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Abstract

Fulfilling the promise of the genetic revolution requires the analysis of large datasets con-
taining information from thousands to millions of participants. However, sharing human
genomic data requires protecting subjects from potential harm. Current models rely on
de-identification techniques that treat privacy versus data utility as a zero-sum game.
Instead we propose using trust-enabling techniques to create a solution where researchers
and participants both win. To do so we introduce three principles that facilitate trust
in genetic research and outline one possible framework built upon those principles. Our
hope is that such trust-centric frameworks provide a sustainable solution that reconciles
genetic privacy with data sharing and facilitates genetic research.
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1 Introduction

”Widespread distrust ... imposes a kind
of tax on all forms of economic activity, a
tax that high-trust societies do not have
to pay”

— Francis Fukuyama [1]

Genomic research promises substantial societal benefits, improving health care and our
understanding of human biology, behavior, and history. To deliver on this promise, the
research and medical community require active participation of a large number of hu-
man volunteers and broad dissemination of genetic datasets. However there are serious
concerns about potential abuses of genomic information, from racial discrimination and
denial of services due to genetic predispositions, to disclosure of intimate familial relation-
ships such as non-paternity events. Todays data-management techniques largely frame
the value of data versus the risks to participants as a zero-sum game, in which one players
gain is anothers loss.

Facing these challenges, we recently held a meeting at the Banbury Center on Accelerating
Genomic Research with Privacy Protections (Dec 11-12, 2013). The aim of the meeting
was to discuss policy and technical improvements and alternatives to the status quo. The
meeting brought together experts in computer science, data privacy, bioethics, policy,
law enforcement, consumer rights, bioinformatics, and human genetics. This manuscript
distills major points from the meeting and extensive follow-on discussions between the
participants.

2 The rise and fall of de-identification

Current models for protecting participant data in genetic studies focus on concealing the
participants identities. This focus is codified in the legal and ethical frameworks that
govern research activities in most countries. Most data-protection regimes were designed
to allow the free flow of de-identified data, while restricting the flow of personal infor-
mation. For instance, both the US HIPAA rule and the EU Privacy directive require
either explicit subject consent or proof of minimized risk of re-identification before data
dissemination. In Canada, the test for whether there is a risk of identification involves
ascertaining whether there is a ”serious possibility that an individual could be identified
through the use of that information, alone or in combination with other available informa-
tion.” [2] To that end, the research community employs a fragmented system to enforce
privacy that includes institutional review boards (IRB), ad-hoc data access committees
(DAC), and a range of privacy and security practices such as HIPAA Safe Harbor.
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However, the current protection-by-anonymity paradigm is under threat. Standard data
security controls are important but not sufficient for genetic data. For instance, access
control and encryption can ensure the security of information at rest in the same fashion
as for other sensitive (e.g. financial) information, protecting against outsiders or unautho-
rized users gaining access to data. However, there is also a need to prevent misuse of data
by a ’legitimate’ data recipient. Recent advances in re-identification attacks, specifically
against genetic information, reduce the utility of these de-identification techniques [3].

With the growing limitations to de-identification, the current paradigm is not sustain-
able. At best, participants go through a lengthy, cumbersome, and poorly understood
consent process that tries to predict worst-case future harm. At worst, they receive
broken promises for anonymity. Data custodians must keep maneuvering between the
opposite demands for data utility and privacy, relegating genetic datasets into silos with
arbitrary access rules. Funding agencies waste resources funding studies whose datasets
cannot be reused across and between large patient communities because of security con-
cerns. Finally, well-intentioned researchers struggle to obtain genetic data from hard to
access resources. These limitations impede serendipitous and innovative research and de-
grade a data set’s research value, with published results often overturned due to small
sample sizes [4].

The gaps in current data privacy techniques

It may be that current de-identification practice, which primarily consists of removing
an individuals personally identifying information from records containing individualized
genetic information, is simply outdated; though a war of attrition, it is possible that new
techniques will once more make it difficult to re-identify an individual. In the meeting, we
reviewed computational schemes that theoretically make re-identification demonstrably
(and perhaps quantifiably) difficult. We focused on two classes of techniques: secure
multiparty computation (MPC) [5] — including homomorphic encryption — and differential
privacy (DP) [6] . The hallmark of these techniques is that they provide mathematical
proofs delineating what the data recipient can and cannot infer based on the data access
given to them.

MPC computes a known, shared function on encrypted data sets from multiple parties;
the computation reveals nothing about the parties input data other than the functions
results. For example, a patient or her physician holding genetic data can use MPC
to have their genetic data interpreted by a third party service without revealing the
actual genotypes. However, MPC has some practical limitations. First of all, MPC
requires predefined analysis protocols. Unfortunately, research protocols are rarely fixed in
advance. Most research is exploratory in nature, and is characterized by ad-hoc analyses in
which researchers test and refine their analytic procedures repeatedly during the course of
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the study. Moreover, MPC does not address privacy breaches such as attribute-disclosure
attacks (e.g., the Homer et al. study [7]) that result from the output of the analytic
procedure rather than its inputs.

In contrast, differential privacy (DP) applies to the scenario of a trusted party holding
a database of sensitive information wishing to publish the result of a function computed
on the data. Techniques used to achieve DP include the addition of noise to the output.
Researchers have developed DP algorithms for performing many data-mining tasks, such
as reporting summary statistics and clustering. Unfortunately, the current levels of noise
required for differential privacy appear to be unacceptable for most genetic studies and
would eradicate the weak association signals that are the reality of most complex traits.

Our conclusion is that these emerging computational techniques for ensuring genetic pri-
vacy show potential, but require substantial theoretical and practical development to be
fully operational methods for data sharing to accelerate scientific studies.

3 Focusing on trust not privacy

We propose to shift from the zero-sum game of data privacy versus data utility to a
framework that builds and maintains trust between participants and researchers. We
suggest the following key principles for trust-enabling frameworks:

1. Transparency creates trust: Trust requires transparency between parties. In
genomic research, transparency means informing participants about not only the
intended but the actual use of data. This is a commonly accepted principle of
information privacy that is found in most data protection statutes (e.g., Canadas
PIPEDA [8]) and fair information practices (e.g., the OECD Privacy Principles [9]).

2. Increased control enhances trust: Given the uncertainties in genetic studies,
the burden of making ”fully informed” decisions about future data use and harms is
virtually impossible. However, the situation improves when the participant is given
control over future data use. Clear communication of risks is crucial to ensure fully-
informed participants, yet current consent processes require participants to make a
one-time decision about future data sharing preferences with unknown risks. Even
worse, some consent forms include vague ’legalese’ that might be tempting from a
legal perspective, but instead fuel patients fears. Some participants naturally shy
away from sharing when the terms are too broad, while other individuals might
make decisions that are not well informed. In addition, one-time blanket consent
does not accommodate the reality that privacy preferences might change over time.
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3. Reciprocity maintains trust: Researchers should maximize the value of data
collected from participants, subject to individual preferences. By advancing scien-
tific knowledge, the research community reciprocates and pays back the participants
volunteerism. A sense of community among participants can help bridge the gap
between societal and individual rewards. Mechanisms for participants to reward
researches that act appropriately and punish researchers that violate their trust
provide incentives for ongoing win-win behavior.

If successful, a trust-centric framework creates a system that rewards good behavior,
deters malicious behavior, and punishes non-compliance. This stands in stark contrast to
the current system that punishes researchers, participants, and progress.

4 Bilateral Consent Framework

Building on top of the three key principles above, we suggest a trust-enabling framework,
called the Bilateral Consent Framework (BCF) (Table 1). This approach is inspired by
the recent movement for participant-centered research [10] and the growing success of
trust-enabling techniques in online peer-to-peer economy marketplaces. Importantly, our
proposal is not meant to be final, but rather to provide a framework and a set of building
blocks to drive discussions among the community. The major building blocks of the BCF
are the following:

Trusted mediator: the role of the trusted mediator is to operate the BCF. This entity
can be a patient-advocacy group, a funding agency, academic center, a scientific society,
or a private company as long as they are trusted by the participants and have the means
to operate the BCF. The trusted entity should mediate the communication between the
researchers and the participants, act upon the participants decisions, and be the single
point of contact. In addition, this entity should educate participants about the nature of
the data and describe the benefits and risks.

Dynamic participant consent: at its core BCF enables participants to have enhanced and
dynamic control over access to data about them. In current consent architectures, the
participant delegates complete control over the data to the Principal Investigators (PIs).
Upon completion of the study, the PI typically delegates secondary usage decisions to
a data access committee or an IRB board. In the BCF, data control remains primarily
tied to the source individual. Researchers solicit their studies, describing the benefits
of the study and specifying limitations on how they use the data. The participant can
grant or deny consent to different studies. Thus, instead of one-time decisions about
data sharing, a BCF fosters long-term engagement by participants, allowing researchers
to solicit participant data and participants to change their data contribution as they see
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fit.

Uniform code of conduct: having researchers consent to uniform guidelines makes it easier
for participants to grant consent to new researchers. Researchers that are part of the BCF
consent to a code of conduct that affirms that individual data will be properly handled,
including that it will be held securely and that re-identification will not be attempted.
Thus, BCF replaces the gatekeeer approach, where IRBs decide who should count as
a qualified researcher on a case-by-case basis, with a participant-centric model, where
participants understand the rules that researchers will follow. Evidence for violation
of the code of conduct can result in public notice, canceled access, and possible legal
action. Methods for redress might include data protection law, criminal law or additional
contractual terms (e.g. indemnification and compensation).

Auditing: the BCF encourages a trust-but-verify approach. All data access should be
monitored, both to remind researchers that their access privileges depend on trust, and
to enable potential detection and enforcement of violations. One means of monitoring is
for all analysis activity to be executed on the trusted mediators computing resources and
logged. This is different from current access control models where upon permission the
researcher analyzes the data on his or her own computing resources without any oversight
on the actual analysis. Importantly, we do not expect the auditing system to be perfect
or to capture all data misuse. The primary aim of such system is to deter malicious
behavior. However, we envision that in the future such systems can help to identify clear
anomalies (e.g. analysis of Y-STRs that is a key component of surname inference [11])
or data analysis that is substantially different from the consent. In addition, logging and
auditing promote transparency. There is growing interest in using cloud computing for
genetic analysis and moving the computation to the data; adding an auditing system can
leverage this trend to increase trust.

Reputation system: having information about researchers past behavior will help par-
ticipants make good consent decisions. We propose a reputation system that rewards
researchers that maintain solid records of adhering to their promise for how data en-
trusted to their care is used. Such systems have catalyzed online marketplaces that
require high levels of trust with minimal previous interaction, such as Ebay or Uber. In
the BCF, a reputation system can include the researchers portfolio of previously com-
pleted studies, recommendations from previous participants, and a vouching system from
other researchers. Accordingly, participants can elect to share data only with researchers
of sufficient reputation and the trusted entity can revoke access to researchers with low
reputation.

The aim of the description above is to describe potential architectural elements of trust-
centric frameworks. While these building blocks reinforce each other, they are not meant
to be an all-or-nothing monolithic system. We recognize that certain implementations
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might only use a subset of these elements.

5 Conclusion

Realizing a bilateral consent framework will require new technologies and hard choices.
However, there is a need for improved global standards for legal and technical frameworks
to share genomic data. Initiatives such as the Global Alliance for Genomics and Health
[12] and the Genetic Alliance [13] have started the dialogue; it is our hope that the
proposed framework can act as a starting point as stakeholders move from discussion to
practice. A bilateral consent framework can redirect fears of unknown privacy abuse to
excitement for participating in the genetic information revolution.
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Tables

Table 1:
Attribute

Consent for secondary use
Primary data controller

Who decides on
data usage?

secondary

Data stewardship
Code of conduct

Oversight

Oversight mechanism

Who can punish data miscon-
duct?

Main source of reputation is

Cohort integrity

Place of computation

aCC-BY 4.0 International license.

Current system
One time decision
PI

Data Access Committee or local IRB

Not defined
Locally determined

Local IRB

Not clear

Local IRB
University or research institute
Stable

PI-owned equipment or
cloud provider

PI-chosen

Major differences between current data sharing frameworks and a BCF.

BCF
Dynamic
Participant

Participant

Trusted mediator
Globally determined

The community (participants, trusted
mediator, researchers)

Audit system

The community (participants, trusted
mediator, researchers)

The community (previous partici-
pants, trusted mediator, researchers)

Indefinite / variable

Resource-owned equipment or
resource-chosen cloud provider.
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