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Abstract

It is now well known that unwanted noise and unmodeled artifacts such as batch effects can
dramatically reduce the accuracy of statistical inference in genomic experiments. We introduced
surrogate variable analysis for estimating these artifacts by (1) identifying the part of the genomic
data only affected by artifacts and (2) estimating the artifacts with principal components or singular
vectors of the subset of the data matrix. The resulting estimates of artifacts can be used in subsequent
analyses as adjustment factors. Here I describe an update to the sva approach that can be applied
to analyze count data or FPKMs from sequencing experiments. I also describe the addition of
supervised sva (ssva) for using control probes to identify the part of the genomic data only affected
by artifacts. These updates are available through the surrogate variable analysis (sva) Bioconductor
package.

1 Background

Batch effects and other technological artifacts introduce spurious correlation, create bias, and add vari-
ability to the results of genomic experiments [T}, 2, [3]. Unfortunately all the possible sources of bias are
unknown in most high-throughput experiments [4, [5]. In some cases, it is possible to rely on the date
the samples were processed as a surrogate for unmeasured artifacts [6]. However, each new technology
may suffer from different artifacts and it may take time for the community to discover which variables
must be measured and included in an analysis [7].

In 2007 we introduced surrogate variable analysis as a conceptual approach to statistical modeling of
genomic data when artifacts are unknown or unmeasured [4] and subsequently improved the estimation
algorithm [8] (Figure . The conceptual idea we proposed modeled the data as a combination of known
variables of interest, known adjustment variables, and unknown and unmeasured artifacts. A simple
version of this model might relate gene expression for gene ¢ on sample j (g;;) to the phenotype for that
sample (y;), the known batch variable for that sample (a;) and an unknown artifact on that sample (u;):

ij = bio + bi1y; + ey + du + ey (1)
~~ =~ ] S~~~ ~~ ~~
gene expression baseline expression  phenotype ef fect  known batch  unknown artifact meas. error

If only a single gene is measured, it is difficult to estimate the unknown artifact u; from the data
directly, since all the coefficients (b,c,d) are unknown. But we noticed [4] that if many genes are
measured, it is possible that for some genes the coefficients for by; and ¢; may be equal to zero. For these
specific genes the model reduces to:

9ij = bio + diu; + €ij
~~~ =~ ) ~~~ ~~
gene expression baseline expression  ynknown artifact ~measurement error

Our next insight was that even though d; and u; are unknown, you do not need to know either of
them exactly to get correct statistical inference for the parameters for the phenotype variable b;1, you
just have to know their linear combination d; x u; [, [8]. We showed that if you collect the data for
all genes where there is no effect of phenotype or known batch (by; = 0 and ¢; = 0) and subtracted the
mean of each gene to remove the baseline effect, the matrix form of the model for the data is:
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1. Identify the genes that are only affected by unknown artifacts
2. Perform a decomposition of the data for just these genes to identify estimates of the artifacts.

3. Include the artifact estimates in subsequent analyses as if they were known.

Figure 1: Surrogate variable analysis The general surrogate variable analysis framework for identi-
fying unknown artifacts in genomic data has three steps [{, [§].

G = d 4+ F
—~— —~
My XM my, X1 1Xn My XM

where m,, is the number of genes where b1; = 0 and ¢; = 0 and n is the sample size. We then pointed
out that you could apply a matrix decomposition like the singular value decomposition or principal
components analysis to this subset of the data to estimate surrogates for G and u. Later we also showed
that if the number of genes that were not affected by phenotype or known batch (b1; = 0 and ¢ = 0) but
were affected by unknown artifacts (d; # 0) was large enough, you can obtain consistent estimates of a
linear transformation of g; [9]. The surrogate variable analysis approach then proceeds in three steps:

In this paper I discuss two new extensions of the surrogate variable analysis approach for sequencing
data inspired by the work of other groups. The first extension, which I call supervised surrogate variable
analysis (ssva) was introduced by Gagnon-Bartsch and colleagues [5]. The idea is to perform Step of
the surrogate variable analysis algorithm (Figure . The second idea, svaseq, uses a moderated log link
in place of the identity link when estimating the surrogate variables in Steps 1-2. This is a simplified
version of a similar extension of surrogate variable analysis first proposed by Risso and colleagues [10].

2 Methods

2.1 General form of the surrogate variable analysis mathematical model

The general form of the simple model in equation is:

K L Q
E[f(9i))15,6, @) = boi + > biyn; + ) ciar; + Y dgitg (2)
k=1 (=1 q=1
or in matrix form:
Elf(G)])= BP + CA + DU

phenotype  artifacts unknown artifacts
where the function f() has been applied component wise to each element of G and there may be multiple

phenotypes, artifacts, or unknown artifacts. The general surrogate variable analysis algorithm then
proceeds in the following four concrete steps.

1. Apply the function f() element wise to the observed gene expression data.
2. Estimate or define p; = Pr(by; = 0,¢q; =0 & d; #0)
3. Multiply the ith row of f(G) by p; to get the matrix W

4. Perform a matrix decomposition of W and estimate i, by the gth component of the decomposition
of W.

5. Include estimates of #, in subsequent analysis as if it were a known covariate.

Figure 2: General surrogate variable analysis estimation framework In this general framework,
Step 1 allows for transformations specific to different data types, Step 2 allows for either estimating
or defining the probabilities of being affected by unknown artifacts but not known variables, and Step 4
allows for a variety of matriz decompositions and factor analysis approaches.
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2.2 Relationship of surrogate variable analysis to other approaches

The general form of the surrogate variable analysis algorithm relies on the idea that there is a subset
of genes, probes, or transcripts that are affected by unknown heterogeneity but are not affected by the
biological relationship of interest. This is the main way that a surrogate variable analysis approach
is distinguished from a standard principal component regression. Standard principal component based
regression methods, such as EIGENSTRAT [I1], are sufficient when the number of probes, genes, or
features expected to show a signal is small. Then the principal components will entirely capture artifacts
and not the signal of interest.

A number of extensions and variations on the surrogate variable analysis algorithm have been in-
troduced. For step one in the sva algorithm, identifying probes only associated with batch, it has been
proposed to use control probes [5, [I0]. For step two of the sva algorithm, estimating latent factors only
associated with dependence, it has been proposed to use factor analysis [12], independent components
analysis [I3], and principal components analysis [14]. Another extension of the surrogate variable ap-
proach in step two has been to model known sources of technical or biological covariation between the
measurements for probes, for example in eQTL studies [15] [16].

2.3 Supervised sva (ssva)

ySupervised sva (ssva) sets p; = 1 for all negative controls and p; = 0 for all other genes in Step 2
of the sva algorithm. The assumption is that control probes will capture all of the variation due to
unknown artifacts and none of the variation due to the phenotype. Control probes may miss biological
artifacts. For example, we showed that trans-eQTL that are associated with multiple gene expression
levels may act like an artifact when measuring the association between gene expression and phenotype [4].
These artifacts may be missed by the ssva approach. However ssva is particularly useful for unfortunate
experimental designs where the phenotype variable and unknown artifacts are highly correlated [6],
making empirical estimates unstable [5].

2.4 Moderated log link sva (svaseq)

The second extension involves the choice of function f() in . In our original work we used the identify
function for data measured on an approximately symmetric and continuous scale. For sequencing data,
which are often represented as counts, a more suitable model may involve the use of a moderated log
function [I7, [I8]. For example in Step 1 of the algorithm we may first transform the gene expression
measurements by applying the function log(g;; + ¢) for a small positive constant. In the analyses that
follow I will set ¢ = 1. After performing Steps 1-5 of the surrogate variable analysis estimation algorithm,
the estimated covariates are included in downstream models as adjustment variables. For the analyses
that follow, I will use the limma package [19] with the voom method [20] for differential expression
analysis.

2.5 Combining svaseq and ssva

Supervised svaseq proceeds by applying the transformation log(g;; +c¢) to the gene expression count data
in Step 1 and setting p; = 1 for all negative controls and p; = 0 for all other genes in Step 2 of the sva
algorithm.

2.6 Zebrafish data

I use data from Zebrafish sensory neurons with three control samples and three gallein treated samples
as the comparison groups [2I]. These data are available as part of the zebrafishRNAseq Bioconductor
package. I loaded the data and filtered as described in the RUVSeq package. Then I estimated batch ef-
fects using supervised and unsupervised surrogate variable analysis for sequencing, principal components
analysis, RUV with control probes, RUV with empirical controls, and residual RUV. I compared the
model estimates and I also compared differential expression analysis results when each of the different
batch effect estimates was included in the model in place of the study variable.

2.7 ReCount data

ReCount is a database of pre-processed RN A-sequencing data, processed to be comparable across samples
[22]. In this analysis, I downloaded pre-counted RNA-sequencing data sets measuring gene expression
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in two separate Hapmap populations [23] 24]. For our analysis, I downloaded the count data from Re-
Count and downloaded the pedigree information from the Hapmap website. I then performed differential
expression analyses looking for differences in expression between males and females and estimated un-
known latent structure. I calculated estimates of batch effects using unsupervised surrogate variable
analysis for sequencing, principal components analysis, RUV with empirical control probes, and RUV on
residuals. I compared the estimates to the variable indicating whether the data came from the Pickrell
or Montgomery study. I compared two scenarios, one where the sex and study variables were balanced
and one where they were imbalanced. I also compared the differential expression analysis results when
each of the different batch effect estimates was included in the model in place of the study variable.

2.8 GEUVADIS data

I downloaded the processed GEUVADIS [25] 26] Ballgown object [27] from
https://github.com/alyssafrazee/ballgown_code

T also compared the differential expression analysis results when each of the different batch effect estimates

was included in the model in place of the laboratory variable.

2.9 Simulating Data

I simulated data from a negative binomial model for count based RNA-sequencing data. I used the
following algorithm to simulate data, for complete details see the simulated data R markdown document
and accompanying HTML file.

1. Load the counts calculated from a previous data set with genes in rows and samples in columns
2. Filter genes with a count less than 5 for at least 2 samples.

3. Estimate the mean (u) and size (¢) parameter from a negative binomial using the method of
moments [28§]

4. Fit a smooth relationship of the form log(¢) = f(u) using a smoothing spline

5. Generate a matrix of mean values, one for each gene and sample from the model matrix, X,,xx
and coefficients B, «, through the equation

M =log(u) x 17 + 3 x X7

6. Predict the size value for each element of M with the equation log ¢ = f (log(maj))-

7. Generate the value for the ith gene on the jth sample from a negative binomial model: ¢;; ~

NB(f, ¢).

Figure 3: Approach for simulating RNA-seq data with Polyester package [29].

I estimated the model parameters from the Zebrafish data described above. I simulated two scenarios,
one where the group and batch variable where balanced and one where they were imbalanced. Data
were simulated with the Polyester R package [29]. Then I estimated batch effects using supervised
and unsupervised surrogate variable analysis for sequencing, principal components analysis, RUV with
control probes, RUV with empirical controls, and residual RUV. I compared the model estimates to the
true simulated batch variable and I also compared differential expression analysis results when each of
the different batch effect estimates was included in the model in place of the study variable.

2.10 Code and availability

ssva and svaseq are currently implemented in the sva Bioconductor package version 3.11.2 or greater
(http://www.bioconductor.org/packages/devel /bioc/html/sva.html). All data and code used to perform
this analysis are available as R markdown files [30] available from: https://github.com/jtleek/svaseq.
You can view the individual analyses as webpages at:
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1. Zebrafish analysis: http://jtleek.com/svaseq/zebrafish.html
2. ReCount analysis: http://jtleek.com/svaseq/recount.html
3. GEUVADIS analysis: http://jtleek.com/svaseq/geuvadis.html

=~

. Simulated data analysis: http://jtleek.com/svaseq/simulateData.html

3 Results

3.1 Simulated data

I estimated simulation parameters from the zebrafish data as described in the methods. I then performed
several checks to confirm that the data generated by the simulated model recapitulated the qualitative
behavior of the data used to estimate the model parameters (Figure @)), that data generated without
signal did not show statistically significant results, data could be simulated with differential expression
signal, and that data with batch effects displayed the expected conservative bias of p-values [31] (See
supplementary analysis files http://jtleek.com/svaseq/zebrafish.html).

simulated data zebrafish data

Var(Count)
Var(Count)

Mean(Count) Mean(Count)

Figure 4: Distribution of means and variances for simulated and real zebrafish data To confirm
that my simulation procedure produced reasonable simulated counts, I plotted the gene-specific means
and variances for (a) the simulated data set and (b) the observed zebrafish data set. The two distributions
are qualitatively similar. Additional checks on the simulation procedure are provided in the simulated
data analysis at http://jtleek.com/svaseq/simulateData.html.

In this case there was a single simulated batch effect. I simulated two scenarios, in the first scenario
the batch effect and the group effect had low correlation (). As expected, all methods that aim to estimate
batch effects while taking into account multiple sources of signal (svaseq and RUV methods) are highly
correlated with the simulated batch effect. The estimate of batch based on principal components is
biased, because the principal component is estimating a linear combination of the group and batch
variable (Figure [5)).

I next fit models relating the gene expression counts to the simulated group phenotype (p) and batch
effect estimates (@) using the following model:

log(gi; + 1)|p, b, = boi + biiy; + diitiy + g5 (3)

I accounted for the potential relationship between mean and variance using the voom method [20]. I
then estimated how concordant the differential expression results were with the results we obtained when
we fit model |§| using the true simulated batch variable using concordance at the top plots (CAT plots)
[32]. For each ranking, these plots show the fraction of results that are the same between the analysis
using the true batch variable and the batch variable estimated with different methods. Supervised and
unsupervised surrogate variable analysis for sequencing, RUV with control probes, RUV with empirical
controls, and residual RUV all outperform not adjusting for batch effects while principal components
analysis performs worse than no adjustment. The reason is that the principal component estimate is
correlated with group and absorbs some of the signal due to that variable.
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Figure 5: Correlation between simulated batch and group variables and various batch es-
timates Light circles indicate low correlation and dark, tight ellipses indicate high correlation. In this
case, all estimates that respect multiple sources of signal (sva and RUV based) methods are highly corre-
lated with the simulated batch effect. Principal components estimates a linear combination of the group
and batch variable and has lower concordance with the true simulated batch and the other estimates.
Additional details at http://jtleek.com/svaseq/simulateData.html.
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Figure 6: Differential expression results for simulated data A concordance at the top plot (CAT
plot) shows the fraction of DE results that are concordant between the analysis with the true batch
and the analyses using different batch estimates. Supervised (pink solid) and unsupervised (pink dotted)
surrogate variable analysis for sequencing, RUV with control probes (green dashed), RUV with empirical
controls (green dotted), and residual RUV (green solid) all outperform not adjusting for batch effects
(yellow) while principal components analysis (blue) performs worse than no adjustment. Additional
details at http://jtleek.com/svaseq/simulateData.html.
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We performed an identical analysis where the batch was now correlated with the group variable.
Qualitatively similar results hold in this second simulated scenario with one exception. The empirical
RUV methods attempt to define control probes by identifying genes that do not show differential ex-
pression with respect to batch. But when batch and group are correlated, this may also through away
genes that show signal with respect to the group variable. Similar the residual RUV approach estimates
the batch variable after taking the residuals from the model fit of the counts on the group variable.
However, when batch and group are correlated, this again removes batch signal and leads to slightly
lower performance of the RUV approaches [4]. Unsupervised svaseq does not use the control probes but
avoids some of these difficulties by iteratively identifying probes associated with group but not associated
with batch [8] (Figure [9).
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(b)

Figure 7: Comparison of batch effect results when group and batch are correlated (a) A plot
of the correlation between the different batch estimates and the batch variable analogous to Figure
(b) A concordance at the top plot measuring concordance between the analysis using the true batch
variable and the various estimates analogous to Figure[6] Here the unsupervised RUV approaches using
empirical control probes and residuals perform worse than no adjustment, because the methods can not
distinguish signal from the known group variable and the unknown batch variable. Additional details at
http://jtleek.com/svaseq/simulateData.html.

3.2 Zebrafish data

Next I performed an analysis on the zebrafish data as described in the methods section. Here, the
batch variable is not known, but we do have negative control probes which can be used to estimate the
batch effects. When comparing the batch estimates, I noted that the supervised sva estimates and the
RUV control probes estimates were perfectly correlated (correlation 1) and that they produced identical
differential expression results. The unsupervised sva and principal components approaches are most
similar to the supervised estimates from SVA or RUV for the zebrafish data.

3.3 ReCount data

For the ReCount data I generated an artificial batch effect by combining the data from two different
studies of gene expression in two different populations [23] 24]. I used sex as the outcome variable in the
analysis and then estimated batch effects using the same set of proposed approaches. I next fit models
relating the gene expression counts (g) to sex variable (p, phenotype variable representing sex) and batch
effect estimates (1, representing the study the samples came from) using the following model:

—

log(gij + 1)|P, b, @ = bo; + b1iy; + diiti; + €55 (4)

I accounted for the potential relationship between mean and variance using the voom method [20]. I then
estimated how concordant the differential expression results were with the results we obtained when we
fit model [6] using the true simulated batch variable using concordance at the top plots (CAT plots) [32].

In the original data, the batch effect and the group variable are nearly perfectly orthogonal. In
this situation the empirical and residual RUV approaches produce estimates of the batch variable more
highly correlated than the unsupervised svaseq approach (see http://jtleek.com/svaseq/recount.html)
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Figure 8: Comparison of batch effect results on zebrafish data (a) A plot of the correlation between
the different batch estimates analogous to Figure |5 but with no gold standard. (b) A concordance at
the top plot measuring concordance between the analysis using the supervised SVA estimates and the
various other batch estimates analogous to Figure @ The control probes RUV approach (blue solid
in (b)) and supervised sva approach produce identical results. The unsupervised sva (orange solid)
and principal components (pink solid) approaches are most similar to the supervised estimates in this
scenario. Additional details at http://jtleek.com/svaseq/zebrafish.html.

and produce correspondingly more similar differential expression results to using the true study variable
as an adjustment in the differential expression analysis (Figure ??a). However, I next re-sampled the
data to mimic a scenario where the group and batch variable showed modest correlation (r? = 0.33).
In this scenario the unsupervised sva and principal components analysis approaches outperform the
empirical control RUV approach. The residual RUV approach performs worse than no adjustment for
study, because signal due to the batch variable was removed when the residuals from the model relating
sex to phenotype was calculated (Figure ??b).
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Figure 9: Comparison of differential expression results for ReCount experiment (a) A concor-
dance at the top plot measuring concordance between the analysis using the true study and the various
other batch estimates analogous to Figure @ (b) A concordance at the top plot measuring concordance
between the analysis using the true study and the various other batch estimates analogous to Figure [f]
when data were resampled to make the sex and study variables moderately correlated (r? = 0.33.) When
sex and study are uncorrelated, RUV performs slightly better and when sex and study are correlated,
svaseq performs slightly better. Additional details at http://jtleek.com/svaseq/recount.html

3.4 GEUVADIS data

The Ballgown R package https://github.com/alyssafrazee/ballgown [27] can be used to analyze abun-
dance data from assembled transcriptome data from Cufflinks [33]. I loaded data from the GEUVADIS
project [25] 26] that we recently processed using Cufflinks and Ballgown [27]. T selected only the non-
duplicated samples and performed a differential expression analysis comparing different populations. I
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then compared the estimated batch effects using the various approaches to the known lab where the sam-
ples were processed, one of the variables that showed the highest association with assembled transcript
levels [26].

I assessed concordance between the batch effect estimates and the lab variable by fitting the model:

K
G =bo+ Z br1(Sample j belongs to lab k) + e; (5)
k=1

and then performed an ANOVA to compare the model including lab to the null model of no association
with lab. The unsupervised sva and principal components estimates showed significantly higher F-
statistics for concordance (482 and 456, respectively) compared to the RUV approach (106 and 109 for
RUYV residual and empirical, respectively). I next fit models relating the gene expression counts (g) to
the population phenotype (p, phenotype variable representing population) and batch effect estimates (4,
representing the study the samples came from) using the following model:

log(gij + 1)|7, b, @ = boi + bisyj + disity + ey (6)

I compared the results to the differential expression model where I included the known lab variable as
an adjustment in place of 4. The svaseq and principal components adjusted analyses showed greater
concordance with the lab adjusted analysis, as expected since the batch estimates were more highly
correlated with this known variable (Figure .
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Figure 10: Differential expression results for GEUVADIS data A concordance at the top plot
(CAT plot) shows the fraction of DE results that are concordant between the analysis with the true
laboratory and the analyses using different batch estimates. Unsupervised surrogate variable analysis
for sequencing (blue) and principal components analysis (orange) outperform the RUV based methods
(pink) and no batch adjustment (green). Additional details at http://jtleek.com/svaseq/geuvadis.html.

4 Discussion

Here I have described the general surrogate variable analysis framework and I have introduced two
extensions of the surrogate variable analysis approach. The first takes advantage of known control probes
to simplify the surrogate variable analysis algorithm and the second addresses the distribution of count
and FPKM data typically observed in sequencing experiments. I have shown that these approaches
perform comparably to other batch effect estimation procedures for sequencing when the group and
unknown batch variables are uncorrelated and outperform other approaches when the batch and group
variable are correlated. These extensions are currently available from the devel branch of the surrogate
variable analysis software http://bioconductor.org/packages/devel /bioc/html/sva.html and all analyses
are fully reproducible and available as R, markdown documents from https://github.com/jtleek /svaseq.
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