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List of abbreviations and notation used

ISI Interspike interval
IQR Interquartile range
MEA Multielectrode array
T Recording time

∆t Time window of synchrony
a Vector of spike times of neuron A
NA Number of spikes from neuron A in recording
NA,B[−∆t,∆t] Number of spike pairs where a spike from neuron A

occurs within ±∆t of a spike from neuron B
λA firing rate of spike train A
λS firing rate of spikes shared between two trains
d bin width
A vector of binned spike counts of A
w sliding window width
Ā Global average of A

Ã Local average of A
A spike train of neuron A represented as a signal
F convolution kernel
A′ convolution of A with F
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Abstract

Correlations in neuronal spike times are thought to be key to processing in many neural

systems. Many measures have been proposed to summarise these correlations and of these

the correlation index is widely used and is the standard in studies of spontaneous retinal

activity. We show that this measure has two undesirable properties: it is unbounded above

and confounded by firing rate. We list properties needed for a measure to fairly quantify

and compare correlations and we propose a novel measure of correlation — the Spike

Time Tiling Coefficient. This coefficient, the correlation index and 33 other measures

of correlation of spike times are blindly tested for the required properties on synthetic

and experimental data. On the basis of this, we propose a measure (the Spike Time

Tiling Coefficient) to replace the correlation index. To demonstrate the benefits of this

measure, we re-analyse data from seven key studies which previously used the correlation

index to investigate the nature of spontaneous activity. We re-analyse data from β2(KO)

and β2(TG) mutants, mutants lacking connexin isoforms and also the age-dependent

changes in wild type and β2(KO) correlations. Re-analysis of the data using the proposed

measure can significantly change the conclusions. It leads to better quantification of

correlations and therefore better inference from the data. We hope that the proposed

measure will have wide applications, and will help clarify the role of activity in retinotopic

map formation.
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Introduction

Quantifying the degree of correlation between neural spike trains is a key part of analyses

of experimental data in many systems (Kirkby et al., 2013; Chiappalone et al., 2006;

Dehorter et al., 2012). Neural coordination is thought to play a key role in information

propagation and processing and also in self-organisation of the neural system during de-

velopment. For example, correlated activity plays a critical role in forming the retinotopic

map (Feller, 2009). In the developing retina, waves of correlated spontaneous activity in

retinal ganglion cells have been recorded (on multielectrode arrays, MEAs, and by calcium

imaging) in-vitro in many species (Wong, 1999) and shown in-vivo using calcium imaging

in mouse (Ackman et al., 2012). These waves show both temporal and spatial correla-

tions. Much work has focused on assessing the role of this activity in the development

of the retinotopic map; typically both the map and various statistics of the activity are

compared between wild type and mutant genotypes. The results are used to make infer-

ences about which features of the activity are implicated in retinotopic map formation,

e.g. Stafford et al. (2009). There is strong evidence that correlation between neuronal

spike times is involved in this process (Xu et al., 2011).

An appropriate quantification of these correlations is vital for inference about their

role. Quantifying correlations is challenging for two reasons. Firstly, correlated neurons

fire at similar times but not precisely synchronously so correlation must be defined with

reference to a timescale within which spikes are considered correlated. Secondly, spiking

is sparse with respect to the recording’s sampling frequency (spiking rate about 1 Hz,

sampling rate typically 20 kHz (Demas et al., 2003)) and also spike duration. This means

that conventional approaches to correlation (such as Pearson’s correlation coefficient) are

unsuitable as periods of quiescence should not count as correlated and correlations should

compare spike trains over short timescales, not just instantaneously.

Many alternative measures of quantifying correlations exist (e.g. Kruskal et al. (2007);

Kerschensteiner and Wong (2008); Joris et al. (2006)). One measure, the correlation

index (Wong et al., 1993), has widespread popularity and is the standard measure applied

to spontaneous retinal activity. It also has wider uses such as quantifying correlations

in motor (Personius et al., 2007) or hippocampal (MacLaren et al., 2011) neurons. It
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is a pairwise measure which quantifies temporal correlations and is frequently used to

investigate their dependency on a third variable, such as neuronal separation and to

compare correlations across phenotypes. We show that the correlation index is confounded

by firing rate which means it cannot fairly compare correlations. We list properties required

of a correlation measure and conduct a thorough literature search for other measures. We

propose a novel measure and then blindly and systematically test all measures for the

required properties against synthetic and experimental data to propose a replacement

for the correlation index. Using this replacement, we then re-analyse data from seven

studies to show that results can change when correlations are measured in a way which

is independent of firing rate.

Materials and Methods

Analysis of correlation index

The correlation index iA,B between two spike trains A and B is defined as the factor

by which the firing rate of neuron A increases over its mean value if measured within a

fixed window (typically 0.05–0.10 s) of spikes from B (Wong et al., 1993). The following

notation is used throughout: the vectors a and b represent the spike times of neurons A

and B; ai is the ith spike in train A and bj is the jth spike in train B. The correlation

index is given by

iA,B =
NA,B[−∆t,∆t]T

NANB2∆t
(1)

where

NA = |a| (total number of spikes of A in recording),

NB = |b|,

T = length of recording,

∆t = synchronicity window,
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and NA,B [−∆t,∆t] is the number of spike pairs where a spike from train A falls within

±∆t of a spike from train B:

NA,B[−∆t,∆t] =

NA∑
i=1

NB∑
j=1

1∆t(|ai − bj |)

where

1∆t(x) =


1 if x ≤ ∆t

0 otherwise

To show that the correlation index is dependent on firing rate, we assume the following

model for neuronal firing: spike trains A and B are both Poisson processes with rates λA

and λB respectively. A fixed proportion of the spike times are shared (A and B fire spikes

synchronously). These synchronous spikes occur with a rate λS ≤ λA, λB . Adjusting

these parameters can scale the rates whilst maintaining the correlation structure to test

for rate-dependence. Under this model an expression for the correlation index can be

derived:

iA,B =
λS

2∆tλAλB
+ 1− 1

(λA + λB − λS)T
− ∆t

2T
(2)

This expression is clearly rate-dependent. Two minor assumptions about the size of

the rates, T and ∆t were used to arrive at this result. These assumptions are valid within

experimentally observed ranges and the rate-dependency of iA,B is not affected if the

assumptions are violated. In Results, we use the sub-case of auto-correlation λ = λA =

λB = λS to show that this rate-dependence significantly affects correlation values. In

this case the correlation index is:

iA,B =
1

λ

(
1

2∆t
− 1

T

)
+

(
1− ∆t

2T

)
(3)

This dependency was verified computationally by extensive testing on synthetic data,

including data generated from the above model using freely available code (Macke et al.,

2009).
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Spike Time Tiling Coefficient

We define the Spike Time Tiling Coefficient in Figure 1. To quantify the correlation

between spike trains A and B, we look for spikes in A which fall within ±∆t of a spike

from B. We consider the proportion of spikes in A which have this property as this is

insensitive to firing rate. We account for the amount of correlation expected by chance

by making the minimal assumption that we expect the proportion of spikes from A falling

within ±∆t of a spike from B by chance to be the same as the proportion of the total

recording time which falls within ±∆t of a spike from B. Any extra spikes in A which

have this property are indicative of positive correlation. We therefore use the quantity

PA − TB (see Figure 1 for definitions) which is positive if spikes in train A are correlated

with spikes from train B, and negative if there is less correlation than expected by chance.

We require the coefficient to be equal to +1 for auto-correlation, to be −1 when PA = 0,

TB = 1 and to have a range of [−1, 1]. The normalisation factor (1 − PATB) ensures

that these criteria hold.

The coefficient should be symmetric so we consider both (PA − TB) and (PB − TA),

combine the contributions from both trains and re-normalise to preserve the required

range (see Figure 1). Computation of the Spike Time Tiling Coefficient is straightforward;

the only complexity is ensuring that overlapping tiles do not count multiple times when

calculating TA and TB .

The Spike Time Tiling Coefficient uses the proportion of the recording which falls

within ±∆t of spikes from A to determine if the proportion of spikes in B which also have

this property is indicative of correlation (i.e. more or less than is expected by chance).

Since tile overlaps are not counted multiple times, this depends on the firing patterns as

well as rates. In the correlation index (and many other measures) only the firing rates are

used to assess what is expected by chance, but firing patterns are, in fact, important. For

instance, consider an extreme case of two spike trains (A and B) with the same average

firing rate where the spikes in A occur at regular intervals (no two spikes are within ∆t of

each other) and the spikes in B all occur within ∆t of each other. More of the recording

time lies within ±∆t of any spike from A compared to B so given an arbitrary train C,

we expect more spikes in C to fall within ±∆t of any spike from A by chance than within

±∆t of any spike from B. This information is not captured using the firing rates to assess
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what we expect to occur by chance but is captured with the Spike Time Tiling Coefficient.

Implementing the measures

A literature search produced 33 other measures which were implemented for testing. All

measures were implemented in R and C except Victor and Purpura (1997), ISI-distance

(Kreuz et al., 2007a), Van Rossum (2001) and SPIKE (Kreuz et al., 2013) which were

run using freely available MatLab code (Kreuz et al., 2013). Some measures were altered

to make them more likely to posses the required properties. The following changes were

made (see Table 3): the Kerschensteiner and Wong (2008) and Jimbo et al. (1999)

indices are originally defined as functions over binned time lags, the value of the bin

around zero was taken to be the value of the measure (with bin width 2∆t). The Jimbo

et al. index is normalised by the auto-correlation value at the origin, but the form of

this normalisation was not specified. Two versions of multiplicative normalisation were

tested, one used the above quantity and the other used its square root. The requirement

of the event synchronisation measure (Kreuz et al., 2007b) that ∆t should be smaller

than the smallest within-train ISI was relaxed so ∆t was set freely. The Schreiber et

al. (2003) similarity coefficient and the Kruskal et al. (2007) correlation measure had their

exponential/Gaussian filters (respectively) replaced with a boxcar filter of width 2∆t. This

does not affect whether a measure fulfils the required criteria, but means that a window

of synchrony is used to assess correlations (as with the correlation index). A boxcar filter

is also more computationally efficient to calculate than Gaussian or exponential filters

which require an extra parameter, namely a filter cut-off point, to make computation

feasible. Mutual information (Li, 1990) was altered to smooth spikes with a boxcar filter

before calculation. The Ripley (1976) Kmm function (a directed measure which measures

the correlation of one train to another) was made symmetric by setting the correlation

measure to be equal to the mean of the two directed variants.

Evaluating the measures for the necessary and desirable properties

Each measure was tested extensively for the necessary and desirable properties (see Table

2) on a range of synthetic data. This was used instead of experimental data as it is possible

to independently alter the key properties (such as rate or correlation). Synthetic data was
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generated from the following models which replicate four types of experimentally observed

spiking patterns: Poisson spiking, Poisson bursting, regular out-of-synchrony spiking and

out-of-synchrony bursting. Sample data are presented in Figure 2 and parameter ranges

for all four models appear in Table 1.

Poisson spiking model: This model assumes that spike trains A and B fire Poisson-

distributed spikes with rates λA and λB respectively. A certain proportion of these spikes

are synchronous with a spike in the other train, this forms a Poisson process with rate λS .

The rates, correlation, recording duration and ∆t were varied in isolation to test measures

for the required properties.

Poisson burst model: The Poisson burst model was used to generate data which repli-

cated the burst-like firing seen in spontaneous retinal waves (a burst of firing when a

cell participates in a wave and silence between waves). The model is a doubly stochastic

process: the positions (centre-points) of bursts are generated first, and then the bursts

themselves (consisting of the number of spikes in the burst, and a position for each spike)

are generated.

The first spike train is the “master” train and the centre-points of its bursts are

generated according to a Poisson process with a given rate λ. The centre-points of the

second train are a copy of those in the first train, but with some deleted (each centre-point

is deleted with probability p). The remaining centre points in the second train are then

jittered from their initial positions. This is controlled by a parameter O which is either a

fixed amount, the variance of a Gaussian distribution or the range of a continuous uniform

distribution (in both cases the distributions have zero mean) from which the off-sets are

drawn.

For each centre-point of a burst (in either train) the number of spikes in that burst

is then generated. This is controlled by a parameter N which is either a fixed number or

is the mean of a Poisson distribution or the maximum of a discrete uniform distribution

from which the number of spikes are drawn. The position of each spike relative to the

centre-point is then generated and is controlled by a parameter σ which is either the

variance of a Gaussian distribution or the range of a continuous uniform distribution (with

zero mean in both cases) from which the relative positions are drawn.
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The choice of distributions affected all measures consistently and did not qualitatively

affect results. The parameters of this model were varied in isolation to test measures for

the required properties.

Out-of-synchrony spiking model: Regular, out-of-synchrony individual spikes were

generated according to a simple inhibitory integrate-and-fire model as described in Dayan

and Abbott (2001). Parameters were varied in isolation.

Out-of-synchrony bursting model: Out-of-synchrony spike bursts were generated ac-

cording to a map-based model for neuron membrane voltage (Shi and Lu, 2009). This

model was simulated with three neurons and the spikes from one were discarded to pro-

duce two spike trains with out-of-synchrony burst-like firing and periods of quiescence.

Parameters were varied in isolation.

Testing procedure: Measures were tested for necessary and desirable properties in a

two-step procedure. Each measure was assigned a unique number at random so that

the measure was blindly evaluated. Step one tested all the anonymised measures for the

necessary properties using synthetic data. The list of properties appears in Table 2. The

measures were tested methodically for each property using data generated from the above

models where parameters were varied in isolation (line searches) and the values tested

included the experimentally observed ranges (see Table 1 for ranges used). Necessary

properties N1–5 were tested using data generated from both the Poisson spiking and

Poisson burst model.

As an example, necessary property N3 states that measures must be robust to the

recording duration. To test this, data was generated from the Poisson spiking model with

rates and ∆t fixed, and with varying recording time. Each measure was then calculated.

Ten repeats were performed and then one of the fixed parameters was changed and this

process was repeated. This was done for several different values of each fixed parameter.

This process was then repeated with data from the Poisson burst model. Since the

necessary property required that measures are robust to recording duration, measures

which showed dependency were judged to lack this property and were not considered

further.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 9, 2014. ; https://doi.org/10.1101/006635doi: bioRxiv preprint 

https://doi.org/10.1101/006635
http://creativecommons.org/licenses/by-nc-nd/4.0/


After testing for necessary properties N1–5 remaining measures were tested for their

ability to distinguish anti-correlation from no correlation (property N6). This property

was tested using line searches on data generated from the out-of-synchrony spikes and

out-of-synchrony bursts models. Measures which were tested on data from all four models

were tested against 7,640 pairs of spike trains in total.

Four measures were shown to possess all necessary properties, which were then assessed

on the basis of the desirable properties. Since the desirable properties concern features

of the measures (see Table 2), it was not possible to proceed without identifying the

measures. At this point the simulation results from the Poisson spiking model were

confirmed by analytical calculations for all measures which were tractable under this

model.

The second step of testing involved assessing measures for whether they contain extra

parameters, whether they count quiet periods as correlated and whether they make as-

sumptions about the statistical properties of the data (Table 2, D1–3). If a measure was

shown to lack a desirable property, simulated data from one of the above models was used

to show that this had a qualitative effect. These measures were also extensively tested

on experimental data to verify that their behaviour on synthetic data was representative

of that on experimental data.

Measures possessing all the necessary properties

To make our article self-contained we briefly present the three previously published mea-

sures which possessed all necessary properties.

Spike count correlation coefficient

The recording time is partitioned into N = T/d bins of width d (let d = ∆t, so bin width

is equal to the timescale of interest). The spike times a and b are binned into vectors

A and B of spike counts. The spike count correlation coefficient is Pearson’s correlation

coefficient r between A and B:
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r(A,B) =

N∑
i=1

(Ai − Ā)(Bi − B̄)√
N∑
i=1

(Ai − Ā)2

√
N∑
i=1

(Bi − B̄)2

(4)

where Ā denotes the mean of A.

Kerschensteiner and Wong (2008) correlation

The recording time is partitioned into N = T/∆t bins. The spike times a and b are binned

into vectors A and B of spike counts. A sliding window width w (≥ ∆t) is defined, which

is used to calculate local average spike counts. For simplicity let w = (2n + 1)∆t for

some integer n. The Kerschensteiner and Wong correlation, k (Equation 5), is Pearson’s

correlation coefficient with local average spike counts (Ã(i)) replacing the global average

(Ā):

k(A,B) =

N∑
i=1

(
Ai − Ã(i)

)(
Bi − B̃(i)

)
√

N∑
i=1

(
Ai − Ã(i)

)2√ N∑
i=1

(
Bi − B̃(i)

)2 (5)

where the local average at bin i is given by:

Ã(i) =



i+n∑
j=1

Aj

n+1 if i ≤ n

i+n∑
j=i−n

Aj

2n+1 if n < i ≤ N − n

N∑
j=i−n

Aj

n+N−i if i > N − n

(6)

similarly for B̃(i).

Altered Kruskal et al. (2007) correlation

The spike trains are represented as continuous signals, A and B.

A(t) =

NA∑
i=1

δ(t− ai) (7)

where δ represents the Dirac delta function and B is represented similarly. These signals

are then convolved with a boxcar filter F of width 2∆t:
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F (u) =


1, −∆t ≤ u ≤ ∆t

0, otherwise

(8)

The resulting signal A′ is

A′(t) =

NA∑
i=1

F (t− ai) (9)

B′ is found similarly. The correlation c is Pearson’s correlation coefficient of A′ and

B′:

c(A′, B′) =
Cov(A′, B′)√

Var(A′)
√

Var(B′)
(10)

where

Cov(A′, B′) =
1

T

T∫
0

(
A′(s)− 2∆tNA

T

)(
B′(s)− 2∆tNB

T

)
ds (11)

and Var(A′) = Cov(A′, A′). Note that (2∆tNA)/T is the mean value of signal A′

(similarly for signal B′).
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Results

Correlation index

The correlation index is a popular method for quantifying pairwise correlations in neuronal

spike times. Given neurons A and B it is defined as the factor by which the firing rate of

A increases over its mean value if measured within a fixed window of spikes from B (see

Methods). It is the standard correlation measure in studies of spontaneous retinal activity

and is also used in several other systems, for instance motor (Personius and Balice-Gordon,

2001) and hippocampal (MacLaren et al., 2011) neurons. It is widely used to compare

correlations across different genotypes and ages to infer the function of correlated activity.

Since neuronal firing patterns are complex and correlation does not vary in isolation (many

other statistics of the data also vary), it is important that measures of correlation are not

confounded by other statistics as this means correlations cannot be fairly compared and

subsequent inferences are unreliable.

In Methods, we showed that the correlation index is confounded by firing rate, by

assuming a neuronal spiking model and calculating an expression for the correlation index

which was rate-dependent (Equation 2). To show that this is significant, we use the

example of the auto-correlation of a Poisson spike train (the correlation index of this train

compared to itself). The correlation index in this case is given by Equation 3 from which

it is clear that the rate-dependence is such that the correlations of neurons with low firing

rates are up-weighted compared to those with high firing rates. This result was verified

by calculating the correlation index of a simulated Poisson neuron compared to itself for

varying firing rates (Figure 3). In this case, the correlation index should be constant since

no pair of identical spike trains is more correlated than another. In fact, the correlation

index decreases with firing rate. The range of firing rates (0.1–5 Hz) used is typical of

recordings of spontaneous activity. For example, Demas et al. (2006) reported mean firing

rates for four different mouse genotypes at four different ages ranging from 0.45±0.04 Hz

to 2.15±0.22 Hz. The coincidence window ∆t was set to 50 ms unless otherwise specified.

A further issue is that the correlation index is unbounded above (Equation 1 and Figure

3). The range of values of positive correlation is [1,∞] whilst that of negative correlation

is [0, 1]. Low firing rates return very high values of correlation (see Figure 3). These
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high values are frequently excluded as outliers, but high correlation index does not imply

extreme firing patterns. This makes comparing correlations problematic. For instance,

the auto-correlation index of a Poisson neuron with rate 0.1 Hz is nearly twenty times that

with rate 1 Hz (Figure 3), however in both cases identical spike trains are being compared,

so the conclusion that one is more correlated than the other is erroneous. There is no

intuitive feel for how a correlation of 200 compares to a correlation of 10.

Necessary and desirable properties for a correlation measure

Since the correlation index is confounded by firing rate an alternative measure should be

found which is independent of firing rate and can fairly compare correlations. It should

be able to replace the correlation index in all analyses. Therefore, since the correlation

index is a single-valued measure, the replacement should also be single-valued (as opposed

to multi-valued e.g. cross-correlogram). In practice many multi-valued measures can be

reduced to single-values by considering just one of their values. The correlation index

quantifies correlations over a fixed, small timescale, so its replacement should do the

same.

Additionally, there are other properties needed for a measure to fairly compare correla-

tions across recordings where other statistics vary. There are also some desirable properties

which either affect the range of correlation values seen in experimental data or require

extra information before correlations can be fairly compared. We specified six necessary

and three desirable properties, for which we assess potential replacement measures. These

are listed in Table 2.

Many measures which quantify the degree of coordination or correlation in neural

spike trains exist: an extensive literature search found 33 examples. There is variation in

their terminology (such as “coefficients” or “indices”). We use the term “measure” to

provide a general term, in the sense that they all “measure” correlations. We classified

the measures into six categories:

1. Measures which calculate a distance between spikes trains, or those which calculate

a cost involved with transforming one train into another.

2. Measures based on the cross-correlogram, that is, measures counting pairs of spikes
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which occur within ±∆t of each other (i.e. the count in the bin centred on zero

of the cross-correlogram before normalisation) which is then normalised using some

statistic from the cross-correlogram (or justified with reference to it).

3. Measures which also count pairs of spikes which occur within ±∆t of each other,

but which are not derived from the cross-correlogram (e.g. the correlation index).

4. Measures from Information Theory.

5. Measures which consider spike times as a shot-noise process — a term from elec-

tronics which considers spike times as discrete events and uses convolution with

fixed kernels to derive useful measures.

6. Measures which consider spike times as a marked point process — a concept from

Statistics: a point process is a process for which any one realisation consists of a

set of isolated points in some space. A marked point process is a point process

where additional data exists on the points (other than their location), this data is

termed “marks”, in this case a binary “mark” denoting from which neuron the spike

originated.

A list of the measures and their classification appears in Table 3. To be as thorough

as possible, we have included a broad range of measures, not just those which quantify

correlation (some measure synchrony, some similarity and some distance — see Discus-

sion). As a consequence, if a measure is shown to be unsuitable to replace the correlation

index, this is no judgement of its usefulness or worth. It is likely that it was designed for

use on a different problem and the quantity which it measures is not similar enough to

the correlation as we wish to measure it for it to be appropriate in this case.

No measure from the literature was proposed as a replacement for the correlation

index and none obviously possesses the full list of necessary and desirable properties. We

therefore devised a new measure which conforms to all the criteria — the Spike Time

Tiling Coefficient (see Figure 1 for details).
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Step One: evaluating the measures for necessary properties

The replacement for the correlation index must be able to fairly quantify correlations for

a wide range of neuronal spiking patterns and therefore possess all necessary and, ideally,

all desirable properties. Measures were tested for these properties both analytically and

on a wide range of simulated and experimental data. Simulated data is more useful

here as individual properties can be altered independently. If a measure lacks at least

one necessary property, it was removed from consideration (for brevity, we only present

evidence that a measure lacks one necessary property — some lacked more than one). A

full list of measures used and its primary reason for rejection (unless it passed step one)

are presented in Table 3. Measures were anonymised to remove any possibility of bias.

Our procedure was to test for each necessary property in turn (see Methods for details).

From the initial 35 measures, 34 were symmetric (satisfied property N1). The one

asymmetric measure: Ripley’s Kmm function was altered to make it symmetric (see

Methods).

All 35 measures were tested to ascertain if they were independent of firing rate (prop-

erty N2). Twenty-five measures showed dependency on firing rate and were therefore

rejected. Of these, 22 showed this dependency in the test case of the auto-correlation of

a Poisson spike train with varying rate. Since no auto-correlation is more correlated than

any other, values should not vary with rate. Any measure which showed rate-dependence

was therefore removed according to property N2 (Figure 4). The remaining three mea-

sures which lacked property N2 were independent of rate for auto-correlation, but showed

rate-dependency when firing rates differ. This dependency is clear in the test case of two

independent Poisson spike trains, one with fixed rate and the other with varying rate.

Measures whose correlation varied with the rate of the second train were removed (Figure

5A). Note that two versions of measure 12 were considered (see Methods); both lacked

property N2 (one version appears in Figure 4 and the other in 5A). For counting purposes,

we consider Measure 12 as one measure which lacked property N2 as evidenced by con-

sidering auto-correlations. Typically, measures are confounded by firing rate because it is

used in their normalisation.

The remaining ten measures were tested to ascertain if they were robust to the amount

of data available (property N3) which in practice is proportional to the recording time.
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Measures should therefore be independent of this (within experimental ranges — mini-

mum two minutes with usual range 20–100 minutes (Eglen et al., 2014)). To test this,

two Poisson spike trains with fixed rates and correlations were simulated for different

recording times. Two measures showed dependency and so were rejected (Figure 5B).

These measures were a distance measure and a cost function which are not normalised

and so increase as the number of spikes increases.

The eight remaining measures were then tested for the correct range (property N4).

They should be equal to +1 for identical spike trains, 0 for no correlation and -1 for

strong anti-correlation. All measures were bounded and therefore could be scaled to

have the required range provided that they can discriminate between no correlation and

anti-correlation (property N6) and so none were rejected at this point.

All eight measures were found to be robust to small variations in ∆t (property N5).

Of these eight measures, four were rejected since they could not distinguish no correlation

from anti-correlation (property N6). The test case on which these measures were removed

was regular out-of-synchrony spiking (Figure 5C). The measures rejected were measures of

similarity, rather than correlation which therefore could not distinguish this firing pattern

from independent spike times.

In summary, 31 out of 35 measures were rejected in step one as they lacked at least

one necessary property. A list of each measure considered and the reason for its rejection

can be found in Table 3.

Step Two: selecting one measure based on desirable properties

The four measures possessing all necessary properties were (1) the spike count correlation

(Eggermont, 2010) (2) the Kerschensteiner and Wong (2008) measure (3) an altered

version of the correlation measure from Kruskal et al. (2007) and (4) the Spike Time

Tiling Coefficient. A brief description of each measure is given in Methods. Selecting

one measure proceeded on the basis of desirable properties (Table 2). These affect either

the range of correlations (D1: periods of silence should not count as correlated), the

applicability of the measure (D2: spike times should not be assumed to follow a particular

distribution), or mean that extra information is required to compare correlations (D3:

extra parameters are discouraged).
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The spike count correlation calculates the Pearson’s correlation coefficient of binned

spike counts. We set our bin width to ∆t (see Methods). Since firing rates are sparse, a

large proportion of bins have zero spikes in both trains, which counts as correlated. This

distorts the values of correlations making results difficult to interpret (Figure 6A and B).

The spike count correlation therefore lacks property D1 but does possess properties D2

and D3. A further limitation is that spikes which are within ±∆t of each other may fall

into different bins and these coincidences are missed. It has also been reported that the

spike count correlation increases with firing rate (De la Rocha et al., 2007) which lessens

its ability to compare correlations fairly. This is not reported here since variation in firing

rate was small compared to variation across trials on the time scales considered.

The Kerschensteiner and Wong measure is an altered version of the spike count corre-

lation which replaces the global average firing rate with a local average firing rate (using

a sliding window) which prevents periods of silence counting as correlated. Data is binned

into bins of width ∆t and the sliding window calculates a local average across a fixed num-

ber of bins. Whilst the alteration is effective, this measure possesses desirable properties

D1 and D2, it introduces an extra parameter: the length of the sliding window (discour-

aged by property D3). In order for this measure to be informative, the length of the sliding

window must be optimised for the data. If the sliding window is too large compared to

the periods of quiescence, then when both trains are quiet, the correlation at that point

will be positive. If it is shorter than the burst lengths, then periods where one neuron has

a burst and the other does not will count as zero (should count as anti-correlated) since

in the silent train both the local average and the individual spike counts will be zero (see

Equation 5). Therefore the measure varies qualitatively with this parameter (Figure 6C),

especially on burst-like data. Correlations cannot be fairly compared if this parameter

varies, which it is likely to since a poor choice of parameter can lead to uninformative

values of correlation.

The altered version of the Kruskal et al. measure changes the spike count correlation

to overcome the fact that coincidences may be missed if they fall in different bins: it

smooths spike trains with a boxcar kernel before calculations. This does not possess

property D1 as silence is still counted as correlated. It does possess property D2 and D3

(since it is possible to calculate exactly).
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The Spike Time Tiling Coefficient does not count periods of quiescence as correlated

and thus possesses property D1. It does not assume a statistical distribution of spike

times and therefore possess property D2. The only free parameter is ∆t and it therefore

possess property D3.

Whilst the Kruskal et al. measure lacks necessary property D1 which reduces the range

of correlations produced, this effect is not as large as for the spike count correlation. We

also note that the Kruskal et al. measure is like a “similarity measure” in the sense that

it takes value +1 only if the spike trains are identical whereas the Spike Time Tiling

coefficient is equal to +1 for a wider range of firing patterns (those where PA = PB = 1)

and identical trains can be distinguished from those which are merely highly correlated

by letting ∆t → 0. Since the Kruskal et al. measure is close to a “similarity” measure,

relatively low values of correlation can be assigned to highly correlated firing patterns.

For instance, consider two spike trains, where if one has a single spike, the other fires

several spikes within ±∆t of that spike and vice versa. This is clearly highly correlated (a

firing pattern which is indicative of some relationship between the neurons) although the

spike trains are not similar so the Kruskal measure assigns low values of correlation. This

value depends on the number of spikes fired when there is one spike in the other train

(Figure 6D) and misrepresents the correlation. The Spike Time Tiling Coefficient assigns

a correlation value of +1 independent of the number of spikes.

In practice both the Kruskal et al. and the Spike Time Tiling Coefficient were found

to be adequate reporters of correlation on experimental data. Since the Kruskal measure

lacks property D1 and assigns high correlations only to similar spike trains, the Spike Time

Tiling Coefficient is able to pick up a larger range of correlated firing patterns and we

therefore recommend it to replace the correlation index.

Re-analysis of experimental data using the Spike Time Tiling Coef-

ficient

The issues with the correlation index raise questions about the reliability of studies which

have used it to draw their conclusions. Since the correlation index is confounded by firing

rate, it should not be used to compare correlations in data where rates differ significantly.

Firing rates frequently vary across age, phenotype and presence of pharmacological ag-
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onists and so this calls into question the results of many correlation analyses: some

conclusions about differences in correlations may be due to the confounding effect of the

firing rates, and not the correlations themselves. Since the correlation index has been

widely used in the field (we found 43 papers which used it, 29 of which have been pub-

lished since 2008), we also considered the wider implications of its use. In particular,

what conclusions were at risk of changing if the data were to be re-analysed using the

Spike Time Tiling Coefficient? Four examples using seven studies in the developing retina

are presented to demonstrate the use of the Spike Time Tiling Coefficient in place of the

correlation index. For this work, we used the freely available retinal wave data from the

CARMEN portal (Eglen et al., 2014) (https://portal.carmen.org.uk/) .

Example one: connexin isoforms

Re-analysis of existing recordings of spontaneous retinal waves using the Spike Time

Tiling Coefficient in place of the correlation index can show significant differences. As an

example, we re-analysed MEA recordings from Blankenship et al. (2011) which compared

the statistical properties of wild type spontaneous retinal activity to those from mutant

mice lacking either one or two connexin isoforms (Cx45 and Cx36/Cx45). This study

reported that the two mutants exhibit substantially higher firing rates compared to wild

type (Figure 7A) and when the correlation indices are calculated pairwise and plotted

against electrode separation (the standard analysis) the size of the correlation depends

inversely on the mean firing rate (Figure 7B). That is, wild type has both the lowest

firing rate and the highest correlation and Cx36/Cx45dko has the highest firing rate

and the lowest correlation. From the raster plots (Figure 7A) all phenotypes exhibit

some correlated firing and the differences in correlation patterns are not as large as the

differences in firing rate.

When the data is re-analysed using the Spike Time Tiling Coefficient, the results

are strikingly different (Figure 7C): wild type and Cx45ko have highly similar correlation

values and the difference between correlations in wild type and Cx36/Cx45dko are much

smaller. Whilst correlations are difficult to judge from the raster plots, those of wild

type and Cx45ko have several correlational features in common: they both show waves

and also some correlated spiking outside of waves. Waves cannot clearly be seen in the
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raster plot of Cx36/45dko, although there is correlated firing. The relative correlations of

these phenotypes measured using the correlation index reflect the differences in firing rate,

whereas, when measured using the Spike Time Tiling Coefficient, they reflect differences

in correlational structure (Figure 7A).

In the original publication, the authors noted that the correlation values for Cx36/Cx45dko

were so low that it was difficult to deduce anything about its distance dependence relative

to the other phenotypes. To make this comparison they (multiplicatively) normalised the

correlation indices so that all phenotypes had the same value (the wild type value) at zero

distance. From this they deduced that the distance dependence of wild type and Cx45ko

were very similar and also that the correlations of Cx36/Cx45dko had a weaker distance

dependence than the other two phenotypes. This result is immediately apparent using the

Spike Time Tiling Coefficient, without the need to normalise: wild type and Cx45ko have

very similar values at all distances and Cx36/Cx45dko has weaker distance dependence.

This phenotype has less correlation than the other two at smaller distances and more

correlation at greater distances (≥ 400µm). This is not apparent using the correlation

index; the Spike Time Tiling Coefficient thus provides a more informative comparison of

the correlations.

Example two: developmental changes in correlation

A key result used to support the hypothesis that correlated activity plays a role in map

formation is that correlations in spontaneous retinal activity decrease with age both in

ferret (Wong et al., 1993) and mouse (Demas et al., 2003). These studies reported

different variation in firing rates with age: firing rates decrease with age in ferret, but

increase with age in mouse (confirmed by Maccione et al. (2014)). Since neurons with

high firing rates have down-weighted correlation indices, it is possible that this result is

due to the confounding effect of the increasing firing rates in mouse. This is unlikely to

be the case in ferret where firing rates decrease. Re-analysis with the Spike Time Tiling

Coefficient confirmed that in both cases, correlations do decrease with age and so this

conclusion stands (Figure 8).
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Example three: β2 genotypes

A key group of genetically modified mice which provide (somewhat controversial) evidence

that correlations are key to map formation is the β2(KO) mutants (animals lacking the

β2 subunit of the nicotinic acetylcholine receptor) which form a defective retinotopic

map. This mutant was initially thought to have uncorrelated activity (McLaughlin et

al., 2003), but it was later shown that retinal waves exist (Sun et al., 2008; Stafford

et al., 2009). The β2(KO) mice have slightly higher firing rates and weaker distance-

dependence of correlations than wild type (typically at short distances these mutants

have lower correlation than wild type, but they have higher correlation at large distances).

Re-analysis of data from Sun et al. (2008) and Stafford et al. (2009) using the Spike Time

Tiling Coefficient confirms reported results (Figure 9).

Although the conclusion stands, reanalysis of the data from Sun et al. (2008) shows

differences from the original analysis (Figure 9B): the correlation indices are noticeably

confounded by the firing rates which differ across the genotypes. Re-analysis using the

Spike Time Tiling Coefficient shows that the differences in correlation between phenotypes

are smaller than previously reported; all three phenotypes now show significant correlation

at short distances. The order of phenotypes by correlation at short distance (wild type is

highest, β2(KO) (Picciotto) is lowest) is preserved as is the order by distance dependence

(wild type is strongest, β2(KO) (Picciotto) is weakest).

Re-analysis of recordings of the β2(TG) mouse (Xu et al., 2011) confirm that this

phenotype shows weaker correlations than that of wild type (Figure 9).

Example four: Age-related changes in β2(KO)

Retinal waves of β2(KO) mutants at different ages (P4–7 and wild type P5–6) were

recorded by Kirkby and Feller (2013) as controls in their study of intrinsically photosensi-

tive retinal ganglion cells. Sample raster plots for P4 β2(KO) and P5 wild type are shown

in Figure 10A. Firing rates of the β2(KO) mutants increase (see Figure 10 legend) and

their correlation indices decrease (Figure 10B) with age. In addition, P4 and P5 β2(KO)

are extremely and erratically correlated whereas P6–7 β2(KO) and wild type show typical

correlations and distance dependence. One might, therefore, conclude that the recordings

of P4–5 β2(KO) show highly correlated and extremely unusual firing patterns. However,
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this is not borne out by inspection of the raster plots (see Figure 10A) - the firing patterns

of the P4 β2(KO) mutant are not too dissimilar to those of wild type, albeit occurring at

a much lower rate. We note that the mean firing rates β2(KO) P4–5 are low compared

to other ages (and wild type) and so this behaviour is likely to be due to the confounding

effect of the firing rates. Re-analysis of this data using the Spike Time Tiling Coefficient

confirms this (Figure 10C): all correlations and distance dependencies are now within

typical ranges. These two phenotypes (β2(KO) P4–5) still show more variability in their

distance dependencies, but we note that this is likely to be due to the small number of

recordings, and that this variability is much less than that seen using the correlation index.

This re-analysis alters the conclusion that correlations in β2(KO) genotypes decrease

with age (in P4–7), which is caused by the confounding effect of increasing firing rates.

Analysis with the Spike Time Tiling Coefficient shows that they tend to increase with age

(the order of correlations from lowest to highest is P5,P4,P6,P7).

Variation of window of synchrony ∆t can reveal timescales of corre-

lation

The coincidence window ∆t is a free parameter which should be fixed in order to compare

correlations. It can also be used to find time scales of correlation in a data set. Figure

11 shows how varying ∆t changes the Spike Time Tiling Coefficient (for the data from

Example Three). Useful timescales can be found by considering local maxima and minima

and the gradient of Spike Time Tiling Coefficient (note that the limit of the Spike Time

Tiling Coefficient as ∆t → T is +1). For instance in all panels in Figure 11 there is a

clear change in gradient around 0.5–1 s which could indicate a timescale of correlation. In

panels A and B, the wild type gradient is largest between 0.01 s and 0.05 s as is β2(TG) in

panel C, which could also indicate a useful scale. Differences in correlational time scales

between phenotypes are also apparent, for instance in panel C wild type spikes are less

correlated than those of β2(TG) on timescales of ∆t ≤ 0.1 s and more correlated than

β2(TG) on larger timescales (note, however, significant overlap of error bars).
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Discussion

We have described the need to correctly quantify neuronal correlations and considered a

popular measure, the correlation index. We have shown that it is confounded by firing

rate and is unbounded above which means it cannot fairly compare correlations when

firing rates differ significantly. We aimed to find a measure which could be used as a

replacement for the correlation index and which could fairly compare correlations. We

listed necessary and desirable properties which such a measure needs and found 33 other

existing measures of correlation. Since no measure obviously possessed all listed properties,

we proposed a novel measure of correlation: the Spike Time Tiling Coefficient. We blindly

tested all measures for the properties using synthetic and experimental data. We reiterate

that no existing measure was designed to replace the correlation index so the exclusion

of a measure is no reflection of its usefulness. Four measures possessed all the required

properties and the Spike Time Tiling Coefficient was chosen as the most appropriate

replacement on the basis of the desirable properties. To demonstrate its use we re-

analysed data from seven studies and showed that it can significantly alter conclusions.

The form and use of the Spike Time Tiling Coefficient

Both the correlation index and the Spike Time Tiling Coefficient use a small time window

to identify spike pairs which are indicative of an overall correlation between the spike trains.

We wish to quantify correlations that are functionally significant, which are typically those

which can affect synaptic change. In spontaneous retinal waves, correlated activity is

thought to contribute to map formation by helping neighbouring neurons wire to common

targets via a Hebbian mechanism (Demas et al., 2003). This process has a critical time

window: studies of spike-time-dependent-plasticity (Zhang et al., 1998) provide a means

to estimate its width, which is age- and species-dependent, around 50–500 ms (Lee et al.,

2002). More recently, other rules, such as burst-time-dependent-plasticity, suggest longer

windows (Butts et al., 2007).

The time window, ∆t, can take any value of interest; often that value is dictated by

the phenomenon being investigated. For instance, in spontaneous retinal activity, ∆t is

dictated by spike-time-dependent-plasticity and in cortical circuits, local oscillatory events
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could be used to find a ∆t of interest as they are reporters of synchrony (Harris et al.,

2003). If there is no prior ∆t of interest, its value could be varied to show timescales of

correlations (see Figure 11). If varying ∆t is infeasible, an approximate value of interest

could be generated by inspection of cross-correlograms.

The Spike Time Tiling Coefficient assumes stationary spiking patterns. Correlations

calculated from highly non-stationary data may be misleading as network states greatly

influence firing patterns in e.g. hippocampal firing, so the average value of correlation

may not accurately represent the data. Changes in correlation over a non-stationary

recording can be identified using the Spike Time Tiling Coefficient by calculating it within

a sliding window to get a temporally varying correlation. This window must be large

enough to capture representative behaviour and so if it is required to capture changes in

correlation on a very small timescale, a measure which incorporates some form of localised

measurement (Kerschensteiner and Wong, 2008) may be preferable.

We have used the word “correlation” throughout but noted that the terminology

varies. Few of the measures measure correlation in the statistical sense (the degree to

which measurements on the same group of elements tend to vary together). Neither

the correlation index nor the Spike Time Tiling Coefficient are correlations under this

definition. The only “true” correlation is the spike count correlation coefficient (and the

altered version).

We suggest that the correct terminology for what we wish to measure is “affinity” in

the biological sense — meaning a relationship or resemblance in structure that suggests

a common origin or purpose. We wish to measure a relationship between spike times

that may indicate that neurons are involved in the same process. In spontaneous retinal

activity, we wish to measure the propensity of two neurons to fire close in time to each

other in such a way that it can affect their wiring onto a common target.

Pairwise measures of correlation will only capture a subset of the full correlational

relationships in a neuronal population. Population dynamics are less noisy than pairwise

dynamics and may encode critical information. Methods exist to study higher-order cor-

relations (Nakahara and Amari, 2002; Walters et al., 2008) and investigating population

dynamics is a common approach (Okun et al., 2012). We have focused on pairwise cor-

relations, partly due to its popularity and the large literature concerning its quantification
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but also as evidence suggests that pairwise interactions can account for much of the

observed higher-order interactions (Schlens et al., 2006; Schneidman et al., 2006).

The Spike Time Tiling Coefficient in the re-analysis of data and

cross-study comparisons

We have re-analysed the results of seven studies using the Spike Time Tiling Coefficient

instead of the correlation index. This has shown that sometimes the correlation index

reflects differences in firing rate more than differences in correlation and so the Spike Time

Tiling Coefficient can change the conclusions of studies. For example, our re-analysis of

the data from Blankenship et al. (2011) significantly changes the conclusions about the

relative correlations in spontaneous retinal activity of connexin knock-out mutants.

The popularity of the correlation index means that many studies have drawn conclu-

sions on the basis of a problematic measure. Studies where firing rates differ significantly

and the order of phenotypes by correlation is the reverse of the order by firing rate are

likely to change. However, of these, we have shown that two important conclusions made

using the correlation index still stand when re-analysed with the Spike Time Tiling Coeffi-

cient. These are the age-dependent changes in wild type correlations in mouse and ferret

(Figure 8) and also relative correlations of wild type and β2(KO) mouse mutants (Figure

9).

Although the re-analysis of data from β2 mutants broadly confirms the conclusions of

the original studies, the correlations of the two β2(KO) mutants from Sun et al. (2008)

show stronger distance-dependence and values closer to wild type than was evident using

the correlation index (Figure 9B). Both mutants have relatively high firing rates (see Figure

9 legend) so their correlation indices are down-weighted, making the distance dependence

appear weaker.

The β2(KO) mutant line used in Stafford et al. (2009) is the same as the Xu knock-

out line used in Sun et al. (2008) with ages P6 and P5 respectively. We note variation

between studies of the size and distance dependence of these correlations. Some of the

variation between reported correlations may be due to different bath solutions (Stafford

et al., 2009), or possibly to age-related differences. However, we also note large cross-

study variation in the wild type control (P4 (Xu et al., 2011), P5 (Sun et al., 2008) and
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P6 (Stafford et al., 2009)). Given that they are similar ages, we would expect control

firing rates and correlations to be reasonably similar (Wong et al., 1993), however both

the firing rates and maximal correlation values vary significantly (Figure 9). Variation

between studies for the controls is large so the differences observed in β2(KO) between

studies are not surprising given this and the use of different bath solutions.

One conclusion about the correlations in β2(KO) which changed when re-analysed

using the Spike Time Tiling Coefficient is that correlations tend to increase during P4-7,

rather than decrease (see Figure 10). This case provides a good example of how the

correlation index can assign extreme values to data which is not atypical but which has

low firing rates. These data are typically excluded as outliers: many studies filter neurons

for extremely low or high firing rates before calculating correlations (Maccione et al.,

2014). However, re-analysis using the Spike Time Tiling Coefficient shows that this is not

necessary: meaningful conclusions about correlations can still be obtained from this data.

Conclusions

Here, we have used spontaneous retinal activity as a case-study. Since quantifying corre-

lations in spike times is of wider interest, we expect the Spike Time Tiling Coefficient to

have applications to measuring correlations in other systems, such as hippocampal cul-

tures (Godfrey and Eglen, 2009), multi-sensory integration (Parise et al., 2013) or motor

control (Lee and Lisberger, 2013). With regards to our case-study, we hope that its use

will help clarify the exact role of correlations in map formation.
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Figure 1: Cartoon to demonstrate the calculation of the Spike Time Tiling Coefficient. The four
quantities required to calculate the Spike Time Tiling Coefficient are PA, PB , TA, TB . The only free parameter
is ∆t. Values and scales are for demonstration only.
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Figure 2: Examples of simulated data used to test measures. Data generated from Model 1 used a
Poisson spiking model where both neurons fire at 1.5 Hz with increasing percentage of spike times which are
shared with a spike in the other train: 0 % (A), 87 % (B) and 99 % (C). Recording duration T = 300 s. Data
generated from Model 2 used a Poisson burst model with a burst rate of λ = 0.05 Hz, where the number
of spikes in each burst is drawn from a Poisson distribution with mean N = 8. The positions of the spikes
relative to the centre of the burst (indicated by a red arrow) are drawn from a uniform distribution on [−1, 1] s
(σ = 2). The centre of the burst of the second train is offset from the centre of the first by a fixed amount:
O = 0 s (A), 1 s (B) and 2 s (C), T = 3600 s. Data generated from Model 3 shows regular out-of-synchrony
firing with increasing firing rate generated using an integrate-and-fire model (see Methods for details). The
firing rates are 0.76 Hz (A), 1.27 Hz (B) and 2.5 Hz (C), T = 3000 s.
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Figure 3: The correlation index is dependent on firing rate. The correlation index of two identical Poisson
spike trains is plotted for varying firing rates. Simulation values were generated by simulating one Poisson
spike train and then calculating the correlation index comparing this train with itself. Means with error bars
of ±1 standard deviation are plotted for ten trials, each of duration 300 s. The theoretical expected value of
the correlation index under this model (red line) is given by Equation 3.
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Figure 4: Twenty-one measures are rejected since they are dependent on firing rate (lack property
N2). All measures which showed rate-dependence when tested on the auto-correlation of Poisson spike trains
are plotted. Three measures which did not show rate-dependence are also shown in the bottom row for
comparison (green). One Poisson spike train was simulated for 300 s for varying rates (0.05–5 Hz) and the
measures were calculated comparing this spike train to itself. Means of ten repeats are plotted and ±1
standard deviation is shown by grey shading. The identity of each measure appears in Table 3. Note that the
correlation index is not presented here, but in Figure 3 and that measure 12 has two versions; one appears
here and the other in Figure 5A, see Methods for details.
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Figure 5: Nine measures are rejected using remaining necessary properties A: Measures which are
dependent on firing rate (lack property N2) where dependency is not obvious from auto-correlation are applied
to data generated from the following Poisson spiking model: one train has rate 3 Hz and the other’s rate varies
(0.1–5 Hz). There are no shared spike times (T = 300 s). The second version of Measure 12 is shown (the
first version is in Figure 4), see Methods for details. B: Measures which are dependent on recording time (lack
property N3) are applied to data generated from the following Poisson spiking model: both neurons fire at rate
1 Hz and 10 % of spike times are shared. The recording duration varies from 50–300 s and ∆t = 0.6 s (higher
than usual since for these measures smaller values cause issues with computational precision). C: Measures
which cannot distinguish anti-correlation from no correlation (lack property N6) are applied to regular out-
of-synchrony spikes of varying rate (0.25–4.2 Hz) generated using an integrate-and-fire model described in
Dayan and Abbott (2001), Figure 5.20. The parameters are as in their figure with the following exceptions:
Pmax = 0.5, RmIe = 18 mV. τs varied from 0.05–1.5 s and Es from 0 mV to −70 mV, T = 3000 s. In all
panels, Measure 35 (which possesses the necessary properties) is shown for comparison (green), means of ten
repeats are plotted and error bars are omitted for visual clarity.
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Figure 6: Detailed examination of the four measures which possess all necessary properties eliminates
three on the basis of the desirable properties. A: The spike count correlation with different bin widths (d
— see Methods) is applied to data from the following Poisson burst model which has increasing range of spike
offsets within a burst: both neurons have a burst rate of 0.05 Hz, burst centres have 0 s offset, each burst
contains 8 spikes whose positions are drawn from a uniform distribution of varying width (0.1–4 s) centred on
the burst centre (T = 3600 s). B: The Spike Time Tiling Coefficient (STTC) applied to identical data to that
in A. The spike count correlation with d = 1 ms is plotted (black) for comparison. C: The Kerschensteiner and
Wong correlation measure with different lengths of the averaging window (w — see Methods) is applied to
data from the following Poisson burst model with increasing number of spikes per burst: both neurons have a
burst rate of 0.05 Hz, burst centres have 0 s offset, the number of spikes in each burst is drawn from a Poisson
distribution with increasing mean (from 1 to 15). Spike positions are drawn from a uniform distribution of
width 2 s centred on the centre of the burst (T = 3600 s). D: The Kruskal measure is applied to spike times
from the following model: two independent Poisson neurons are simulated each with rate 0.1 Hz. For each
spike (in either train) a burst is generated in the other train with 0 s offset of the burst centre and 1–6 spikes
whose positions are drawn from a uniform distribution of width 2∆t around the burst centre (T = 2000 s,
∆t = 0.1 s). The Spike Time Tiling Coefficient (green) is plotted in panels C and D for comparison. For all
panels the mean of ten repeats is plotted, error bars are omitted for visual clarity.
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Figure 7: Evaluating correlations in retinal waves recorded from connexin mutant mice shows that
the Spike Time Tiling Coefficient can significantly alter conclusions. A: raster plots of ten spike trains
over a ten minute interval, recorded from retinas isolated from P12 wild type mouse and two mutant mice
(lacking either one or two connexin isoforms- Cx45 and Cx36/Cx45), P11 Cx45ko and P10 Cx36/Cx45dko.
Data is from Blankenship et al. (2011) and raster plots follow the presentation of their Figure 2A. The mean
firing rate and number of animals (n) from each genotype is recorded in the legend. B: Pairwise correlation
index as a function of intercellular distance for each genotype. Data points are medians over all recordings
and error bars indicate the interquartile range (IQR). Inset shows the same data normalised (multiplicatively)
by genotype so that the correlation indices are identical at zero distance, following Figure 2B in the original
publication. C: same as panel B, using the Spike Time Tiling Coefficient (STTC) in place of the correlation
index. Compare with both B and B insert. In both B and C ∆t = 100 ms as in the original publication. The
distances at which correlations are measured are the discrete set of separations possible on the MEA grid.
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Figure 8: Re-analysis using the Spike Time Tiling Coefficient supports the conclusion that correlations
in spontaneous activity in the developing ferret and mouse retina decreases with age. A: The correlation
index is calculated pairwise and shown as a function of electrode separation for spontaneous retinal activity in
developing ferret for four different ages (data from Wong et al. (1993)). The distances at which correlations are
measured were binned (bin width 20µm) due to high density. B: same as panel A using the Spike Time Tiling
Coefficient (STTC) in place of the correlation index. C: The correlation index is calculated pairwise and shown
as a function of electrode separation for spontaneous retinal activity in developing mouse for four different
ages (data from Demas et al. (2003)). The distances at which correlations are measured are the discrete set
of separations possible on the MEA grid. D: same as panel C using the Spike Time Tiling Coefficient. In all
panels median values are plotted and IQRs are only shown at the smallest separation distance. Other IQRs
are omitted for visual clarity. Mean firing rates and number of animals (n) for each age are recorded in the
legend.
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Figure 9: Re-analysis of experimental data using the Spike Time Tiling Coefficient supports the
conclusions that the β2(KO) and β2(TG) mouse phenotypes show lower correlations in spontaneous
retinal activity than those of wild type. A: The correlation index (left) or Spike Time Tiling Coefficient
(STTC) (right) is plotted pairwise against electrode separation for recordings of spontaneous retinal activity for
P6 wild type and β2(KO) phenotypes (data from Stafford et al. (2009)). B: The correlation index (left) or Spike
Time Tiling Coefficient (right) is plotted pairwise against electrode separation for recordings of spontaneous
retinal activity for P5 wild type and two β2(KO) phenotypes: Xu and Picciotto (Pic) (data from Sun et
al. (2008)). C: The correlation index (left) or Spike Time Tiling Coefficient (right) is plotted pairwise against
electrode separation for recordings of spontaneous retinal activity for P4 wild type and β2(TG) phenotypes
(data from Xu et al. (2011)). In all panels ∆t = 100 ms, as in original publications, medians are plotted and
the error bars show the IQR. Mean firing rates and number of animals (n) for each phenotype are recorded in
the legend. All recordings at 37◦C. The distances at which correlations are measured are the discrete set of
separations possible on the MEA grid.
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Figure 10: Re-analysis of age related changes in β2(KO) mutants shows that the Spike Time Tiling
Coefficient is able to more accurately quantify correlations which the correlation index ascribes as
extremely correlated. A: Raster plots of ten spike trains over a ten minute interval, recorded from retinas
isolated from P5 wild type mouse and P4 β2(KO) mouse. All data are controls from Kirkby and Feller (2013).
B: Pairwise correlation index as a function of intercellular distance for P5 wild type mouse and β2(KO) mouse
of different ages (P4–7). C: Same as panel B but using Spike Time Tiling Coefficient (STTC). The mean firing
rate and number of animals (n) from each genotype is recorded in the legend. Data points are medians over
all recordings and error bars indicate the IQR. For visual clarity, IQRs are only shown at the smallest separation
distance. The distances at which correlations are measured are the discrete set of separations possible on the
MEA grid. ∆t = 100 ms, as in original publication and recordings were performed at 33− 35◦C.
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Figure 11: Varying the window of synchrony ∆t can be informative about correlational timescales
inherent in data A: The Spike Time Tiling Coefficient (STTC) of spike trains from Stafford et al. (2009) was
calculated pairwise (as in Figure 9B) and the median value at the smallest electrode separation is plotted for
varying ∆t. Error bars show the IQR. The genotypes shown are P6 wild type and β2(KO). B: same as panel
A, but data from Sun et al. (2008) (see Figure 9D). The genotypes shown are P5 wild type and two β2(KO)
phenotypes: Xu and Picciotto (Pic). C: same as panel A, but data from Xu et al. (2011) (see Figure 9F). The
genotypes shown are P4 wild type and β2(TG) mouse. Vertical lines at ∆t = 1 s indicate separation between
region with strong ∆t dependency (∆t ≤ 1) and weaker dependency (note x-axis has a log-scale and that the
limit of the Spike Time Tiling Coefficient as ∆t tends to infinity is one).
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Parameter Description Value

Common to all models

∆t Window of synchrony (0.01 to 1) s
T Recording Time (10 to 6000) s

Poisson spiking model

λA, λB Firing rates of A and B (0.01 to 5) Hz
λS Rate of synchronous spikes (0.01 to 5) Hz

Poisson bursting model

λ Burst-rate of master train (0.01 to 0.2) Hz
p Probability of burst in second train 0 to 1
O Parameter controlling offset of burst-centre in second train (0 to 2) s

(either fixed or O = range of continuous uniform distribution,
or O = variance of Gaussian distribution)

N Parameter controlling number of spikes per burst 1 to 20
(either fixed, N = mean of Poisson distribution,
or N = Maximum of discrete uniform distribution)

σ Parameter controlling position of spikes relative to burst centre (0.05 to 2) s
(σ = range of continuous uniform distribution,
or σ = variance of normal distribution)

Out-of-synchrony spiking model (Dayan and Abbott, 2001)

ES Synapse reversal potential (−70 to 0) mV
EL Resting potential −70 mV
Vth Threshold potential −54 mV
Vreset Reset voltage after action potential −80 mV
τm Membrane time constant (0.05 to 1.5) s
rmḡs Specific membrane resistance multiplied by 0.05

specific membrane conductance
Pmax Maximum value of synaptic release probability 0.5
RmIe Change in potential due to injection of small current 18 mV
τs Synaptic time constant 0.05 s

Out-of-synchrony bursting model (Shi and Lu, 2009)

α Map control parameter 5 to 30
µ Ensures slow gating process is slow 0.001

σA,σB ,σC Regime-control parameters for neurons A, B and C −0.4 to −0.1
gc Coupling strength −0.4 to −0.01

Table 1: Parameter ranges used in models to generate test data. Note that the out-of-synchrony
bursting model is phenomenological and so parameters do not related to any particular biological
process and are unitless.
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Necessary properties

N1 Symmetry: The measure C should be symmetric: for spike trains A and
B, C(A,B) = C(B,A).

N2 Robust to variations in the firing rate: For instance, given two spike
trains with a particular correlational structure, if the rates of both trains
are doubled but the structure is preserved, the correlation measure should
remain the same.

N3 Robust to amount of data: In practice this often means robust to record-
ing duration.

N4 Bounded: The measure should be bounded taking a value of +1 when
the spike trains are identical, with a value of zero corresponding to no
correlation and -1 corresponding to anti-correlation.

N5 Robust to variations in ∆t: Small variations to ∆t should not introduce
artefacts into the measure.

N6 Anti-correlation: The measure should discriminate between no correlation
and anti-correlation.

Desirable properties

D1 Periods when both neurons are inactive should be ignored: Periods
where both neurons are silent should not be counted as correlated. Experi-
mental data frequently has large periods of quiescence (Wong et al., 1993;
Demas et al., 2006) which, if counted would distort calculated correlations.

D2 Minimal assumptions on structure: The measure should not assume
that spike times have a given underlying distribution as this will lessen the
general applicability.

D3 Minimal Parameters: The main free parameter in the measure should be
the time window of synchrony ∆t. The number of other parameters should
be kept to a minimum.

Table 2: Necessary (N) and desirable (D) properties for a correlation measure. Each property is assigned
an identifier for ease of reference.

47

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 9, 2014. ; https://doi.org/10.1101/006635doi: bioRxiv preprint 

https://doi.org/10.1101/006635
http://creativecommons.org/licenses/by-nc-nd/4.0/


Measure Measure Name Lacked Evidence in
Number Property Figure

Distance measures and Cost functions

1 Victor and Purpura (1997) N3 5A
2 ISI-distance (Kreuz et al., 2007a) N2 5B
3 Hunter-Milton similarity (Hunter and Milton, 2003) N6 5C
4 Van Rossum (2001) N3 5A
5 SPIKE (Kreuz et al., 2013) N2 5B

Cross-correlation based

6 Coincidence index (Pasquale et al., 2008) N2 4
7 Altered Coincidence index ∗ N2 4
8 Cross correlation coefficient (Pasquale et al., 2008) N2 4
9 Schreiber et al. (2003) similarity coefficient N6 5C

10 Altered Schreiber et al. similarity coefficient ∗ N6 5C
11 Kerschensteiner and Wong (2008) cross-correlation D3 6D
12 Jimbo and Robinson index (Jimbo et al., 1999) N2 4/5A

Synchrony not from Cross-correlation

13 Correlation index (Wong et al., 1993) N2 3
14 Activity pair (Eytan et al., 2004) N2 4
15 Unitary events analysis (Grun et al., 2002) N2 4
16 Event synchronisation (Kreuz et al., 2007b) ∗ N2 4
17 Joris et al. (2006) correlation index N2 4

Information Theory

18 Mutual information (Li, 1990) N2 4
19 Mutual information with smoothing ∗ N2 4

Measures from Shot-Noise Process

20 Coherence (at zero) (Eggermont, 2010) N6 5C
21 Spike count correlation (Eggermont, 2010) D1 6A
22 Smoothed spike count correlation (Kruskal et al., 2007) ∗ D3 6C
23 Spike count covariance (Eggermont, 2010) N2 4

Measures assuming a Marked Point Process

24 Stoyan’s Kmm function (Stoyan and Stoyan, 1994) N2 4
25 Isham’s mark correlation function (Isham, 1985) N2 4
26 Ripley’s Kmm function (Ripley, 1976) N2 4
27 Simpson (1949) index N2 4
28 Simpson (1949) index no correction N2 4
29 Stoyan’s mark covariance function (Stoyan, 1984) N2 4
30 Mark variogram (Cressie, 1993) N2 4
31 Mark covariance function (Cressie, 1993) N2 4
32 Mark conditional expectation (E) (Schlather et al., 2004) N2 5B
33 Mark conditional variance (V) (Schlather et al., 2004) N2 5
34 Mark conditional standard deviation (Schlather et al., 2004) N2 5

Tiling-based

35 Spike Time Tiling Coefficient PASS

Table 3: Correlation measures evaluated in this study with evidence (if any) for rejecting them as a
replacement for correlation index. All measures investigated are arranged according to our devised classi-
fication (see Methods). Asterisk denotes that the measure was altered to make it applicable (see Methods).
The third column contains an identifier (see Table 2) corresponding to one property which the measure was
shown to lack (if any). The fourth column denotes which Figure presents evidence for the lacking property.
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