20N generations) after the expansion finished. We find that recent expansions are detected rather162

easily, almost independent of the migration rate, and the effective founder size is estimated with high163

accuracy. In the bottom row, we observe that for intermediate migration rates (M = 0.1 and M = 1), we164

still get a relatively accurate result, however, we have more noise, indicating that much larger samples165

would be required to obtain confident estimates, since most SNP will be either fixed or lost after this166

time. For a low migration rate, we see that we do not have any power for inference, since individuals167

all coalesce within their demes before they have the opportunity to coalesce with lineages from other168

locations. For high migration rates (M = 100), we find that the signal of the range expansion has almost169

vanished. Under these conditions, migration is so strong that the population essentially resembles an170

equilibrium isolation-by-distance population, and the signal of the range expansion has been lost. For171

M = 10, we see an intermediate behaviour, close to the origin we are at equilibrium, but far away the172

slope of the curve is still the same as we would expect under an expansion.173

3.2.3 2D simulations174

In addition to the results presented in the previous two sections, where we performed simulations in a one-175

dimensional habitat, we also performed simulations on 2D-stepping stone model to investigate the impact176

of multiple dimensions. We performed simulations by simulating expansions both under a migrant pool177

model and a propagule pool model (Slatkin and Wade, 1978). In a migrant pool model, all neighbouring178

populations send migrants at equal rates, whereas under the propagule pool model, one possible founder179

population is selected to send out a ”propagule”, which colonizes the new deme. We find that if the180

sample axis is parallel to the orientation of the stepping-stone-grid, then the migration model does not181

matter, and we get the same behavior as in the 1D case. However, if we sample a diagonal we find182
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that the results from the 1D-simulations are applicable under the propagule pool model, but not under183

the migrant pool model (Figure 5. The reason for that is quite simple: under the migrant pool model,184

there are many different paths on how a deme can be colonized, and the number of paths increases with185

distance from the origin, which reduces the amount of drift in a non-linear way with distance from the186

origin. In contrast, under the propagule pool model, always one path is chosen. We also find that under187

the 2D-model the signal of the expansion disappears faster. Whereas in the 1D-model at a migration188

rate of M = 1 the expansion is still detectable after 20N generations, we find that at the same migration189

rate, the population already approaches equilibrium.190

3.3 Application to A. thaliana191

We applied our model to the SNP dataset of Horton et al. (2012). Based on a PCA analysis (Figure 6a)192

and the sample locations, we defined five regions for further analysis: Scandinavia, Americas, as well as193

Western, Central and Eastern Europe.194

In the Americas, (Figure 6c) we find a most likely origin in the Great Lakes region, as opposed to195

the East coast. This might be somewhat surprising, but as we only have one sampling location at the196

East cost, power might be low. However, we can speculate that traders through the Great Lakes first197

introduced A. thaliana to the US, which may explain the signal. This may be seen as evidence for a198

recent introduction of A. thaliana into the Americas from Europe. Further support for this hypothesis199

comes from the fact that the American samples cluster togethr with the Western European samples in200

the PCA analysis, and from the fact that the North American population shows the strongest founder201

effect, with a 1% founder effect every 4.26 km.202

Scandinavia (green dots in Figure 6a, Figure 6c), shows the most diversity within a region according203

to the PCA plot, and the second highest founder effect size. The most distinct samples, in the bottom left204

of Figure 6, are from Northern Sweden and Finland, whereas those samples that cluster with the Central205

and Eastern European Accessions are predominately found in Southern Sweden. We find evidence of206

immigration from the East, with the most likely origin of the Scandinavian accessions lying in Finland.207

Based on the PCA analysis, we might expect the accessions from Southern Sweden to show evidence of208

a range expansion from the South, and that is indeed the case when we only consider these Southern209

samples.210

If we analyze these Southern Scandinavian samples together with the samples from Austria, Czech211
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Republic, Russia, Lithuania and Tajikistan (Figure 6d, pink and brown dots in the PCA), we find evidence212

of an expansion out of eastern Asia, possibly from a refugium close to the Caspian Sea. For the Central213

European samples, we find an origin close to the border between Austria and Italy. This is likely a214

proxy for a refugium in either Southern Italy or the Balkan region, as the inferred origin was covered by215

an ice sheet during the last glacial maximum. Finally, for the Western European samples we find the216

weakest founder effect among all analyzed region, with a 1% founder effect at a scale of 38.6 km, almost217

an order of magnitude weaker than the strongest founder effect we observed in this set of populations,218

in the Americas. This is however partly due to the aggregation of the British and continental samples;219

if we just analyze the French, Spanish and Portugese samples (excluding the British samples), we find220

a founder effect of 18.7, in line with the other continental European regions. In contrast, if we analyse221

the British samples separately, we estimate an 1% decrease to occur over 47.8 km, and in fact we cannot222

exclude equilibrium isolation by distance, as, after Bonferroni correction, asp > 0.05.223

4 Discussion224

In this paper, we study range expansions using a serial founder model, with the main goal to develop225

inference procedures. We use a branching process approximation to approximate the decay of genetic226

diversity due to the recurring founder effects. We use this approximation to define an effective founder227

size, which can be estimated using standard linear regression from genetic data.228

A linear or approximately linear decline of genetic diversity with distance has been observed previously229

in humans (DeGiorgio et al., 2009; Ramachandran et al., 2005) and in simulations (DeGiorgio et al., 2009;230

Peter and Slatkin, 2013). In previous work, we showed, using simulations, that the directionality index231

ψ, defined in equation (4), increases approximately linearly with distance (Peter and Slatkin, 2013). In232

this paper, we connect these empirical observations with a theoretical model, that explains this decay in233

terms of differences in offspring variance. This is justified because in populations with a higher offspring234

variance, genetic drift occurs faster and therefore the population’s effective size becomes smaller.235

While branching processes have a long history in population genetics (Ewens, 2004), they differ from236

other commonly used models such as the Wright-Fisher model and the Coalescent in that the total237

number of individuals in the population is not constant (or following a predetermined function). Instead,238

the expected number of individuals is constant, leading to different dynamics. For example, a neutral239
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branching process will eventually die out almost surely, something that cannot happen under the Wright-240

Fisher model. Therefore, the models presented here are only useful in parameter regions where the241

branching process model and other population genetic models result in similar dynamics. For example,242

our model breaks down if there are only few shared variants between populations. However, in this243

case, phylogeographic methods are arguably more appropriate than population genetic ones. Otherwise,244

our model appears to be useful as long as a significant fraction of variants has a most recent common245

ancestor during the expansion or before the expansion started. If that is not the case, as in the simulations246

with high T and high M in Figure 4, we find that ψ will be very close to zero, due to the signal of the247

expansion vanishing over time. The last parameter region where the model breaks down is when the mean248

allele frequencies become very large (Figure 2. In that case, the increase slows down due to fixations in249

the Wright-Fisher model, whereas it may further increase under the branching process approximation,250

explaining the difference.251

Similar to the effective founder size defined in Slatkin and Excoffier (2012), the effective founder size252

ke we defined here is a variance effective size. This is different from the model proposed by DeGiorgio253

et al. (2009), where an explicit bottleneck was used to model a founder effect. Using an effective size is less254

specific than that - there are many models that will lead to the same founder size - but has the advantage255

that the same formalism can be applied to many different situations. We also showed various rescaling256

properties. Perhaps counterintuitively, EZt is largely independent of the expansion speed, conditional on257

ke. The reason for that is that, even though more segregating variants will be lost in a faster expansion,258

the difference between the expansion front and the rest of the population remains the same. Similarly,259

waiting after the expansion finished will not change EZt.260

Of course, an effective size has its limitations, as in essence, it is just a measure of the speed of261

genetic drift. Many other models exist that may lead to similar or identical patterns of genetic diversity262

(DeGiorgio et al., 2009). However, in many cases it is natural to assume a range expansion occurred,263

often through climatic or historical evidence. In these cases, our framework may provide a starting point264

for a genetic analysis.265

The analysis of the A. thaliana data shows both the usefulness and some of the limitations of our266

approach. We are able to identify expansion origins and infer the strength of the founder effect from267

genetic data. In the A. thaliana data set, we find that the founder effect is much stronger in the268

Americas than in continental Europe. This is an interesting pattern, and it would be very interesting to269
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see if the same is true for other introduced or invasive species. In Europe, our results are consistent with270

previous analyses by Nordborg et al. (2005) and François et al. (2008). Nordborg et al. (2005) found271

that Arabidopsis likely colonized Scandinavia both from the East, through Finland, and from the South.272

The strong population structure is consistent with this finding a global pattern of an Eastern origin, and273

evidence for immigration from the South when just analyzing the Southern Swedish samples, or if we274

jointly analyze them with Eastern European and Asian samples. Overall, we identify a likely ice-age275

refugium close to the Pyrenees in Southern France or Eastern Spain, a likely refugium near the Caspian276

sea and a refugium in central Southern Europe, either in the Balkan or Italy, where denser sampling is277

required for a more accurate picture. In the Americas, we find that Arabidopsis experienced very strong278

founder events, and we identify a most likely point of introduction near the Great Lakes.279

On the other hand, describing the founder effect as a distance over which genetic diversity decreases280

by a certain amount is not as satisfying as is the inference of an effective founder size, on the same scale281

as the effective population size. However, it is necessary because of scaling reasons; if a single population282

spans a larger area, then we necessarily need a strong founder effect to get the same diversity gradient283

than. On the other hand, if we subdivide the area of the large population into smaller populations, each284

of those will have its own, smaller founder effect, but the population will experience a larger number of285

founder events. Thus, if we know the scale of a local population, or can reasonably approxiamte it (e.g.286

if we know the dispersal distance of the species). We can obtain an estimate on how much lower the287

founder size is compared to the effective size at carrying capacity in equilibrium. On the other hand,288

interpreting the founder effect as a distance allows us to obtain a measure that is independent of how289

populations actually occupy space, which is more versatile, but somewhat harder to interpret.290

5 Methods291

5.1 Forward WF-simulations292

Forward simulations were performed using a simple simulator implemented in R. Simulations were started293

with a fixed initial frequency f0, and allowed to evolve for a fixed number of generations. Every t− 1-th294

generation, the rightmost deme founded a new population, first with a single Wright-Fisher generation295

of size ke, which then, in the t-th generation, expanded to size N . All demes except the newly founded296

one underwent t generations of Wright-Fisher mating in the same time frame, thus after gt generations,297
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g demes are colonized. EZt was estimated from 106 replicate alleles. More complex models were imple-298

mented the same framework, i.e. we added migration between all demes at each generation and allowed299

the population to evolve for additional generations after the expansion finished. We also used a modifica-300

tion that allowed for changes in population size after each expansion event, and we used this modification301

to study the effect of logistic growth (see Figure 3).302

5.2 Backwards simulations303

Backward-in-time simulations were performed using the standard structured coalescent model Wakeley304

(2009), with a minor modification. The structured coalescent allows easy inclusion of migration events,305

but coalescence include migration and colonization events. The coalescent is usually studied in the306

continuous limit where the number of generations and population sizes are both very large. We follow307

this approximation with the exception of expansion events, which are modelled using a single generation of308

Wright-Fisher-mating. Backward in time, we stochastically merge lineages, the the backwards-transition309

probability for the number of lineages is (Watterson 1975, Wakeley 2008, p. 62):310

P(Lt + 1 = j|Lt = i; ke) =
S
(j)
i ke[j]

kie
, (6)

where ke is the effective founder size, Lt is the number of lineages at time t, (time measured backwards in311

time in coalescence units), S
(j)
i is the Stirling number of the second kind andN[j] is the jth falling factorial.312

If the number of lineages is reduced, we merge lineages uniformly at random. All remaining lineages are313

then transported to a neighbouring colonized deme. To compare this model to our predictions from the314

branching process model, we have to consider the excess variance in offspring distribution resulting from315

these expansion events, which is 1
4ke

, such that for this coalescent model316

EZt =
1

4k
t+O

(

1

t

)

. (7)

Thus, the smaller the effective founder size ke, the larger the allele frequency gradient will be. 1D-317

and 2D-simulations were performed using the same simulator. For 1D-simulations, we sampled eleven318

samples with n lineages every 5th deme, with 20 additional demes to avoid boundary effects. For the319

2D-simulations, we sampled both a diagonal and horizontal transect. The horizontal transect, parallel to320

12

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2014. ; https://doi.org/10.1101/006700doi: bioRxiv preprint 

https://doi.org/10.1101/006700
http://creativecommons.org/licenses/by-nc/4.0/


the demic structure, had length 30. The diagonal transsect, where demes were colonized every
√
2t time321

units, had length 20
√
2 , so that both transect are colonized in approximately the same time.322

5.2.1 Application323

The data set of Horton et al. (2012), along with the coordinates for the accessions was downloaded324

from the project’s website at http://bergelson.uchicago.edu/regmap-data/. Genotypes of the sister325

species Arabidopsis lyrata provided by Matthew Horton were used to determine the ancestral state for326

each SNP. SNP where we could not determine an ancestral state unambiguously, either because no327

homolog A. lyrata allele was found, or the allele A. lyrata was not present in A. thaliana, were removed.328

Similarly, we removed all individuals where we did not have sampling coordinates. Since A. thaliana is329

a selfing plant and highly inbred accessions were sequenced, we only had a single haploid genotype per330

individual. Since our methodology requires at least two sampled haplotypes, we restricted our analysis331

to locations with at least two accessions sampled. To avoid bias due to very closely related accessions, we332

subsequently removed locations where the plants differed at less than 1.5% of sites (average heterozygosity333

of locations was 7.1%, with a standard deviation of 3.2%). This resulted in a total of 149 locations334

with at least two samples, representing 855 individuals, with 121,412 SNP genotypes remaining. As a335

single, uniform expansion throughout Europe seems rather unlikely, we performed a PCA analysis to find336

the main axes of population differentiation (Figure 6a). As the resulting pattern divided the samples337

broadly into four different groups, we analyzed data from these groups seperately. These groups are:338

Americas (black), Western Europe (blue), Central Europe (red) and Scandinavia (green). For each of339

these groups, we estimated the origin of the range expansion using equation 5 of Peter and Slatkin (2013).340

For visualization, we evaluated eq 5 of Peter and Slatkin (2013) on a grid (with locations not falling on341

land excluded), and estimated the best fit for the slope parameter (v) using linear regressions, with the342

location with the highest r2 corresponding to the least squared estimate of the origin of the expansion343

(Figure 6b-f).344

The expected value of ψ depends on the ratio of the effective founder size ke to the effective population345

size Ne and the number of demes that the population colonized. The number of demes is relevant, since if346

we subdivide the population into more demes, it will undergo more (but weaker founder effects) over the347

same physical distance, or conversely, if we assume that demes are large, then we have few founder events348

with a very strong founder effect. Using the simple model developed in this paper, we cannot distinguish349
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these cases without additional extraneous information. For example, we may fix the size of each deme350

based on extraneous information. For example, if the mean dispersal distance is known for a species,351

we may assume that the spatial extent of each deme is approximately that dispersal distance, and we352

can calculate ke relative to that quantity. In this context, the ratio ke/Ne has the interpretation as the353

percentwise reduction in Wright’s neighborhood size. Alternatively, if the dispersal distance is unknown,354

we may fix the ratio r = ke/Ne to an arbitrary constant, and instead report the required distance xe over355

which the effective founder size is ke. This has the advantage that it provides us with a quantity that is356

independent of assumptions of the demic structure, and the larger xe is, the weaker is the founder effect357

of the population. For illustration purposes, we calculate the ratio ke/Ne for deme sizes of 1km, 10km358

and 100km, as well as xe for all groups and report them in Table 1.359
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A Derivation of main results418

A.1 Discrete time expansion model419

We model a range expansion on a one-dimensional stepping stone model with potential deme positions420

0, 1, 2, . . . labelled di, i = 0, 1, . . . . All but deme d0 are not colonized at the start of the process. We421

denote the frequency of an allele of a biallelic marker in deme di at time t as fi(t), and we assume that422
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f0(0) = f0, where f0 is some constant. The population behaves as a Markov process, so that the allele423

frequencies at time step t only depend on step t − 1. Each time step, genetic drift will change allele424

frequencies according to some probability distribution. In addition, deme dt will become colonized by the425

offspring of individuals present at time t−1 in deme dt−1 according to some other probability distribution.426

For simplicity, we at first assume there is no migration between demes, and test the robustness to this427

assumption using simulations.428

Let {Xt} = {f0(0), f0(1), . . . f0(t)} and {X̃t} = {f0(0), f1(1), . . . ft(t)} be the processes at and away429

from the wave front. Since we disallow migration, we can describe the history of ”intermediate” demes430

di, 0 < i < t by processes {X(i)
t } = {f0(0), f1(1), . . . fi(i), fi(i+1) . . . fi(t)}. In words, demes are colonized431

when the wave front first reaches them, and the subsequent evolution depends only on the allele frequencies432

at the time when they first evolved. From this construction, it follows that for i < j, {X(i)
t } and {X(j)

t }433

are conditionally independent given fi(i). Together with the Markov property this implies that the434

difference in allele frequency in two demes is a function of distance, i.e. they obey435

F (X
(i)
t , X

(j)
t |fi(i)) = F (Xt−i, X̃t−i|f0). (A.1)

Throughout this section, we assume that EXt|X0 = f0 is constant, which is satisfied if there are new436

new mutations and no selection, and we further assume that Var(Xt) <∞. For example, for the critical437

branching process model we introduce in the following section, Var(Xt) = σt, where σ is the offspring438

variance in one generation. Then the autocovariance for s < t is,439

Cov(Xs, Xt) = Var(Xs), (A.2)

and similarly for X̃, because {Xt}, {X̃t} are martingales.440

Next, we define the conditioned processes {Yt} = {Xt|Xt > 0} and {Ỹ }{X̃t|X̃t > 0} which give the441

allele frequency conditional on the allele not being lost.442

Then, we have that443

EYt =
EXt

P(Xt > 0)
=

EXt

1− L(t)
(A.3)

since444

EX = E(X|X > 0)P(X > 0). (A.4)
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Here, L(t) = P(Xt = 0) denotes the probability that an allele is at frequency zero in generation t, and445

we remove the dependency of L(t) from f0 for notational convenience.446

Using the conditional variance formula, we can compute the variance and autocovariance of {Yt}:447

Var(Yt) =
E(X2

t )

1− L(t)
−
(

E(X2
t )

1− L(t)

)2

(A.5)

=
Var(Xt)

1− L(t)
+ L(t)(EYt)

2 (A.6)

and covariance for s < t448

Cov(Ys, Yt) = EYsYt − EYsEYt (A.7)

= E(XsXt|Xt > 0)− E(Xs|Xs > 0)E(Xt|Xt > 0) (A.8)

=
E(XsXt)

P(Xt > 0)
− f20

P(Xs > 0)P(Xt > 0)
(A.9)

=
Var(Xs)

1− L(t)
+ L(s)

f20
(1− L(s))(1− L(t))

(A.10)

The last quantity of interest is the difference Zt = Yt−Ỹt, which gives the difference in allele frequency449

between the wavefront and the origin of the expansion, conditional on an allele surviving in both locations.450

We find that451

EZt = f0

(

1

1− L(t)
− 1

1− L̃(T )

)

(A.11)

452

Var(Zt) = Var(Yt) + Var(Ỹt) (A.12)

=
Var(Xt)

1− L(t)
+

Var(X̃t)

1− L̃(t)
+ L(t)EYt + L̃(t)EỸt (A.13)

and453

Cov(Zs, Zt) = Cov(Ys, Yt) + Cov(Ỹs, Ỹt)− Cov(Ys, Ỹt)− Cov(Ỹs, Yt) (A.14)

=
Var(Xs) (1− L(s)) + f20L(s)

(1− L(s))(1− L(t))
+

Var(X̃s)
(

1− L̃(s)
)

+ f20 L̃(s)

(1− L̃(s))(1− L̃(t))
(A.15)
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A.2 Branching process454

To further specify the moments derived in Appendix A.1, we need to define Var(Xs), L(s) and f0, and the455

corresponding quantities at the wave front. This is particularly easy using a Galton-Watson branching456

process. Under this model, each generation individuals leave offspring independent from each other457

according to some offspring distribution F . Let Li(t) denote the probability that an allele has been lost458

by generation t, given that it started with i copies in generation 0. Kolmogorov (1938) showed that when459

t is large, L1 is well approximated by460

L1(t) ≈ 1− 2

tVar(F )
, (A.16)

where F is the offspring distribution and VarF is assumed to be finite. We assume that a branching461

process with offspring distribution F describes neutral genetic drift at the wave front, and that the462

colonization of new demes occurs according to a branching process with offspring distribution F̃ .463

If the initial frequency f0 of the allele is greater than one, the corresponding expression becomes464

Lf0(t) = (L1(t))
f0 , (A.17)

by independence of individuals. Using a Taylor expansion around t = ∞ yields465

EZt = f0

(

1

1− L̃f0(T )
− 1

1− Lf0(t)

)

(A.18)

=
1

2

(

Var(F̃ )−Var(F )
)

t−
(f20 − 1)

(

Var(F̃ )−Var(F )
)

6Var(F )Var(F̃ )

1

t
+ o

(

1

t2

)

(A.19)

Thus, we find that the expected difference in allele frequency between the expansion origin and the front466

of the population increases approximately linear with distance, the slope of the curve being the difference467

in offspring variance of individuals at the wavefront and expansion origin. From the second term in468

the Taylor expansion we see that the approximation is suitable when t > f20 , i.e. the number of demes469

between the two samples is large, and the frequency of the allele at the founding location is small.470
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A.3 Effective population size471

The variance effective population size for a Cannings model is defined as472

Ne =
N

Var(F )
(A.20)

, where N is the absolute number of individuals per population. The branching process considered above473

is not a Cannings model, however, the evolution of the offspring of a single individual under a Cannings474

population is well approximated by a branching process, as long as that offspring only makes up a small475

fraction of the individuals in a population. Fisher(1930) pioneered the modelling of population genetics476

using branching processes (Ewens, 2004, p.29). Under a Wright-Fisher model, the offspring distribution477

of a single individual has mean and variance very close to one. This justified Fisher to approximate the478

evolution of an individual under the Wright-Fisher model as evolving according to a branching process479

with a Poisson(1) offspring distribution, which has offspring variance 1, a model we will also use here to480

model genetic drift away from the wave front.481

To incorporate the reduced effective size of a founder effect at the wave front, we use a modified482

offspring model: with probability (1-α), an individual at the wavefront does not produce any offspring.483

With probability α, the number of offspring is Poisson distributed with parameter 1/α s.t. the overall484

expected number of offspring is still one and the variance is Var(F̃ ) = α−1. This allows us to define an485

effective founder size ke486

ke = αN , (A.21)

which measures the ”increase” in genetic drift at the wave front.487

Combining eq. A.21 and eq. A.19 yields488

EZt =
1

2

(

Ne

ke
− 1

)

t (A.22)

(A.23)

From this, we see immediately that EZt = 0 only if Ne = ke, and also that the effective founder size489

enters the equation only in the ratio κ = ke

N
, so that it makes sense to further define the relative founder490

size κ, which measures the strength of the founder effect.491
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A.4 Rescaling492

The branching process we used above assume that exactly one generation of genetic drift happens between493

each founder event. In this section, we show that the expected allele frequency difference between the494

expansion front and at the origin is (i) invariant of additional generations between expansion events and495

(ii) invariant to additional generations after the expansion finished.496

Both follow from the fact that for a branching process with mean 1, the variances of subsequent497

generations can simply be added: Consider the generating function of a critical branching process B498

after t generations, denoted by pt(s) which has variance pt(1)
′′. Then, after an additional generation, the499

generating function becomes q(pt(s)), where q(s) is the generating function of the offspring distribution500

of that additional generation. Then, the variance in offspring after this additional generation is q(pt(1))
′′.501

Var(B) = (p′t(1)
2q′′(pt(1)) + q′(pt(1))p

′′

t (1) = q′′(1) + pt(1), (A.24)

since p′t(1) = pt(1) = q(1) = q′(1) = 1.502

Thus, if individuals in the range expansion model have offspring variance v at the expansion front503

and variance ṽ away from the front, the total variance after t time steps with d expansion events is504

(t− d)v + dṽ.505

Now from eq. (A.19) we have (for f0 = 1),506

EZd =
1

2

[

Var(Xd)−Var(X̃d)
]

d

=
1

2
[(dv)− (dṽ)]

(A.25)

Adding T generations with neutral drift between each founder event and τ generations after the507

expansion stopped, changes this only to508

EZd =
1

2
[(dv + (d− 1)Tv + τv)− (dṽ + (d− 1)Tv + τv)]

which simplifies to eq. (A.19).509

We can model more complex expansion models, such as an extended bottleneck or logistic growth510
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similarly. Again, this will result in an increase of V ar(Xd) and V ar(X̃d) by the same amount, which511

cancels in the difference.512

Furthermore, we can also change how we subdivide a population into demes. It is easy to see that513

a population with expansions at times 0, 1, 2, . . . and offspring variances Var(F ) and Var(F̃ ) behaves514

similarly to a population with expansions occuring at times 0, δt, 2δt, . . . with offspring variances Var(F )
δ

515

and Var(F̃ )
δ

in the sense that EZt will be the same for either population. This suggests that it is not516

important how we subdivide space into demes, only the relative size of the founder population versus the517

neutral populations matters. Thus, it is most convenient to report the strength of the founder effect in518

units of ”decrease in genetic diversity per unit of distance.519

A.5 Estimation520

To estimate EZt from genetic data, we need to take subsampling into account, i.e. we need to estimate521

EẐt = E
ˆ̃Yt − EŶt. In particular, the probability that an allele got lost from a population is not the522

same as it being absent from a sample. To model subsampling, we assume we start with f0 copies of the523

derived allele and A0 copies of the ancestral allele, all evolving as a independent branching processes. The524

expected number of ancestral alleles will be EAt = A0 in all generations, whereas the expected number525

of the derived allele, conditioned on it not being lost, is EYt. We Hence, in generation t, the probability526

of drawing m copies of the derived allele out of n samples is approximately binomially distributed with527

parameters n and EYt

EYt+A0

. The mean of the expected allele frequency, conditional of sampling at least528

one derived allele is529

EŶt/
n

2N
=

nEYt
EYt +A0

/(

EYt
EYt +A0

)n

=
nEYt(A0 + EYt)

n−1

An
0

. (A.26)

with the n
2N term normalizing Ŷt to allele counts. Setting A0 ≈ 2N − EYt we obtain the series represen-530

tation531

EŶt = EYt +
n

2N
(EYt)

2 + o

(

1

N2

)

. (A.27)

Hence,532

EẐt = E
ˆ̃Yt − EŶt = EỸt − EYt +

n

2N

(

(EỸt)
2 − (EYt)

2
)

+ o

(

1

N2

)

. (A.28)
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and we see that we have a bias term that increases with sample size. Hence, the easiest way to proceed is533

to downsample larger samples to a sample size of two, the case that is arguably most important in light534

of genomic data.535

To compare samples of size n1 and n2, from a site frequency spectrum S = fij , 0 ≤ i ≤ n1, 0 ≤ j ≤ n2536

we can calculate a reduced site frequency spectrum matrix S′ from the full site frequency spectrum using537

S′ = P1SP
T

2
, (A.29)

where P1 and P2 are (2 + 1) × (n1 + 1) and (2 + 1) × (n2 + 1) matrices (with indeces starting at 0),538

respectively, with entries539

pji =

(

2
j

)(

n1−2
i−j

)

(

n1

i

) (A.30)

for 0 ≤ i ≤ n1 and 0 ≤ j ≤ 2 for P1. Entries in P2, are similar, except n1 is replaced by n2.540

If we denote the entries of S′ with sij , we can write EẐt as541

EẐtψ =
s12 − s21

s12 + s21 + s11
. (A.31)

This statistic is identical to the ψ statistic defined in Peter and Slatkin (2013), where we did not give542

any theoretical justification.543

region longitude latitude q r1 r10 r100 xe r2 p
Scandinavia 24.16 60.32 0.00065 0.99869 0.9871 0.884 7.75 0.252 4.2e-55

USA -78.63 44.22 0.00118 0.99763 0.9768 0.808 4.26 0.242 6.8e-06
Central Europe 11.40 46.84 0.00035 0.99928 0.9928 0.932 14.05 0.171 8.3e-21
Western Europe 2.47 43.33 0.00013 0.99973 0.9973 0.974 38.60 0.264 4.7e-50
Eastern Range 48.29 46.92 0.00028 0.99943 0.9943 0.946 17.80 0.115 3.6e-22

Table 1: Analysis of A. thaliana data.

The table shows the inferred latitude and longitude of the origin. q: regression slope in km−1, ri = ke/Ne,
for demes of size ikm. di, distance (in km) over which 1− ke/Ne = 1%. r2 and p: adjusted coefficient of
determination and Bonferroni-corrected p-value.
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Figure 1: Schematic of the expansion models studied. This figure shows the basic process we study,
each square corresponds to a subpopulation, with grey borders indicating subpopulations not colonized
at a time step. Each time step, a new deme is colonized (black, dashed arrows), and other demes undergo
neutral genetic drift (grey arrows). We compare the allele frequencies {Xt} at the expansion origin d1
(dashed borderes) with the allele frequencies {X̃t} at the expansion front (dark backgrounds).
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Figure 2: This figure shows the expected allele frequency difference between demes compared

with simulations. Note: Axes labels aren’t done yet. X-axis: Deme; Y-axis: Allele count difference
to deme 1. Top row: k = 0.1N , middle row: k = 0.5N , bottom row: k = 0.9N . first column:
f0 = 1, N = 1000, second column: f0 = 10, N = 1000, third column: f0 = 10, N = 10000, Fourth
column: f0 = 100, N = 10000, red line: prediction using branching process model. black, blue and
lightblue dots correspond to samples right after expansion reached deme 100, 100 generations later and
500 generations later, respectively. Other parameters are t = 2, m = 0 and 106 alleles were generated
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Figure 3: Comparison between WF-simulations and predictions from the branching process

model under a logistic growth model. Growth rates were set to 1 (Panel a) and 0.5 (Panel b),
respectively the lines correspond to 1-10 generations of logistic growth per expansion step (from bottom
to top). Dots correspond to the simulated data, and the dashed lines are the analytical predictions using
the harmonic mean of the population sizes.
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Figure 4: Effect of migration rate and subsampling. Each set of points corresponds to ψ estimated
from simulations under a specific ke value, ke varies from 100 to 500 in increments of 100 (top to bottom/
blue to green). Grey dashed lines give the expectation from the branching process model. Top row: data
sampled immediately after the expansion finished. Bottom row: data sampled a very long time (100
coalescence units) after the expansion finished. Other parameters are: sample size n = 10, time between
expansion events te = 0.0001 (in coalescence units).
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Figure 5: Effect of a 2D-geography. Each set of points corresponds to ψ estimated from simulations
under a specific ke value, ke varies from 100 to 500 in increments of 100 (top to bottom/ blue to green).
Grey dashed lines give the expectation from the branching process model in one dimension.
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Figure 6: Results for A. thaliana data set. Panel a: PCA analysis of the 121,412 SNP. Colors:
Green: Scandinavia. Black: Americas. Blue: UK. Cyan: France. Light blue: Span & Portugal. Red:
North-Western Europe. Orange: Switzerland & Italy. Pink: Central Europe. Brown: Russia, Lithuania
and Western Asia. Panels b-f: Expansion for Scandinavia, USA, Central Europe, Western Europe and
British Isles, respectively. Brighter regions indicate more likely origin of expansion.
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