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Abstract 
 
Rapid molecular typing of bacterial pathogens is critical for public health epidemiology, 
surveillance and infection control, yet routine use of whole genome sequencing (WGS) for 
these purposes poses significant challenges. Here we present SRST2, a read mapping-based 
tool for fast and accurate detection of genes, alleles and multi-locus sequence types 
(MLST) from WGS data. Using >900 genomes from common pathogens, we show SRST2 
is highly accurate and outperforms assembly-based methods in terms of both gene detection 
and allele assignment. Here we have demonstrated the use of SRST2 for microbial genome 
surveillance in a variety of public health and hospital settings. In the face of rising threats 
of antimicrobial resistance and emerging virulence amongst bacterial pathogens, SRST2 
represents a powerful tool for rapidly extracting clinically useful information from raw 
WGS data. Source code is available from http://katholt.github.io/srst2/. 
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Rapid molecular typing of bacterial pathogens is critical for public health epidemiology, 
surveillance and infection control [1, 2]. Two key goals of such activities are: (i) to detect 
the presence of genes linked to clinically relevant phenotypes - including virulence genes, 
antimicrobial resistance genes or serotype determinants; and (ii) to classify isolates into 
clonal groups, via multi-locus sequence typing (MLST [3]) or detection of clone-specific or 
other epidemiological markers. Whole genome sequencing (WGS) or “genomic 
epidemiology” is increasingly being adopted for these tasks and has the potential to replace 
current techniques which are mainly based on PCR and/or restriction enzyme digestion 
coupled with sequencing or size separation via electrophoresis [1, 4]. WGS is particularly 
attractive as (i) it can be applied simultaneously to large numbers of bacterial isolates of 
any species with no need for organism- or target-specific reagents, and (ii) the resulting 
data is readily shareable, can be compared easily with past and future data sets, and is 
informative for both routine surveillance (monitoring genes and clones) and detailed 
outbreak investigation (genome-wide phylogenies for transmission analysis) [2, 4]. 
 
WGS has revolutionised pathogen research, and its potential to revolutionise the practice of 
public health epidemiology, surveillance and infection control has been recognised for 
some time [4-10]. Despite the enthusiasm and several demonstration studies [11-16], the 
routine use of WGS poses significant challenges for public health and diagnostic 
laboratories, foremost of which is a lack of solutions for the rapid and reproducible 
extraction of informative, interpretable and shareable data from raw sequence data [1, 17]. 
 
Currently available methods rely on assembling short reads into longer contiguous 
sequences (contigs), which can be interrogated using BLAST or other search algorithms to 
identify genes or alleles of interest (e.g. ARG-Annot [18]; ResFinder, PlasmidFinder and 
MLST typer [19-21]; BIGSdb [22, 23]). The reliance on assembly introduces efficiency 
and sensitivity problems due to the data, time and computational requirements for 
generating high quality assemblies of bacterial genomes from short reads. There are several 
assemblers (e.g. Velvet [24], SPAdes [25]) that can produce a bacterial genome assembly in 
minutes to hours with a few gigabytes of memory. However the production of high quality 
assemblies with these tools requires quality filtering and other pre-processing of reads, and 
optimisation of kmer length and other parameters which in practice requires several 
alternative assemblies to be generated and compared [26, 27], thus multiplying by an order 
of magnitude the amount of computational time and memory required to produce each 
genome prior to typing analysis. Further, the quality of even highly optimised assemblies 
remains highly variable, even for closely related genomes sequenced together in multiplex. 
Hence assembly-based analyses of genomes sequenced with short-read technology are very 
difficult to standardize and quality-control, which is important to ensure robust, reliable and 
reproducible assays for use in public health and infection control. 
 
Here we describe a new tool for genomic epidemiology, SRST2, which performs fast and 
accurate detection of genes and alleles direct from WGS short sequencing reads. SRST2 
can type reads using any sequence database(s) and can calculate combinatorial sequence 
types defined in MLST-style databases [3]. We demonstrate its utility for routine molecular 
typing in public health and hospital laboratories via automated MLST and typing of 
virulence, antimicrobial resistance and plasmid genes. SRST2 is named after our earlier 
tool SRST (Short Read Sequencing Typing) which performed MLST on short reads [28], 
however the SRST2 code is entirely novel and uses different read mapping, scoring and 
reporting algorithms than SRST, is more stable and robust, and is designed for gene 
detection and allele typing as well as MLST. 
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Approach and Implementation 
 
Given a read set and database of reference allele sequences, SRST2 is designed to perform 
two key tasks: (i) detect the presence of a gene or locus, and (ii) determine the precise or 
closest matching allele for that locus, amongst a set of possible reference allele sequences. 
The approach is illustrated in Figure 1. A database of reference sequences must be 
provided in fasta format, in which the fasta headers indicate both the locus (so that alleles 
of the same locus can be compared) and a unique name for each allele. In the case of 
MLST data an additional database of ST profiles is provided as tab-delimited text, which 
assigns STs to unique combinations of alleles. Current MLST data (allele sequences and 
profile definitions), suitable for use with SRST2, can be downloaded from pubmlst.org 
automatically using the getmlst.py script supplied with SRST2. Other sequence databases 
can be easily formatted for use with SRST2 using the scripts supplied with the program. 
Any number of sequence databases can be analysed in a single run, allowing for 
simultaneous typing of MLST, resistance genes and virulence genes. 
 
For each input database, reads are aligned using bowtie2 v2.1.0 or above with the ‘--very-
sensitive-local’ and ‘-a’ settings, and all alignments are reported to a file in SAM format. 
Mapping sensitivity can be fine-tuned by specifying to SRST2 any of the parameters 
available within the bowtie2-align command or a maximum number of mismatches per 
read (default 10 mismatches allowed). Flags in the resulting SAM file are modified so that 
each read is included in the pileup for every allele to which it is aligned. Pileups are 
generated using SAMtools v0.1.18 mpileup and parsed by SRST2 to determine percent 
coverage, divergence, and mismatches, and to calculate a score for each possible allele. 
 
Allele scoring 
An overview of the scoring approach is given in Figure 1. We begin with an alignment of 
reads from sample s to a reference sequence r. At each position i in the reference sequence 
r (ri), let si be the set of reads in sample s that align to ri. Let ai be the total number of reads 
in si, and let bi be the number of reads in si in which the aligned base does not match the 
reference base at ri. If sample s contains the precise sequence r, then the probability of a 
mismatched base at any position in an aligned read is equal to the per-base error rate of the 
sequencing technology ei, which for Illumina is taken to be 0.01, although this can vary 
depending on what pre-processing steps are implemented [29, 30]. 
 
To quantify the evidence against the presence of the reference sequence r in s, we perform 
a Binomial test at each position ri, to generate a 1-sided P-value Pi to assess the probability 
of observing ai-bi successes in ai trials, with a probability of success of 1-ei. Any change at 
position ri - including a base substitution, an insertion of any size or a deleted base - is 
treated as a mismatch, incrementing bi by 1. For large deletions that result in an absence of 
any aligned reads (including truncations of the end of the sequence), ai = 0 and no Binomial 
test is possible. In this case, the evidence for the deletion is provided by the reads which 
align adjacent to the deletion but do not align across the deletion. Hence we calculate the 
average number of reads aligned to the two bases preceding the deletion, di, and conduct 
the Binomial test with ai = bi = di.  
 
We then utilize a non-parametric approach to score each allele by considering the set of all 
P-values calculated for reference sequence r. First, to minimise artefacts associated with 
fluctuation in read depths, we (a) set Pi=1 where bi=0, and weight Pi by the relative read 
depth (i.e. weight of evidence) at position ri compared to those of other positions in r: 
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weighted Pi (Pi,w) = Pi * (ai / r max depth) 

 
We then compare the sorted –log10(Pi) values versus those of the theoretical distribution of 
–log10(xj/n) where n=length(r) and xj = 1,2,…n, analogous to inspecting a quantile-quantile 
(QQ) plot (Figure 1). A linear model is fitted to the two probability distributions and the 
resulting slope is taken as the score for reference sequence r, scorer. Here we leverage a 
common criticism of linear models to our advantage: the susceptibility to outliers at the 
tails of the distribution. In this case, outliers are typically SNPs or indels relative to the 
sequence r which, because they result in low P-values in the Binomial test and thus very 
high values of –log10(P), are at the end of the observed distribution (Figure 1). Thus when 
a linear model is fitted, its slope increases with the number of well-supported SNPs and 
indels compared to the reference. As a result, among reference alleles of the same locus, the 
sequence r with the lowest scorer (flattest slope in the QQ plot) is the most likely match for 
sample s.  
 
Reporting outputs 
SRST2 output tables report, for each sample s and each locus or gene cluster, the lowest 
scoring allele sequence r, the average read depth of s across r and indicators of any 
evidence against a precise match with r (including mismatches supported by >50% of 
aligned reads, or read depth falling below a cutoff). Only matches passing the user-set 
coverage and divergence cut-offs (by default, >90% coverage and <10% divergence) are 
reported. For MLST data, STs are calculated according to the MLST profiles database 
provided, based on the closest matching alleles at each locus. 
 
Normally, an exact match between r and s would be assigned if (a) r has the lowest scorer 
amongst the set of alleles of the same locus or gene cluster, and (b) there are no SNPs or 
indels between r and s. If (a) holds but (b) does not, this is indicative of a novel allele and 
SRST2 will flag the result in output tables. In such cases, we recommend that users who are 
interested in defining novel alleles should inspect the raw sequence data (which may be 
assisted by the alignments, pileups and consensus fastq files generated by SRST2). 
 
Optionally, SRST2 can report the full details of scoring s against all reference sequences r, 
to enable users to parse and interpret the results to suit specific needs. These include 
average depth of s across r, average depth across the first and last two bases of r, the 
number of positions in r in which the majority of aligned reads in s show a mismatch 
against r (with SNPs, insertion/deletions and truncations reported separately), the depth of 
bases neighbouring truncations and, for the position with the greatest proportion of 
mismatching reads, the total aligned reads, total mismatching, proportion mismatching, and 
Binomial p-value. 
 
Availability 
SRST2 Python code is freely available [31] and utilises bowtie2 [32] for read mapping and 
SAMtools[33] for alignment processing. 
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Validation using real and simulated data 
 
Validation of allele calling 
To assess the accuracy of allele identification with SRST2, we analysed publicly available 
Illumina data from 543 bacterial genomes of five different species for which independent 
MLST data was available (Table 1). With seven loci in each MLST scheme, this yielded 
3,801 allele calls across 35 loci to assess call rate and false positive rate. The read sets 
represented a wide range of average read depths, with 90% in the range 12x - 130x and 
50% between 20x - 60x (Table 1). For each species, we used SRST2 to download the latest 
MLST database from pubmlst.org and subsequently ran SRST2 using default parameters. 
Median run time was 6 minutes per sample (interquartile range, 4-10 minutes) and 
increased linearly with number of reads (Figure 2). Efficiency can be easily improved or 
standardised, without data pre-processing, by instructing SRST2 to map the first N reads 
only. 
 
SRST2 call rates and true positive rates increased with average read depth, stabilizing with 
depths ≥15x (Figure 3a, Additional file 1). For comparison, we also assembled each read 
set using Velvet [24] and VelvetOptimiser [34] and used nucleotide BLAST to identify 
MLST alleles (assembly+BLAST method; Methods). At read depths ≥15x, SRST2 made 
significantly more allele calls than assembly+BLAST (call rates 99.9% vs 95.9%, 
respectively; p<1x10-15), with significantly greater accuracy (false positive rates 0.46% vs 
0.90%; p=0.05). The heuristic information provided by SRST2 (that is, confident 
mismatches, insertions, deletions or truncations reported from read mapping) was a strong 
indicator of accuracy in the result: where an exact match was reported (98% of calls with 
depth ≥15x), the false positive rate was 0.2%; where an inexact match was reported, the 
false positive rate was 11.7%. For assembly, false positive rates were 0.2% for exact 
matches (95% of calls) and 76% for inexact matches. Hence, the key difference between 
the two methods was the ability of SRST2 to make correct calls where assembly+BLAST 
could not: for read depths ≥15x, SRST2 made a call with the correct allele 99.4% of the 
time, compared to only 95% for assembly analysis (p<1x10-15 for difference in rates). At 
sequence type (ST) level, the difference was even greater: SRST2 achieved accurate ST 
assignment for 96% of isolates with average depth ≥15x, whereas assembly+BLAST 
correctly identified only 76%. 
 
To assess performance at low read depths (≤15x), ten S. aureus read sets were subsampled 
to low depths (Methods). This confirmed that an average depth of only 10x was required 
for SRST2 to achieve >90% call rate and <0.5% false positives (Figure 3a, Figure 4). 
MLST databases can be expected to grow indefinitely due to increasing diversity and 
broader sampling. However simulations (Methods) indicated that doubling the size of the 
S. aureus MLST database had no impact on SRST2 accuracy (Figure 3a, Figure 4). 
 
Validation of gene detection using the vanA-B resistance gene 
In addition to reliably distinguishing alleles of a given gene, SRST2 can also accurately 
determine the presence or absence of genes of interest, such as those encoding 
antimicrobial resistance or virulence. To evaluate this, we used 43 E. faecium genomes 
(Table 1), previously screened for vancomycin susceptibility and presence of the VanB 
vancomycin resistance operon vanABHSXY[35, 36]. Seventeen isolates were vancomycin 
resistant (VRE), and all were PCR positive for the vanA-B gene. These genomes were 
sequenced to ~1,000x depth and SRST2 correctly detected vanA-B in 17/17 VRE. In five 
vancomycin sensitive (VSE) isolates PCR negative for vanA-B, SRST2 detected VanA-B 
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sequences at very low depths (<0.2% of average depth), probably caused by minor but 
easily identifiable contamination during VRE-VSE multiplexed sequencing. SRST2 also 
confirmed the presence of the entire VanB operon, which is strongly predictive of the VRE 
phenotype. For comparison, assembly+BLAST identified full-length vanA-B sequences in 
just 7/17 VRE genomes, with multiple smaller hits spanning the full-length gene in five 
VRE and <50% coverage of the gene identified in the remaining five VRE. To investigate 
the effect of sequencing depth on gene detection, we randomly selected five VRE and five 
VSE read sets for subsampling at <10x average read depth. VanA-B was only ever detected 
in confirmed VRE genomes, and sensitivity of detection with SRST2 reached 100% for 
read sets with ≥5x average read depth (Fig. 1c). 
 
To further explore the relative sensitivity of gene detection with SRST2, we screened all 
the read sets used for MLST validation (Table 1) for antimicrobial resistance genes in the 
ARG-Annot database of acquired resistance genes[18] (Methods). SRST2’s detection of 
whole genes was more sensitive than detection of whole or partial gene sequences by 
assembly+BLAST (Figure 5): 6.8% of genes detected at ≥90% coverage by SRST2 at 
depths ≥15x were not found at ≥90% coverage in assemblies. For most of these genes, 
smaller fragments were detected by BLAST (Figure 5); however, SRST2 has the 
advantage of sensitive detection and confident allele-calling across the full length of genes, 
even at low depths (Figure 3c, Figure 5). 
 
Validation of SRST2 in a public health laboratory 
To validate SRST2 in a public health laboratory setting, we analysed 231 clinical isolates 
of Listeria monocytogenes and compared MLST data obtained from gold-standard PCR 
and amplicon sequencing with those obtained from SRST2 or assembly+BLAST analysis 
of Illumina MiSeq data (Figure 3b). Sequencing and analysis was performed by the 
Microbiological Diagnostic Unit Public Health Laboratory in Melbourne, Australia, the 
national reference laboratory for L. monocytogenes. For average read depths ≥15x, SRST2 
had a substantially higher call rate than assembly-based analysis (99.6% vs. 95.7%; 
p<1x10-12), with similar low false positive rates (0.7% vs. 0.6%; p=0.9). Hence, for 
samples with ≥15x data, a total of 99% of all alleles were called correctly by SRST2, a 
significantly higher proportion than the 95% achieved by assembly+BLAST (p<1x10-12). 
At <15x read depths, SRST2 also performed better than assembly-based analysis (87% vs 
72% of alleles correctly called, respectively, p<1x10-3; Figure 3b).  
 
Further, SRST2 is already being assessed for routine MLST analysis of Streptococcus 
pneumoniae at Public Health England (Anthony Underwood, personal communication), 
and the open-source SRST2 code has been adapted by Public Health Ontario, Canada to 
perform specialist emm typing of Group A Streptococcus [37]. 
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Demonstration of utility in hospital infection control 
 
Identification of antimicrobial resistant clones 
In a hospital setting, the combination of MLST and gene detection can provide rapid and 
powerful insights for infection control without specialist bioinformatics knowledge. SRST2 
analysis of 69 K. pneumoniae and 74 E. coli genomes from a UK hospital [38] revealed that 
each was dominated by a single ST with a high rate of the extended-spectrum beta-
lactamase (ESBL) gene CTX-M-15 (K. pneumoniae ST490 comprising 25% of total, 71% 
of ESBL; E. coli ST131 comprising 40% of total, 77% of ESBL; Figure 6). Routine 
SRST2 surveillance of ESBL infections could be indicative of hospital outbreaks and used 
to identify which isolates should be investigated via transmission analysis. 
 
Using the E. faecium genome data, collected as part of a 12-year hospital study of 
vancomycin resistance25, SRST2 took ~30 minutes to generate the results and 
visualizations shown in Figure 7, indicating (i) increasing vancomycin resistance over 
time; (ii) a shift in dominant ST during the same period; and importantly (iii) that this was 
not attributable to the introduction nor transmission of a new resistant clone, as the 
resistance rates were steady (approximately 50%) across all dominant STs. Similar 
conclusions typically require many days of labour and specialised assays in the diagnostic 
laboratory [39] and have been confirmed by detailed WGS analysis showing frequent 
acquisition of VanB transposons by diverse circulating strains [35]. 
 
Investigation of outbreaks and carbapenem resistance mechanisms 
We next applied SRST2 to analyse data from real-world small-scale infection control 
investigations [15]. SRST2 took 5 minutes to generate results for suspected outbreaks of 
VRE and E. cloaceae (Figure 8), in which suspected outbreak isolates were readily 
distinguishable from epidemiologically unrelated isolates, consistent with WGS 
phylogenies and manual analysis of antimicrobial resistance markers [15]. SRST2 typing of 
18 plasmid replicons [40] also indicated specific plasmid replicons (IncHI2, IncA/C) 
associated with two of the resistance profiles.  
 
The authors also reported use of a complex hybrid of assembly, mapping and manual 
inspection to determine carbapenem resistance mechanisms in five Gram-negative bacteria 
isolated in close proximity [15]. SRST2 analysis of these five read sets identified the 
acquired beta-lactamases OXA-23 in AB223; IMP, SHV-12 and TEM-1 in EC1a; CTX-M-
15 and TEM-1 in Eco216; CTX-M-15 and SHV-133 in KP652; and no acquired 
carbapenemase genes in EC302. These results are consistent with those reported from 
manual analysis [15]. 
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Methods 
 
Bacterial isolates and sequencing 
A total of 231 Listeria monocytogenes isolates were analysed in this study, at the 
Microbiological Diagnostic Unit (MDU) Public Health Laboratory in Victoria, Australia. 
MDU is the national reference laboratory for L. monocytogenes and the isolates analysed 
include several from recent outbreaks as well as from the laboratory’s reference collection. 
Cultures of L. monocytogenes isolated from food, environmental or clinical specimens were 
purified by two successive single colony selections after streaking onto horse blood agar 
(HBA) incubated for 18-24 h at 37°C. Resultant bacterial growth on the surface of HBA 
medium was aseptically collected and resuspended in a cryotube (Nalgene) containing 1 
mL of sterile glycerol storage broth (1.6% w/v Tryptone, Oxoid Pty Ltd, LP0042 
containing 20% v/v glycerol) prior to storage at -70°C. Cultures were retrieved from 
storage as required and freshly grown (HBA, 18-24h at 37°C) in preparation for DNA 
extraction. DNA was extracted from each isolate using QIAmp DNA Mini Kit (Qiagen) 
and eluted in EB buffer (Qiagen) (Tris buffer, no EDTA). 
 
DNA samples were subjected to traditional L. monocytogenes MLST analysis [41, 42], 
with a minor modification to the annealing temperature for the bglA PCR (52°C not 45°C). 
The PCR products were purified with FastAP Thermosensitive Alkaline Phosphatase 
(Thermo Scientific) and Exonuclease I (Thermo Scientific). The purified PCR products 
were sequenced using BigDye Terminator v3 chemistry followed by capillary sequencing 
using a 3130xL Genetic Analyzer (Applied Biosystems). Trace analysis was conducted 
using BioNumerics version 6.6 with MLST Online plugin version 2.13 and Batch Sequence 
Assembly plugin version 1.34.  
 
DNA was subjected to multiplex library preparation using Nextera XT followed by 
sequencing using an Illumina MiSeq. DNA was quantified by Qubit dsDNA HS Assay Kit 
(Invitrogen) and normalized to 0.2ng/µl.  Total 1 ng of DNA was used for Nextera XT 
DNA Sample Preparation Kit (Illumina). Tagmentation of genomic DNA, PCR 
amplification with dual index primers, PCR clean-up using Agencourt AMPure XP 
(Beckman Coulter), DNA libraries normalization, library pooling and MiSeq sample 
loading were performed according to the manufacturer’s instruction with minor 
modifications. For longer than 2×250 bp runs on the MiSeq, 25 µl of AMPure XP beads 
was added to each PCR-amplified product during the PCR purification step otherwise 30 µl 
of AMPure XP beads was added. For some samples, after PCR purification, DNA fragment 
size and library concentration was analysed by 2100 Bioanalyzer (Agilent Technologies) 
and Qubit dsDNA HS Assay Kit (Invitrogen). DNA libraries were normalized manually to 
4 nM and libraries with unique indexes were pooled in equal volumes. Each resulting 
pooled library was denatured and diluted with 0.2N NaOH and pre-chilled HT1 (Illumina) 
to produce a 20 pM denatured library in 1 mM NaOH. Prior to the MiSeq run, the 
denatured library was further diluted with pre-chilled HT1 to approximately 12-13.5 pM. 
600µl of library including 2% (v/v) 20 pM denatured PhiX library (Illumina) was loaded 
together with MiSeq reagent kit v3 (Illumina) according to the manufacturer’s instructions. 
 
Publicly available short read data used in this study 
Details of Illumina read sets used in this study are provided in Tables 1 and 2. Data tables 
specifying the expected STs of each read set, summarised from published papers, are 
available on the SRST2 website [31]. 
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Subsampling of read sets 
To explore accuracy at low read depths, ten genomes each of S. aureus and E. faecium 
were selected for random subsampling of reads to simulate genomes sequenced to low read 
depth. To do this, we used the mean read depth across MLST loci to calculate the sampling 
fraction required to achieve approximately 1x, 2x, … 10x mean read depth. We randomly 
sampled reads from the forward reads file at the required sampling fraction, and extracted 
the corresponding reverse reads, using Perl scripts. Ten random samples were generated 
from each read set at each depth level, generating a total of 1,000 read sets for each species. 
 
Sequence databases used in this study 
MLST databases for Staphylococcus aureus, Streptococcus pneumoniae, Salmonella 
enterica, Escherichia coli, Enterococcus faecium, Listeria monocytogenes and 
Enterobacter cloaceae were downloaded from pubmlst.org using the getmlst.py script 
included with SRST2 (June 2014). 
 
Antimicrobial resistance gene detection was performed using the ARG-Annot database of 
acquired resistance genes [18]. Allele sequences (DNA) were downloaded in fasta 
format[43] (May, 2014). Sequences were clustered into gene groups with ≥80% identity 
using CD-hit[44] and the headers formatted for use with SRST2 using the scripts provided 
(cdhit_to_csv.py, csv_to_gene_db.py). A copy of the formatted sequence database used in 
this study is included in the SRST2 github repository [31]. 
 
Representative sequences for 18 plasmid replicons were extracted from GenBank using the 
accessions and primer sequences specified by Carattoli et al [40]. A copy of the formatted 
sequence database used in this study is included in the SRST2 github repository [31]. 
 
Simulation of expanded S. aureus MLST database 
As more genomes are sequenced and as bacteria continue to evolve, novel alleles will 
continue to be discovered and thus the size of allele databases will increase. To explore the 
impact of database size on accuracy of allele detection with SRST2, we simulated 
expansion of the current S. aureus MLST database from 2,161 alleles (mean 309 per locus) 
to 5,578 alleles (mean 797 per locus). The additional ~500 alleles per locus were generated 
using netrecodon v6.0.0 [45]. Sequences derived from the true MLST database were used 
to seed the simulation at each locus as follows. Existing alleles were translation-aligned 
between start (alignment start) and stop (alignment end) codons, those containing a 
frameshift or stop codon were removed, and the modal consensus sequence was exported.  
The best-fit DNA substitution model of each true alignment was determined using the AIC 
in MrModeltest v2.3, as implemented in PAUP* v4.0b. In netrecodon, the modal sequences 
were forward evolved under the coalescent, using the parameters of the best-fitting model 
for each locus, mutation rate 1E-7 and recombination rate 1E-7/15 (based on reported r/m 
of 1/15 [46]). A total of 100 independent replicates of forward evolution were performed 
per locus, retaining 2,000 sequences per replicate (N = 200,000 simulated sequences per 
locus). The first 500 unique simulated sequences at each locus were added to the MLST 
database, and duplicate sequences were removed. 
 
Analysis runs and time calculations 
All SRST2, assembly and BLAST analysis was run on a Linux cluster (iDataplex x86 
system, “Barcoo” cluster at VLSCI [47]). SRST2 was run with default parameters. Details 
of Velvet assembly and BLAST analysis are given below. Run times were calculated from 
time stamps extracted from log files for SRST2 and Velvet Optimiser assembly runs. 
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Assembly-based analysis 
Assemblies were generated using the de novo assembler Velvet v1.2.10 [24], with optimal 
kmer choice for each readset refined through iterative calls to VelvetOptimiser v2.2.5 [34]. 
Briefly, each read set was assembled using a call to VelvetOptimiser with kmers from 29 up 
to 89, in steps of 12. The optimal kmer, k1, was extracted and a second call to 
VelvetOptimiser was made using kmers from k1-12 up to k1+12, in steps of 4. A final call to 
VelvetOptimiser was run using kimers from k2-4 up to k2+4, in steps of 2. The final 
assembly was that output from the third and final call to VelvetOptimiser.  
 
For MLST analysis from assemblies, a nucleotide BLAST+ (v2.2.25) search was 
performed for each locus and each contig set. In this BLAST search, the contig set was 
used to query the database containing all known allele sequences for a given locus, and the 
top BLAST hit was reported. If this hit had ≥90% nucleotide identity across ≥90% of the 
length of the reference allele sequence, an allele call was recorded. If the hit was an exact 
match to a known allele (i.e. 100% nucleotide identity across 100% of the length of the 
allele sequence), this was considered a precise allele call. The Python code used is available 
within the SRST2 distribution. For gene detection analysis from assemblies, a nucleotide 
BLAST search was performed in which the set of reference sequences (sequence database, 
i.e. antimicrobial resistance gene database) was used to query the database of all contigs for 
that assembly.  
 
Statistical analysis 
All statistical analysis and data plotting was performed in R. Allele calling performance of 
SRST2 and assembly+BLAST was assessed via three metrics: (i) call rate = total number 
of allele calls made, for SRST2 this was a call with ≥90% coverage and no uncertainty 
recorded (i.e. with ≥2x read depth at both ends and also neighbouring any truncations or 
deleted bases), for BLAST this was a call with ≥90% coverage and ≥90% nucleotide 
identity; (ii) false positive rate = total number of correct allele calls as a proportion of all 
calls; (iii) proportion of all tests resulting in a call with a correct allele, equal to (call rate) * 
[1 – (false positive rate)]. As these metrics are proportions, the significance of differences 
in performance metrics was calculated using a two-sided test for equality of proportions 
(prop.test function in R). Resistance gene detection was assessed using a cut-off of ≥90% 
coverage and ≥90% identity to define the presence of a gene. 
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Additional data files 
The following additional data are available with the online version of this paper. Additional 
data file 1 shows separate plots for call rates and true positive rates for the six public data 
sets used for MLST allele typing validation (these two measures were combined to give the 
overall accuracy plot in Figure 3). Additional data file 2 is a CSV table listing the 543 read 
file accessions from these data sets together with the corresponding expected sequence 
types (STs), which were extracted from published results of PCR and capillary sequencing 
and used to assess accuracy of SRST2 allele calling (shown in Figure 1a). 
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Figure Legends 
 
Figure 1. Summary of SRST2 approach 
Inputs are reads (fastq format) and one or more databases of reference allele sequences for 
typing (fasta format). Reads are aligned to all reference sequences (using bowtie2) and each 
alignment processed (using SAMtools). At each position in each alignment, the number of 
matching and mismatching bases is determined and a binomial test is performed to assess 
the evidence against the reference allele; resulting in a set of P-values for each reference 
allele sequence. To determine which of all known reference alleles is most likely present at 
a given locus, the P-value distributions for known alleles are compared as described in the 
text. Briefly, for each allele the P-values expected if the reads were derived from the 
reference allele in the presence of a given level of sequencing error (set to 1% of bases by 
default) are regressed on those actually observed, similar to a Q-Q plot; the slope of the 
fitted line, which increases with the strength of evidence against the reference allele, is 
calculated and taken as the score for that allele. The scores file (optional output) contains 
the scores for each allele at each locus, along with additional information about the 
alignments for each allele including percent coverage. For each locus, the allele with the 
lowest score is accepted as the closest matching allele (small arrows) and reported in the 
output table. In MLST mode, sequence type (ST) definitions are provided as input and used 
by SRST2 to calculate STs for each read set. 
 
Figure 2. Run times for MLST analysis with SRST2 
Lines are linear regression of runtime on reads, calculated separately for each species from 
public datasets (details in Table 1). 
 
Figure 3. Overall accuracy of SRST2 allele calling and gene detection 
(a) MLST analysis of public data from 5 species (N=543 genomes, 3801 loci, details 
Supplementary Table 1). Tests were grouped by read depth and accuracy rates (left y-axis, 
correct allele calls as a proportion of tests), calculated at each depth (x-axis, red slashes 
indicate scale change). Grey bars, number of tests at each depth (right y-axis); Lines, 
accuracy of allele calling. (b) MLST analysis of Listeria monocytogenes data (N=231 
genomes, 1671 loci) conducted in a public health laboratory; colours and axes as in a. (c) 
Accuracy of vanB resistance gene detection for E. faecium read sets subsampled to low 
depth; y-axis shows proportion of correct (presence vs. absence) calls as a proportion of 
100 tests at each depth; colours and axes as in a. A call of “present” implies detection of 
≥90% of the length of the gene at ≥90% nucleotide identity. 
 
Figure 4. Accuracy of SRST2 allele calling at low read depths and with expanded 
MLST database size 
MLST analysis of public S. aureus data. (N=10 read sets; each sampled 100 times to 
different depths; details in Methods). Tests were grouped by read depth and accuracy rates 
(y-axis, correct allele calls as a proportion of all tests), calculated at each depth (x-axis, red 
slashes indicate scale change from 1x to 10x). Red, real S. aureus MLST database; blue, 
expanded S. aureus MLST database (see Methods); grey, unsampled data from 5 species 
mapped to real databases (as shown in Figure 1, 3). 
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Figure 5. Resistance gene detection 
(a) Venn diagram of antimicrobial resistance genes detected by SRST2 and 
assembly+BLAST, where the threshold for ‘detection’ of a gene is ≥90% coverage and 
≥90% identity with a reference allele. No genes were detected by assembly+BLAST but 
not SRST2. (b) Distribution of average read depths per gene, calculated by SRST2 from 
mapped reads, for all genes detected by SRST2. (c) Coverage and nucleotide identity 
(%ID), as calculated by SRST2, for all genes detected by SRST2 but not by 
assembly+BLAST. (d) Impact of lowering the coverage threshold for detection of genes by 
BLAST (for those genes with ≥15x read depth). 
 
Figure 6. SRST2 analysis of sequence types and beta-lactamase CTX-M-15 genes 
amongst hospital isolates 
Rates of isolation of different sequence types (STs), coloured by CTX-M-15 status, as 
determined by SRST2 run with default parameters on a public data set of strains from a 
single hospital. In each species, a single known ST dominates the population (highlighted) 
and is also the dominant source CTX-M-15 genes. ‘*’ next to an ST indicates a match to 
the closest defined ST; i.e., that for all 7 loci the closest known allele is the one belonging 
to that ST, however at ≥1 these loci there is an imprecise match (SNP or indel) compared to 
the known allele sequence. ‘Novel’ indicates a novel sequence type resulting from a 
combination of known alleles, with precise matches at all loci (‘NF’ in SRST2 output); 
‘Novel*’ indicates a novel combination of alleles, with ≥1 of those alleles being novel itself 
(i.e. with no exact match in the MLST database) (‘NF*’ in SRST2 output).  
 
Figure 7. SRST2 analysis of E. faecium hospital data and hospital outbreak 
investigation 
Temporal distribution of isolates is shown in (a) coloured by vancomycin resistance as 
inferred from vanA-B detection with SRST2, and in (b) by coloured by sequence type 
inferred by SRST2. (c) Summary of all SRST2 results by sequence type (ST), in order from 
left to right: single linkage clustering of STs by number of shared alleles; MLST allele 
profiles; heatmap indicating the proportion of isolates that carries each resistance gene 
(scale as indicated), frequency of the ST (axis as indicated, coloured as in b).  
 
Figure 8. SRST2 analysis of hospital outbreak investigation 
(a) Isolate genetic profiles obtained from SRST2 analysis, indicating that case EF4 was 
distinct in both sequence type and resistance gene profile from the outbreak cases EF2 and 
EF3. Full WGS analysis showed a similar result[15]. (b) Isolate genetic profiles obtained 
from SRST2 analysis, including plasmid replicons detected (pink). The profiles indicate 
that case EC3 shared the same sequence type as the linked cases EC1 and EC2 (ST94), but 
lacked the IncA/C plasmid and had a distinct resistance gene profile. Full WGS analysis 
showed that EC1 and EC2 isolates were much closer to each other (≤22 SNPs) than to EC3 
(>150 SNPs)[15]. 
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Tables 
 
Table 1. Data sets used to assess accuracy of SRST2 
 

Species Citation N Population Sequencing 
Centre 

Average read 
depth 

Read 
length 

Staphylococcus 
aureus [48] 134 Clonal, ST22 Sanger, UK 24x 55 

Staphylococcus 
aureus [49] 128 Clonal, ST239 Sanger, UK 60x 65 

Streptococcus 
pneumoniae [50] 113 Clonal, ST81 Sanger, UK 30x 55 

Salmonella enterica 
Typhimurium [51] 44 Clonal, ST313 Sanger, UK 34x 76 

Shigella (E. coli) [52] 81 Clonal, S. 
sonnei Sanger, UK 25x 55 

Enterococcus 
faecium [35] 

43 Diverse, 
dominated by 
ST203, ST17 

Melbourne, 
Australia 

658x 101 

Listeria 
monocytogenes This paper 231 Diverse Melbourne, 

Australia 36x 152 

      	
   
 
Table 2. Data sets used to demonstrate utility of SRST2 in the hospital setting 
 

Species Citation N Average 
read depth Read length 

 	
  Enterococcus faecium (Fig 2a-c) [35] 43 658 101 
 	
  Hospital outbreak investigations 

(Fig 2d-e) 
[15] 20 36x 151 

 	
  K. pneumoniae, E. coli [38] 69, 74 34x 101 
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Figures  
 
Figure 1. Summary of SRST2 approach 
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Figure 2. Run times for MLST analysis with SRST2 
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Figure 3. Overall accuracy of SRST2 allele calling and gene detection 
 

 
 
  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 28, 2014. ; https://doi.org/10.1101/006627doi: bioRxiv preprint 

https://doi.org/10.1101/006627
http://creativecommons.org/licenses/by/4.0/


	
   23	
  

Figure 4. Accuracy of SRST2 allele calling at low read depths and with expanded 
MLST database size 
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Figure 5. Resistance gene detection 
 

 
 
 
  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 28, 2014. ; https://doi.org/10.1101/006627doi: bioRxiv preprint 

https://doi.org/10.1101/006627
http://creativecommons.org/licenses/by/4.0/


	
   25	
  

Figure 6. SRST2 analysis of sequence types and beta-lactamase CTX-M-15 genes 
amongst hospital isolates 
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Figure 7. SRST2 analysis of E. faecium hospital data and hospital outbreak 
investigation 
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Figure 8. SRST2 analysis of hospital outbreak investigation 
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