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Availability 
SRST2 Python code is freely available (https://github.com/katholt/srst2) and utilises 
bowtie21 for read mapping and SAMtools2 for alignment processing. 
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Abstract 
 
Rapid molecular typing of bacterial pathogens is critical for public health epidemiology, 
surveillance and infection control, yet routine use of whole genome sequencing (WGS) for 
these purposes poses significant challenges. Here we present SRST2, a tool for fast and 
accurate detection of genes, alleles and multi-locus sequence types from WGS data, which 
outperforms assembly-based methods. Using >900 genomes from common pathogens, we 
demonstrate SRST2's utility for rapid genome surveillance in public health laboratory and 
hospital infection control settings. 
 
 
 
Text 
 
Rapid molecular typing of bacterial pathogens is critical for public health epidemiology, 
surveillance and infection control3,4. Whole genome sequencing (WGS) has revolutionised 
pathogen research and promises to revolutionise public health and hospital microbiology4-6, 
especially in the management of antimicrobial resistance. Yet, despite several 
demonstrative studies5,7,8, the lack of suitable analytic WGS tools for public health and 
diagnostic laboratories poses significant challenges3,9.  
 
Two key goals for routine genomic surveillance of pathogens are: (i) to detect the presence 
of genes linked to clinically relevant phenotypes - including virulence genes, antimicrobial 
resistance genes or serotype determinants; and (ii) to classify isolates into clonal groups via 
multi-locus sequence typing (MLST10), detection of clone-specific or other epidemiological 
markers. Current methods rely on interrogating genome assemblies using BLAST or other 
search algorithms to identify genes or alleles10-13, yet these methods have limited 
sensitivity, efficiency and reproducibility. Production of quality assemblies can be highly 
variable due to dependence on data quality and to the requirements for data pre-processing 
and optimisation of parameters such as kmer length (Methods). This makes assembly-
based analyses difficult to standardise and quality-control, features that are critical for 
routine use in hospital and public health settings. 
 
Here we present SRST2, a reconstructed and substantially enhanced version of SRST14, for 
fast and accurate detection of genes, alleles, and/or MLST directly from WGS short reads 
using a mapping-based approach (Methods, Supplementary Fig. 1). To assess the 
accuracy of allele identification with SRST2, we analysed publicly available Illumina data 
from 543 bacterial genomes of five different species for which independent MLST data 
was available (Supplementary Table 1). With seven loci in each MLST scheme, this 
yielded 3,801 allele calls across 35 loci to assess call rate and false positive rate. The read 
sets represented a wide range of average read depths, with 90% in the range 12x - 130x and 
50% between 20x - 60x (Supplementary Table 1). For each species, we used SRST2 to 
download the latest MLST database from pubmlst.org and subsequently ran SRST2 using 
default parameters. Median run time was 6 minutes per sample (interquartile range, 4-10 
minutes) and increased linearly with number of reads (Supplementary Fig. 2). Efficiency 
can be easily improved or standardised, without data pre-processing, by instructing SRST2 
to map the first N reads only. 
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SRST2 call rates and false positive rates increased with average read depth, stabilizing with 
depths ≥15x (Fig. 1a, Supplementary Fig. 3). For comparison, we also assembled each 
read set using Velvet15 and used nucleotide BLAST to identify MLST alleles 
(assembly+BLAST method; Methods). At read depths ≥15x, SRST2 made significantly 
more allele calls than assembly+BLAST (call rates 99.9% vs 95.9%, respectively; p<1x10-

15), with significantly greater accuracy (false positive rates 0.46% vs 0.90%; p=0.05). The 
heuristic information provided by SRST2 (that is, confident mismatches, insertions, 
deletions or truncations reported from read mapping) was a strong indicator of accuracy in 
the result: where an exact match was reported (98% of calls with depth ≥15x), the false 
positive rate was 0.2%; where an inexact match was reported, the false positive rate was 
11.7%. For assembly, false positive rates were 0.2% for exact matches (95% of calls) and 
76% for inexact matches. Hence, the key difference between the two methods was the 
ability of SRST2 to make correct calls where assembly+BLAST could not: for read depths 
≥15x, SRST2 made a call with the correct allele 99.4% of the time, compared to only 95% 
for assembly analysis (p<1x10-15 for difference in rates). At sequence type (ST) level, the 
difference was even greater: SRST2 achieved accurate ST assignment for 96% of isolates 
with average depth ≥15x, whereas assembly+BLAST correctly identified only 76%. 
 
To assess performance at low read depths (≤15x), ten S. aureus read sets were subsampled 
to low depths (Methods). This confirmed that an average depth of only 10x was required 
for SRST2 to achieve >90% call rate and <0.5% false positives (Fig. 1a, Supplementary 
Fig. 4). MLST databases can be expected to grow indefinitely due to increasing diversity 
and broader sampling. However simulations (Methods) indicated that doubling the size of 
the S. aureus MLST database had no impact on SRST2 accuracy (Fig. 1a, Supplementary 
Fig. 4). 
 
In addition to reliably distinguishing alleles of a given gene, SRST2 can also accurately 
determine the presence or absence of genes of interest, such as those encoding 
antimicrobial resistance or virulence. To evaluate this, we used 43 E. faecium genomes 
(Supplementary Table 1), previously screened for vancomycin susceptibility and presence 
of the VanB vancomycin resistance operon vanABHSXY16,17. Seventeen isolates were 
vancomycin resistant (VRE), and all were PCR positive for the vanA-B gene. These 
genomes were sequenced to ~1,000x depth and SRST2 correctly detected vanA-B in 17/17 
VRE. In five vancomycin sensitive (VSE) isolates PCR negative for vanA-B, SRST2 
detected VanA-B sequences at very low depths (<0.2% of average depth), probably caused 
by minor but easily identifiable contamination during VRE-VSE multiplexed sequencing. 
SRST2 also confirmed the presence of the entire VanB operon, which is strongly predictive 
of the VRE phenotype. For comparison, assembly+BLAST identified full-length vanA-B 
sequences in just 7/17 VRE genomes, with multiple smaller hits spanning the full-length 
gene in five VRE and <50% coverage of the gene identified in the remaining five VRE. To 
investigate the effect of sequencing depth on gene detection, we randomly selected five 
VRE and five VSE read sets for subsampling at <10x average read depth. VanA-B was only 
ever detected in confirmed VRE genomes, and sensitivity of detection with SRST2 reached 
100% for read sets with ≥5x average read depth (Fig. 1c). 
 
To further explore the relative sensitivity of gene detection with SRST2, we screened all 
the read sets used for MLST validation (Supplementary Table 1) for antimicrobial 
resistance genes in the ARG-Annot database of acquired resistance genes13 (Methods). 
SRST2’s detection of whole genes was more sensitive than detection of whole or partial 
gene sequences by assembly+BLAST (Supplementary Fig. 5): 6.8% of genes detected at 
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≥90% coverage by SRST2 at depths ≥15x were not found at ≥90% coverage in assemblies. 
For most of these genes, smaller fragments were detected by BLAST (Supplementary Fig. 
5); however, SRST2 has the advantage of sensitive detection and confident allele-calling 
across the full length of genes, even at low depths (Fig. 1c, Supplementary Fig. 5). 
 
To validate SRST2 in a public health laboratory setting, we analysed 231 clinical isolates 
of Listeria monocytogenes and compared MLST data obtained from gold-standard PCR 
and amplicon sequencing with those obtained from SRST2 or assembly+BLAST analysis 
of Illumina MiSeq data (Fig. 1b). Sequencing and analysis was performed by the 
Microbiological Diagnostic Unit Public Health Laboratory in Melbourne, Australia, the 
national reference laboratory for L. monocytogenes. For average read depths ≥15x, SRST2 
had a substantially higher call rate than assembly-based analysis (99.6% vs. 95.7%; 
p<1x10-12), with similar low false positive rates (0.7% vs. 0.6%; p=0.9). Hence, for 
samples with ≥15x data, a total of 99% of all alleles were called correctly by SRST2, a 
significantly higher proportion than the 95% achieved by assembly+BLAST (p<1x10-12). 
At <15x read depths, SRST2 also performed better than assembly-based analysis (87% vs 
72% of alleles correctly called, respectively, p<1x10-3; Fig. 1b).  
 
Further, SRST2 is already being assessed for routine MLST analysis of Streptococcus 
pneumoniae at Public Health England (Anthony Underwood, personal communication), 
and the open-source SRST2 code has been adapted by Public Health Ontario, Canada to 
perform specialist emm typing of Group A Streptococcus18. 
 
In a hospital setting, the combination of MLST and gene detection can provide rapid and 
powerful insights for infection control without specialist bioinformatics knowledge. SRST2 
analysis of 69 K. pneumoniae and 74 E. coli genomes from a UK hospital8 revealed that 
each was dominated by a single ST with a high rate of the extended-spectrum beta-
lactamase (ESBL) gene CTX-M-15 (K. pneumoniae ST490 comprising 25% of total, 71% 
of ESBL; E. coli ST131 comprising 40% of total, 77% of ESBL; Supplementary Fig. 6). 
Routine SRST2 surveillance of ESBL infections could be indicative of hospital outbreaks 
and used to identify which isolates should be investigated via transmission analysis. 
 
Using the E. faecium genome data, collected as part of a 12-year hospital study of 
vancomycin resistance25, SRST2 took ~30 minutes to generate the results in Figure 2a-c, 
showing (i) increasing vancomycin resistance over time; (ii) a shift in dominant ST during 
the same period; and importantly (iii) that this was not attributable to the introduction nor 
transmission of a new resistant clone, as the resistance rates were steady (approximately 
50%) across all dominant STs. Similar conclusions typically require many days of labour 
and specialised assays in the diagnostic laboratory19 and have been confirmed by detailed 
WGS analysis showing frequent acquisition of VanB transposons by diverse circulating 
strains16. 
 
We next applied SRST2 to analyse data from real-world small-scale infection control 
investigations7. SRST2 took 5 minutes to generate results for suspected outbreaks of VRE 
and E. cloaceae (Fig. 3), in which suspected outbreak isolates were readily distinguishable 
from epidemiologically unrelated isolates, consistent with WGS phylogenies and manual 
analysis of antimicrobial resistance markers7. SRST2 typing of 18 plasmid replicons20 also 
indicated specific plasmid replicons (IncHI2, IncA/C) associated with two of the resistance 
profiles. The authors also reported use of a complex hybrid of assembly, mapping and 
manual inspection to determine carbapenem resistance mechanisms in five Gram-negative 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2014. ; https://doi.org/10.1101/006627doi: bioRxiv preprint 

https://doi.org/10.1101/006627
http://creativecommons.org/licenses/by/4.0/


	
   5	
  

bacteria isolated in close proximity7. SRST2 analysis of these five read sets identified the 
acquired beta-lactamases OXA-23 in AB223; IMP, SHV-12 and TEM-1 in EC1a; CTX-M-
15 and TEM-1 in Eco216; CTX-M-15 and SHV-133 in KP652; and no acquired 
carbapenemase genes in EC302. These results are consistent with those reported from 
manual analysis7. 
 
Here we have demonstrated the use of SRST2 for microbial genome surveillance in a 
variety of public health and hospital settings. In the face of rising threats of antimicrobial 
resistance and emerging virulence amongst bacterial pathogens, SRST2 represents a 
powerful tool for rapidly extracting clinically useful information from raw WGS data. 
 
 
Availability 
SRST2 Python code is freely available (https://github.com/katholt/srst2) and utilises 
bowtie21 for read mapping and SAMtools2 for alignment processing. 
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Figure Legends 
 
 
Figure 1. Overall accuracy of SRST2 allele calling and gene detection. 
 
(a) MLST analysis of public data from 5 species (N=543 genomes, 3801 loci, details 
Supplementary Table 1). Tests were grouped by read depth and accuracy rates (left y-axis, 
correct allele calls as a proportion of tests), calculated at each depth (x-axis, red slashes 
indicate scale change). Grey bars, number of tests at each depth (right y-axis); Lines, 
accuracy of allele calling. (b) MLST analysis of Listeria monocytogenes data (N=231 
genomes, 1671 loci) conducted in a public health laboratory; colours and axes as in a. (c) 
Accuracy of vanB resistance gene detection for E. faecium read sets subsampled to low 
depth; y-axis shows proportion of correct (presence vs. absence) calls as a proportion of 
100 tests at each depth; colours and axes as in a. A call of “present” implies detection of 
≥90% of the length of the gene at ≥90% nucleotide identity. 
 
 
Figure 2. SRST2 analysis of E. faecium hospital data 
and hospital outbreak investigation. 
 
Temporal distribution of isolates is shown in (a) coloured by vancomycin resistance as 
inferred from vanA-B detection with SRST2, and in (b) by coloured by sequence type 
inferred by SRST2. (c) Summary of all SRST2 results by sequence type (ST), in order from 
left to right: single linkage clustering of STs by number of shared alleles; MLST allele 
profiles; heatmap indicating the proportion of isolates that carries each resistance gene 
(scale as indicated), frequency of the ST (axis as indicated, coloured as in b).  
 
 
Figure 3. SRST2 analysis of hospital outbreak investigation. 
(a) Isolate genetic profiles obtained from SRST2 analysis, indicating that case EF4 was 
distinct in both sequence type and resistance gene profile from the outbreak cases EF2 and 
EF3. Full WGS analysis showed a similar result7. (b) Isolate genetic profiles obtained from 
SRST2 analysis, including plasmid replicons detected (pink). The profiles indicate that case 
EC3 shared the same sequence type as the linked cases EC1 and EC2 (ST94), but lacked 
the IncA/C plasmid and had a distinct resistance gene profile. Full WGS analysis showed 
that EC1 and EC2 isolates were much closer to each other (≤22 SNPs) than to EC3 (>150 
SNPs)7. 
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Methods 
 
Approach and implementation 
Given a read set and database of reference allele sequences, SRST2 is designed to perform 
two key tasks: (i) detect the presence of a gene or locus, and (ii) determine the precise or 
closest matching allele for that locus, amongst a set of possible reference allele sequences. 
The approach is illustrated in Supplementary Figure 1. A database of reference sequences 
must be provided in fasta format, in which the fasta headers indicate both the locus (so that 
alleles of the same locus can be compared) and a unique name for each allele. In the case of 
MLST data an additional database of ST profiles is provided as tab-delimited text, which 
assigns STs to unique combinations of alleles. Current MLST data (allele sequences and 
profile definitions), suitable for use with SRST2, can be downloaded from pubmlst.org 
automatically using the getmlst.py script supplied with SRST2. Other sequence databases 
can be easily formatted for use with SRST2 using the scripts supplied with the program. 
Any number of sequence databases can be analysed in a single run, allowing for 
simultaneous typing of MLST, resistance genes and virulence genes. 
 
For each input database, reads are aligned using bowtie2 v2.1.0 or above with the ‘--very-
sensitive-local’ and ‘-a’ settings, and all alignments are reported to a file in SAM format. 
Mapping sensitivity can be fine-tuned by specifying to SRST2 any of the parameters 
available within the bowtie2-align command or a maximum number of mismatches per 
read (default 10 mismatches allowed). Flags in the resulting SAM file are modified so that 
each read is included in the pileup for every allele to which it is aligned. Pileups are 
generated using SAMtools v0.1.18 mpileup and parsed by SRST2 to determine percent 
coverage, divergence, and mismatches, and to calculate a score for each possible allele. 
 
Allele scoring 
An overview of the scoring approach is given in Supplementary Figure 1. We begin with 
an alignment of reads from sample s to a reference sequence r. At each position i in the 
reference sequence r (ri), let si be the set of reads in sample s that align to ri. Let ai be the 
total number of reads in si, and let bi be the number of reads in si in which the aligned base 
does not match the reference base at ri. If sample s contains the precise sequence r, then the 
probability of a mismatched base at any position in an aligned read is equal to the per-base 
error rate of the sequencing technology ei, which for Illumina is taken to be 0.01, although 
this can vary depending on what pre-processing steps are implemented21,22. 
 
To quantify the evidence against the presence of the reference sequence r in s, we perform 
a Binomial test at each position ri, to generate a 1-sided P-value Pi to assess the probability 
of observing ai-bi successes in ai trials, with a probability of success of 1-ei. Any change at 
position ri - including a base substitution, an insertion of any size or a deleted base - is 
treated as a mismatch, incrementing bi by 1. For large deletions that result in an absence of 
any aligned reads (including truncations of the end of the sequence), ai = 0 and no Binomial 
test is possible. In this case, the evidence for the deletion is provided by the reads which 
align adjacent to the deletion but do not align across the deletion. Hence we calculate the 
average number of reads aligned to the two bases preceding the deletion, di, and conduct 
the Binomial test with ai = bi = di.  
 
We then utilize a non-parametric approach to score each allele by considering the set of all 
P-values calculated for reference sequence r. First, to minimise artefacts associated with 
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fluctuation in read depths, we (a) set Pi=1 where bi=0, and weight Pi by the relative read 
depth (i.e. weight of evidence) at position ri compared to those of other positions in r: 
   

weighted Pi (Pi,w) = Pi * (ai / r max depth) 
 
We then compare the sorted –log10(Pi) values versus those of the theoretical distribution of 
–log10(xj/n) where n=length(r) and xj = 1,2,…n, analogous to inspecting a quantile-quantile 
(QQ) plot (Supplementary Fig. 1). A linear model is fitted to the two probability 
distributions and the resulting slope is taken as the score for reference sequence r, scorer. 
Here we leverage a common criticism of linear models to our advantage: the susceptibility 
to outliers at the tails of the distribution. In this case, outliers are typically SNPs or indels 
relative to the sequence r which, because they result in low P-values in the Binomial test 
and thus very high values of –log10(P), are at the end of the observed distribution 
(Supplementary Fig. 1). Thus when a linear model is fitted, its slope increases with the 
number of well-supported SNPs and indels compared to the reference. As a result, among 
reference alleles of the same locus, the sequence r with the lowest scorer (flattest slope in 
the QQ plot) is the most likely match for s.  
 
Reporting outputs 
SRST2 output tables report, for each sample s and each locus or gene cluster, the lowest 
scoring allele sequence r, the average read depth of s across r and indicators of any 
evidence against a precise match with r (including mismatches supported by >50% of 
aligned reads, or read depth falling below a cutoff). Only matches passing the user-set 
coverage and divergence cut-offs (by default, >90% coverage and <10% divergence) are 
reported. For MLST data, STs are calculated according to the MLST profiles database 
provided, based on the closest matching alleles at each locus. 
 
Normally, an exact match between r and s would be assigned if (a) r has the lowest scorer 
amongst the set of alleles of the same locus or gene cluster, and (b) there are no SNPs or 
indels between r and s. If (a) holds but (b) does not, this is indicative of a novel allele and 
SRST2 will flag the result in output tables. In such cases, we recommend that users who are 
interested in defining novel alleles should inspect the raw sequence data (which may be 
assisted by the alignments, pileups and consensus fastq files generated by SRST2). 
 
Optionally, SRST2 can report the full details of scoring s against all reference sequences r, 
to enable users to parse and interpret the results to suit specific needs. These include 
average depth of s across r, average depth across the first and last two bases of r, the 
number of positions in r in which the majority of aligned reads in s show a mismatch 
against r (with SNPs, insertion/deletions and truncations reported separately), the depth of 
bases neighbouring truncations and, for the position with the greatest proportion of 
mismatching reads, the total aligned reads, total mismatching, proportion mismatching, and 
Binomial p-value. 
 
Bacterial isolates and sequencing 
A total of 231 Listeria monocytogenes isolates were analysed in this study, at the 
Microbiological Diagnostic Unit (MDU) Public Health Laboratory in Victoria, Australia. 
MDU is the national reference laboratory for L. monocytogenes and the isolates analysed 
include several from recent outbreaks as well as from the laboratory’s reference collection. 
Cultures of L. monocytogenes isolated from food, environmental or clinical specimens were 
purified by two successive single colony selections after streaking onto horse blood agar 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2014. ; https://doi.org/10.1101/006627doi: bioRxiv preprint 

https://doi.org/10.1101/006627
http://creativecommons.org/licenses/by/4.0/


	
   9	
  

(HBA) incubated for 18-24 h at 37°C. Resultant bacterial growth on the surface of HBA 
medium was aseptically collected and resuspended in a cryotube (Nalgene) containing 1 
mL of sterile glycerol storage broth (1.6% w/v Tryptone, Oxoid Pty Ltd, LP0042 
containing 20% v/v glycerol) prior to storage at -70°C. Cultures were retrieved from 
storage as required and freshly grown (HBA, 18-24h at 37°C) in preparation for DNA 
extraction. DNA was extracted from each isolate using QIAmp DNA Mini Kit (Qiagen) 
and eluted in EB buffer (Qiagen) (Tris buffer, no EDTA). 
 
DNA samples were subjected to traditional L. monocytogenes MLST analysis23 
(http://www.pasteur.fr/recherche/genopole/PF8/mlst/Lmono.html), with a minor 
modification to the annealing temperature for the bglA PCR (52°C not 45°C). The PCR 
products were purified with FastAP Thermosensitive Alkaline Phosphatase (Thermo 
Scientific) and Exonuclease I (Thermo Scientific). The purified PCR products were 
sequenced using BigDye Terminator v3 chemistry followed by capillary sequencing using 
a 3130xL Genetic Analyzer (Applied Biosystems). Trace analysis was conducted using 
BioNumerics version 6.6 with MLST Online plugin version 2.13 and Batch Sequence 
Assembly plugin version 1.34.  
 
DNA was subjected to multiplex library preparation using Nextera XT followed by 
sequencing using an Illumina MiSeq. DNA was quantified by Qubit dsDNA HS Assay Kit 
(Invitrogen) and normalized to 0.2ng/µl.  Total 1 ng of DNA was used for Nextera XT 
DNA Sample Preparation Kit (Illumina). Tagmentation of genomic DNA, PCR 
amplification with dual index primers, PCR clean-up using Agencourt AMPure XP 
(Beckman Coulter), DNA libraries normalization, library pooling and MiSeq sample 
loading were performed according to the manufacturer’s instruction with minor 
modifications. For longer than 2×250 bp runs on the MiSeq, 25 µl of AMPure XP beads 
was added to each PCR-amplified product during the PCR purification step otherwise 30 µl 
of AMPure XP beads was added. For some samples, after PCR purification, DNA fragment 
size and library concentration was analysed by 2100 Bioanalyzer (Agilent Technologies) 
and Qubit dsDNA HS Assay Kit (Invitrogen). DNA libraries were normalized manually to 
4 nM and libraries with unique indexes were pooled in equal volumes. Each resulting 
pooled library was denatured and diluted with 0.2N NaOH and pre-chilled HT1 (Illumina) 
to produce a 20 pM denatured library in 1 mM NaOH. Prior to the MiSeq run, the 
denatured library was further diluted with pre-chilled HT1 to approximately 12-13.5 pM. 
600µl of library including 2% (v/v) 20 pM denatured PhiX library (Illumina) was loaded 
together with MiSeq reagent kit v3 (Illumina) according to the manufacturer’s instructions. 
 
Publicly available short read data used in this study 
Details of Illumina read sets used in this study are provided in Supplementary Table 1. 
Data tables specifying the expected STs of each read set, summarised from published 
papers, are available on the SRST2 website (https://github.com/katholt/srst2). 
 
Subsampling of read sets 
To explore accuracy at low read depths, ten genomes each of S. aureus and E. faecium 
were selected for random subsampling of reads to simulate genomes sequenced to low read 
depth. To do this, we used the mean read depth across MLST loci to calculate the sampling 
fraction required to achieve approximately 1x, 2x, … 10x mean read depth. We randomly 
sampled reads from the forward reads file at the required sampling fraction, and extracted 
the corresponding reverse reads, using Perl scripts. Ten random samples were generated 
from each read set at each depth level, generating a total of 1,000 read sets for each species. 
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Sequence databases used in this study 
MLST databases for S. aureus, S. pneumoniae, S. enterica, E. coli, E. faecium, L. 
monocytogenes and E. cloaceae were downloaded from pubmlst.org using the getmlst.py 
script included with SRST2 (June 2014). 
 
Antimicrobial resistance gene detection was performed using the ARG-Annot database of 
acquired resistance genes13. Allele sequences (DNA) were downloaded in fasta format from 
http://www.mediterranee-infection.com/article.php?laref=282&titer=arg-annot (May, 
2014). Sequences were clustered into gene groups with ≥80% identity using CD-hit24 and 
the headers formatted for use with SRST2 using the scripts provided (cdhit_to_csv.py, 
csv_to_gene_db.py). A copy of the formatted sequence database used in this study is 
available on the SRST2 website (https://github.com/katholt/srst2). 
 
Representative sequences for 18 plasmid replicons were extracted from GenBank using the 
accessions and primer sequences specified by Carattoli et al20. A copy of the formatted 
sequence database used in this study is available on the SRST2 website 
(https://github.com/katholt/srst2). 
 
Simulation of expanded S. aureus MLST database 
As more genomes are sequenced and as bacteria continue to evolve, novel alleles will 
continue to be discovered and thus the size of allele databases will increase. To explore the 
impact of database size on accuracy of allele detection with SRST2, we simulated 
expansion of the current S. aureus MLST database from 2,161 alleles (mean 309 per locus) 
to 5,578 alleles (mean 797 per locus). The additional ~500 alleles per locus were generated 
using netrecodon v6.0.025. Sequences derived from the true MLST database were used to 
seed the simulation at each locus as follows. Existing alleles were translation-aligned 
between start (alignment start) and stop (alignment end) codons, those containing a 
frameshift or stop codon were removed, and the modal consensus sequence was exported.  
The best-fit DNA substitution model of each true alignment was determined using the AIC 
in MrModeltest v2.3, as implemented in PAUP* v4.0b. In netrecodon, the modal sequences 
were forward evolved under the coalescent, using the parameters of the best-fitting model 
for each locus, mutation rate 1E-7 and recombination rate 1E-7/15 (based on reported r/m 
of 1/1526). A total of 100 independent replicates of forward evolution were performed per 
locus, retaining 2,000 sequences per replicate (N = 200,000 simulated sequences per locus). 
The first 500 unique simulated sequences at each locus were added to the MLST database, 
and duplicate sequences were removed. 
 
Analysis runs and time calculations 
All SRST2, assembly and BLAST analysis was run on a Linux cluster (iDataplex x86 
system, “Barcoo” cluster at VLSCI – http://vlsci.org.au). SRST2 was run with default 
parameters. Details of Velvet assembly and BLAST analysis are given below. Run times 
were calculated from time stamps extracted from log files for SRST2 and Velvet Optimiser 
assembly runs. 
 
Assembly-based analysis 
Assemblies were generated using the de novo assembler Velvet v1.2.1015, with optimal 
kmer choice for each readset refined through iterative calls to VelvetOptimiser v2.2.5 
(http://bioinformatics.net.au/). Briefly, each read set was assembled using a call to 
VelvetOptimiser with kmers from 29 up to 89, in steps of 12. The optimal kmer, k1, was 
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extracted and a second call to VelvetOptimiser was made using kmers from k1-12 up to 
k1+12, in steps of 4. A final call to VelvetOptimiser was run using kimers from k2-4 up to 
k2+4, in steps of 2. The final assembly was that output from the third and final call to 
VelvetOptimiser.  
 
For MLST analysis from assemblies, a nucleotide BLAST+ (v2.2.25) search was 
performed for each locus and each contig set. In this BLAST search, the contig set was 
used to query the database containing all known allele sequences for a given locus, and the 
top BLAST hit was reported. If this hit had ≥90% nucleotide identity across ≥90% of the 
length of the reference allele sequence, an allele call was recorded. If the hit was an exact 
match to a known allele (i.e. 100% nucleotide identity across 100% of the length of the 
allele sequence), this was considered a precise allele call. The Python code used is available 
within the SRST2 distribution. For gene detection analysis from assemblies, a nucleotide 
BLAST search was performed in which the set of reference sequences (sequence database, 
i.e. antimicrobial resistance gene database) was used to query the database of all contigs for 
that assembly.  
 
Statistical analysis 
All statistical analysis and data plotting was performed in R. Allele calling performance of 
SRST2 and assembly+BLAST was assessed via three metrics: (i) call rate = total number 
of allele calls made, for SRST2 this was a call with ≥90% coverage and no uncertainty 
recorded (i.e. with ≥2x read depth at both ends and also neighbouring any truncations or 
deleted bases), for BLAST this was a call with ≥90% coverage and ≥90% nucleotide 
identity; (ii) false positive rate = total number of correct allele calls as a proportion of all 
calls; (iii) proportion of all tests resulting in a call with a correct allele, equal to (call rate) * 
[1 – (false positive rate)]. As these metrics are proportions, the significance of differences 
in performance metrics was calculated using a two-sided test for equality of proportions 
(prop.test function in R). Resistance gene detection was assessed using a cut-off of ≥90% 
coverage and ≥90% identity to define the presence of a gene. 
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Figures 
 
Figure 1: Overall accuracy of SRST2 allele calling and gene detection 
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Figure 2: SRST2 analysis of E. faecium hospital data and hospital outbreak 
investigation 
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Figure 3: SRST2 analysis of hospital outbreak investigation 
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