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Abstract

Storing, transmitting, and archiving the amount of data produced by next generation sequencing is

becoming a significant computational burden. For example, large-scale RNA-seq meta-analyses may

now routinely process tens of terabytes of sequence. We present here an approach to biological sequence

compression that reduces the difficulty associated with managing the data produced by large-scale tran-

scriptome sequencing. Our approach offers a new direction by sitting between pure reference-based

compression and reference-free compression and combines much of the benefit of reference-based ap-

proaches with the flexibility of de novo encoding. Our method, called path encoding, draws a connec-

tion between storing paths in de Bruijn graphs — a common task in genome assembly — and context-

dependent arithmetic coding. Supporting this method is a system, called a bit tree, to compactly store

sets of kmers that is of independent interest. Using these techniques, we are able to encode RNA-seq

reads using 3% – 11% of the space of the sequence in raw FASTA files, which is on average more than

34% smaller than recent competing approaches. We also show that even if the reference is very poorly

matched to the reads that are being encoded, good compression can still be achieved.

1. INTRODUCTION

The size of short-read sequence collections is often a stumbling block to rapid analysis. Central repositories

such as the NIH Short Read Archive (SRA; National Institutes of Health, 2014) are enormous and rapidly

growing. The SRA now contains 2.5 petabases of DNA and RNA sequence information, and due to its

size, it cannot be downloaded in its entirety by anyone except those with enormous resources. When select

experiments are downloaded, the local storage burden can be high, limiting large-scale analysis to those with

large computing resources available. Use of cloud computing also suffers from the data size problem: often

transmitting the data to the cloud cluster represents a significant fraction of the cost. Data sizes also hamper

collaboration between researchers at different institutions, where shipping hard disks is still a reasonable

mode of transmission. Local storage costs inhibit preservation of source data necessary for reproducibility

of published results.

Compression techniques that are specialized to short-read sequence data can help to ameliorate some of

these difficulties. If data sizes can be made smaller without loss of information, transmission and storage

costs will correspondingly decrease. While general compression is a long-studied field, biological sequence

compression — though studied somewhat before short-read sequencing (e.g. Ladner, 2004; Matsumoto
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et al., 2000) — is still a young field that has become more crucial as data sizes have outpaced increases

in storage capacities. In order to achieve compression beyond what standard compressors can achieve, a

compression approach must be tailored to the specific data type, and it is likely that different compression

approaches are warranted even for different short-read experimental settings such as metagenomic, RNA-

seq, or genome assembly applications.

Here, we present a new compression algorithm for collections of RNA-seq reads that outperforms ex-

isting compression schemes. RNA-seq experiments are extremely common, and because they are repeated

for many different conditions, the number of future experiments is nearly unbounded. Among the SRA’s

2,500 terabases, there are 72,304 experiments labeled “RNA-seq” that contain short-read sequences of ex-

pressed transcripts. While the compression technique we describe here was motivated by, and optimized for,

RNA-seq data, it will work for any type of short read data.

Existing short-read compression approaches generally fall into categories: reference-based schemes (Cam-

pagne et al., 2013; Fritz et al., 2011; Li et al., 2014) attempt to compress reads by aligning them to one or

more known reference sequences and recording edits between the read and its mapped location in the ref-

erence. De novo compression schemes (Adjeroh et al., 2002; Bhola et al., 2011; Bonfield and Mahoney,

2013; Brandon et al., 2009; Burriesci et al., 2012; Cox et al., 2012; Deorowicz and Grabowski, 2011; Hach

et al., 2012; Jones et al., 2012; Kozanitis et al., 2011; Popitsch and von Haeseler, 2013; Rajarajeswari and

Apparao, 2011; Tembe et al., 2010) attempt to compress without appeal to a reference. SCALCE (Hach

et al., 2012) is one of the most effective, and works by reordering reads within the FASTA file to boost the

compression of general purpose compressors. Our approach is able to achieve on average file sizes that are

35% smaller than SCALCE.

Reference-based schemes require a shared reference to be transmitted between all parties who want

to decode the data. Most reference-based schemes (e.g. Campagne et al., 2013; Fritz et al., 2011; Jones

et al., 2012; Li et al., 2014) focus on compressing alignments between the reads and a set of reference

sequences. As such, they work by compressing BAM files, which are the result of alignment tools such as

Bowtie (Langmead et al., 2009). The most-used such tool is CRAM (Fritz et al., 2011), which works by

mapping reads to a reference sequence and storing any differences. The limitation of these approaches is

that they must encode information in the BAM file that can be recreated by re-running the alignment tool. In

fact, such BAM compressors may in fact increase the raw size of the data since all the alignment information

must be preserved. Another reference-based compressor, fastqz (Bonfield and Mahoney, 2013), attempts to
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compress sequences directly using its own alignment scheme without first creating a BAM file.

Here, we present a scheme that lies somewhat in the middle of these two extremes: we exploit a shared

reference — a compressed transcriptome — but we do no aligning. The reference serves only to generate

a statistical, generative model of reads that is then employed in a fixed-order context, adaptive arithmetic

coder. The coder is adaptive in the sense that as reads are encoded, the model is updated in such a way that

the decoder can reconstruct the updates without any additional information beyond the initial compressed

transcriptome. In this way, if the read set differs significantly from the reference transcriptome, the statisti-

cal model will eventually converge on this new distribution, resulting in improved compression. We present

a scheme that updates the model in such a way that it is robust to sequencing errors, which are a common

source of poor compression. By sitting between pure reference-based compression and de novo compres-

sion, the path encoding scheme gains flexibility and generality: the same scheme works reasonably well

even when the provided reference is a poor match for the sample, but is significantly improved with better

shared data.

The arithmetic coder uses a fixed-length context to select a conditional distribution for the following

base. This scheme is efficient but has the drawback that at the start of each read, there is insufficient context

to apply the model. We solve this problem with a new approach. We encode the starts of all the reads in

a single, compact data structure called a bit tree. The bit tree is a general scheme for storing sets of small,

fixed length (say, < 30 nucleotides) sequences. It is a simplification of other serial encoding schemes such

as S-trees (de Jonge et al., 1994) and sequence multiset encoding (Steinruecken, 2014). The bit tree stores

sequences but not their order or the number of times they occur in the set. We reorder reads into a standard

order to match that stored by the bit tree, and augment the bit tree with auxiliary information indicating the

number of repetitions of each sequence.

Taken together, the bit tree for encoding the read starts and the adaptive, context-aware arithmetic coding

for the remainder of the read produce files that are on average less than 66% of the size of those produced by

a current state-of-the-art de novo encoder, SCALCE (Hach et al., 2012). Our approach also produces smaller

files compared with reference-based schemes. Its files are on average 33% the size of those produced by

CRAM (Fritz et al., 2011) and on average 59% the size of those produced by fastqz (Bonfield and Mahoney,

2013). These are very large improvements in compression, a field where improvements of several percent

are often difficult to achieve.

We call the resulting approach path encoding because, in the methods section below, we draw a parallel
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between the design of our arithmetic coder and the problem of efficiently encoding paths in directed graphs,

which is a problem that arises in genome assembly (Pevzner et al., 2001) and metagenomic analyses (Iqbal

et al., 2012). The bit tree scheme for storing sets of short sequences (kmers) is of independent interest as

the need to transmit and store collections of kmers is also increasingly common in de Bruijn-graph-based

genome assembly, metagenomic classification (Wood and Salzberg, 2014), and other analyses (Patro et al.,

2014).

2. RESULTS

2.1 Path encoding effectively compresses RNA-seq reads

We selected 7 short-read, RNA-seq data sets of various read lengths and number of reads (Table 1). Both

single- and paired-end protocols are represented among the sets. One data set, SRR037452, was chosen

because it is a benchmark data set for comparing RNA-seq abundance estimation approaches (e.g. Patro

et al., 2014; Roberts and Pachter, 2013). Three sets related to human embryo development were chosen as a

representative set of related experiments that one might consider when investigating a particular biological

question. A fifth set represents a larger collection of single-end reads of a human cell line. Finally, to assess

the effect of using a human transcriptome as a reference when encoding other species, RNA-seq experiments

from Mus musculus and the bacterium Pseudomonas aeruginosa were included. Taken together, these are

representative set of RNA-seq read sets.

Path encoding is able to reduce these files to 12% – 42% of the size that would be achieved if the file

was naı̈vely encoded by representing each base with 2 bits (Table 2). The two-bit encoding is approximately

1/4th the size of the sequence data represented as ASCII. (It is approximate because the ASCII encoding

includes newline characters separating the reads.) Thus, path encoding reduces files to 3% – 10.5% of the

original, raw ASCII encoding. For the human data sets, this is on average 34% smaller than the encod-

ing produced by the SCALCE compression scheme (Hach et al., 2012), a recent, highly effective de novo

compression approach. This is also smaller than the de novo compressor fqzcomp (Bonfield and Mahoney,

2013), which produces files that are larger than those produced by SCALCE.

When encoding these files, a human reference transcriptome derived from the hg19 build of human

genome was used to prime the statistical model. This transcriptome contains 214,294 transcripts, and oc-

cupies 96,446,089 bytes as a gzipped FASTA file. This reference file is required to decompress any files
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that were compressed using it, but because the same reference transcriptome can be used by many RNA-seq

experiments, the cost of transmitting the reference can be amortized over the many files encoded with it. The

cost of transmitting or storing the 92 Mb of the reference can be recovered after < 1 to 6.2 transmissions

of a compressed file (Table 2, last column). Often the size of the reference transcriptome plus the encoded

file is less than the size required by previous pure de novo compression schemes — this means that path

encoding can also be seen as a very effective de novo encoder if the reference is always transmitted with the

file, with the option to become a reference-based compressor if several files share the same reference.

Even though this reference contains only human transcripts, it is still effective when encoding RNA-

seq experiments from other organisms. For mouse data (SRR689233), for example, the compression is on

par with that achieved for the human data sets. For the very different bacterium Pseudomonas aeruginosa

(SRR519063), the compression gain over de novo encoding is still substantial (Table 2, last row). Thus, a

single reference can provide enough information to effectively encode RNA-seq reads from many organisms,

further allowing its size to be amortized across collections of read sets.

When compared against a recent reference-based encoding scheme, fastqz (Bonfield and Mahoney,

2013), path encoding fares well, consistently producing smaller files than the mapping approach taken by

fastqz. In contrast to path encoding, using a mismatched reference for fastqz results in files that are larger

than if no reference were used at all (Table 2, last 2 rows). This is because nearly no reads map sufficiently

well to the reference. This shows that the non-mapping-based reference scheme implemented by path en-

coding is both more effective and more robust than mapping-based schemes, which require good matches

along a read to benefit from the reference and which also spend a lot of their encoding recording the edits

between the reference and the mapped read.

Much of the previous work on reference-based compression has focused on compressing alignment

BAM files. The archetypical example of this is CRAM (Fritz et al., 2011). BAM files contain more than

sequences. They normally include quality values, sequence descriptions, etc. and may contain multiple

alignments for each sequence. To fairly compare sequence compression schemes, we generated BAM files

with a single, best alignment for each read to the reference transcriptome, and then stripped extraneous

fields (including quality values and sequence names) from the resulting BAM file by setting them to the

appropriate “empty” value. These streamlined BAM files were then compressed with CRAM (Table 2). In

all cases, path encoding produced much smaller file than CRAM. This is not entirely fair to CRAM, since

it attempts to preserve all alignment information in the BAM files, and it also allows for random access to
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records in compressed file, which path encoding does not. However, for raw compression and transmission,

path encoding sequences directly is much more effective than compressing a BAM file. Again, when the

reference is mismatched to the sequence (Table 2, last two rows), compression of the CRAM mapping-based

approach is reduced substantially.

Figure 1 summarizes the compression achieved by the various methods compared here. It presents

encoding sizes as fraction of the naı̈ve two-bit encoding of the file. Ratios over 1.0 indicate that an increase

in file size over the simplistic encoding.

2.2 Encoding of the read tails comprises the bulk of the compressed file

A path encoded file consists of several parts (Figure 2). The bulk of the space is used to encode the ends of

reads using a context-dependent arithmetic coding scheme (see Methods). This is the part of the encoding

that exploits the adaptive statistical model that is initialized from the reference and updated continuously

as reads are processed. The first few characters (here 16) of each read are encoded via a bit tree — a

data structure that encodes a set of kmers — along with counts for how many reads begin with each kmer

(“read head counts” in Figure 2). Together, the read end encoding, the bit tree, and the counts represent

the information needed to reconstruct the original reads if we do not care about recording the locations of

“N” characters or the orientation of the reads. Since SCALCE and two-bit encoding also do not record the

location of “N”s and read orientation is often arbitrary, the sum of the sizes of these three parts are what is

reported in Table 2. N locations and the original read orientations can optionally be recovered using the “N

locations” and “Flipped bits” parts of the compressed output.

The read head counts and N locations are compressed simply as gzipped lists of ASCII-encoded, space-

separated base-10 integers. The bits recording whether a read was reverse complemented are also simply

a gzipped bit vector with a “1” indicating that the read was reverse complemented before it was encoded.

While smarter encoding schemes may reduce the size of these parts of the path encoded file (for example

by performing a bit-level Burrows-Wheeler transformation (Burrows and Wheeler, 1994) of the bit vector),

they do not represent a large fraction of the output and so improvements to them will likely have a small

effect.
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2.3 Priming the statistical model results in improved compression

The availability of the reference typically results in a 15% – 25% reduction in file size for human read

sets, a non-trivial gain in compression (Figure 3A). For example, for a file with 3.8 gigabases of sequence

(SRR1294122), path encoding with the reference produces an encoded file of 0.17 gigabytes, while starting

with a uniform, empty statistical model produces a file of 0.22 gigabytes. For non-human data, the gain

of using a human reference is naturally smaller. For mouse reads, the reference yields only a ≈ 3% gain

in compression — still a non-trivial size reduction in the context of large files, but much smaller. For the

bacterial data, the reference provides little help, but does not hurt compression.

Although the reference provides a starting point for the statistical model, the arithmetic coding we use

is adaptive in the sense that read patterns observed frequently during encoding will become more efficiently

encoded as they are observed. By disabling these dynamic updates, we can quantify their benefit (Figure 3B),

which is substantial. The dynamic updating for the larger human files results in a encodings that are 45%

– 92% the size of those produced by the non-dynamic model. For non-human data, where the initial model

is likely to be most wrong, the adaptive coding is essential for good compression, resulting in a file that is

4.1 (mouse) or 7.0 (P. aeruginosa) times smaller. Thus, even with a poor initial model, a good model can be

constructed on the fly by adapting the probabilities to the reads as they are processed.

These results show that path encoding provides a unified framework for good compression: when a

good reference is available, it can be exploited to gain substantially in compression. When a reference is

mismatched to the reads being encoded, the initial model is poor but can be improved via adaptive updates.

2.4 The effect of heuristics for reverse complementation and encoding duplicate reads, and

of the choice of context size

Reverse complementing reads also provides a significant gain, particularly for reads that match the reference

(Figure 3A). This is because the reverse complementation allows the read to agree more with the statistical

model. Even when the initial model is poor, reverse complementation is still useful since reads will be

reverse complemented to better agree with the model. Recognizing some duplicate reads also leads to a

modest improvement in encoding size (Figure 3A). The improvement based on handling duplicate reads is

small both because there are relatively few exact duplicate reads and because — in the interest of speed —

we only tag a read as a duplicate if every read with the same first 16 bases is identical. It is possible that, in
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more redundant read sets, better handling of duplicate reads could result in a bigger gains.

Path encoding has one major parameter: the kmer length k used to construct the nodes of the context

graph (see Methods). A bigger k uses more of the preceding string as context to set the probability distribu-

tion for the next base, but at the same time bigger ks make the effect of sequencing errors last longer since

the sequence error affects the context for k bases. In addition, a larger k requires more memory resources

to encode and decode. We find that k = 16 is the point at which encoding is most effective (Figure 4).

This is also the point at which a kmer can fit in a single 32-bit computer word, leading to an efficient use of

memory. While longer k does reduce the size of the encoding of the read ends (both because the read ends

are shorter and because a longer context is used), the size of the bit tree encoding the read starts grows more

quickly than the savings gained.

2.5 Encoding and decoding path encoded files is fast

Path encoding the entire data set here takes 2.37 hours. This is nearly identical to the running time for

running bowtie and CRAM on the same data set. Times for encoding individual files ranged from 5.1 min-

utes to 32 minutes. Decoding is generally much faster, never taking longer than 22 minutes for the files in

Table 1. Since encoding is typically performed only once, and decoding is performed multiple times, this

is the trade-off that is normally desired: very effective compression, taking longer to encode, with quick

decoding.

3. DISCUSSION

We have provided a novel encoding scheme for short read sequence data that is effective at compressing

sequences to 15% – 25% of the uncompressed, two-bit encoded size. To do this, we introduced the novel

approach of encoding paths in a de Bruijn graph using an adaptive arithmetic encoder combined with a

bit tree data structure to encode start nodes (see Methods for a description). These two computational

approaches are of interest in other settings as well. Path encoding achieves better compression than both de

novo schemes and mapping-based reference schemes. Since the reference for the human transcriptome is

small (92 Mb) compared with the size of the compressed files, the overhead of transmitting the reference

is recovered after only a few transmissions. In addition, the reference is merely a gzipped version of the

transcriptome — a file that most researchers would have stored anyway.
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Path encoding is also more general than reference-based schemes since we have more flexibility in

choosing how to initialize the statistical model with the reference sequence. For example, the reference could

be reduced to simple context-specific estimates of GC content. This will naturally lead to worse compression

but will also eliminate most of the need to transmit a reference. Technology-specific error models could also

be incorporated to augment the reference to better deal with sequencing errors. In addition, SNP data from

a resource such as the HapMap project could be included in the reference to better deal with genomic

variation. Framing the problem using a statistical generative model as we have done here opens the door to

more sophisticated models being developed and incorporated.

Another source of flexibility is the possibility of lossy sequence compression. While encoding, a base

that has low probability in a particular context could be converted to a higher probability base under the

assumption that the low probability base is a sequencing error. Implementation of this technique does indeed

reduce file sizes substantially, but of course at the loss of being able to reconstruct the input sequence. While

lossy compression may be appropriate for some analyses (such as isoform expression estimation) and error

correction can be viewed as a type of lossy encoding, because we are interested in lossless compression, we

do not explore this idea more here.

A recent line of work (e.g. Daniels et al., 2013; Janin et al., 2014; Loh et al., 2012) aims at producing

searchable, compressed representations of sequence information. Allowing sequence search limits the type

and amount of compression that can be applied and requires some type of random access into the encoded

sequences. Arithmetic encoding does not generally allow such random access decoding because the con-

structed interval for a given symbol depends on all previously observed symbols. However, decompression

with our path encoding scheme can be performed in a streaming manner: the encoded file is read once from

start to finish, and the decoder produces reads as they are decoded. This would allow reads to be decoded as

they are being downloaded from a central repository.

The other dimension of compressing short-read data is storing the quality values that typically accom-

pany the reads. Path encoding does not attempt to store these quality values as there are other, more appro-

priate approaches for this problem (Cánovas et al., 2014; Hach et al., 2012; Ochoa et al., 2013; Yu et al.,

2014). Path encoding can be coupled with one of these approaches to store both sequence and quality values.

In fact, in many cases, the quality values are unnecessary and many genomic tools such as BWA (Li and

Durbin, 2009) and Sailfish (Patro et al., 2014) now routinely ignore them. Yu et al. (2014) showed that qual-

ity values can be aggressively discarded and without loss of ability to distinguish sequencing errors from
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novel SNPs. Thus, the problem of compression of quality values is both very different and less important

than that of recording the sequence reads.

An open-source implementation of path encoding is available from http://www.cs.cmu.edu/∼ckingsf/

software/pathenc/ and as supplementary material.

4. METHODS

4.1 Overview

Our compression approach is composed of several different encoding techniques that are applied to the input

reads as a set. First, the reads are reverse complemented based on a heuristic to determine which orientation

matches the initial reference better (Section 4.6). The initial k letters of each read are stored in a bit tree data

structure along with the counts of their occurrences (Section 4.3). These initial k letters of each read are

called the read head. The reads are then reordered to place reads with the same heads next to one another.

Finally, the remainder of each read (called the read tail) is encoded using an adaptive arithmetic coding

scheme (Section 4.4) inspired by the path encoding problem (Section 4.2).

4.2 The path encoding problem

We can capture much of the information in a reference transcriptome using a graph G that has a node for

every kmer that occurs in a transcript and an edge (u, v) between any two kmers u and v if v follows u,

overlapping it by k − 1 characters, in some transcript. This is a de Bruijn graph, except it is derived from

several strings rather than a single string. A read r, if its sequence occurs in the transcriptome, corresponds

to a path in G, and conversely there is only one path in G that spells out r. Therefore, r can be encoded by

specifying a path in G by listing a sequence of nodes. This leads to a very general problem:

Problem (Path encoding). Given a directed graph G, encode a collection of paths P1, P2, . . . , Pn, each

given as an ordered sequence of nodes of G, using as little space as possible.

Our compression scheme uses one system for encoding the first node of each read path Pi (the read

head) and another system for encoding the remaining nodes in the path (the read tails). The first system

is based on encoding a depth-first search of a tree that represents the first nodes of each path. The second

system is based on adaptive, context-aware arithmetic coding. The challenge posed by adaptive arithmetic

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2014. ; https://doi.org/10.1101/006551doi: bioRxiv preprint 

https://doi.org/10.1101/006551
http://creativecommons.org/licenses/by-nc-nd/4.0/


coding in this context is to not be mislead into assigning large probability to sequencing errors. We describe

each approach below.

4.3 Encoding the starts of the reads with a bit tree

Let T be the kmer trie defined as follows. T has a root node that has four children, and each edge from the

root node to a child is labeled by a different nucleotide in {A,C,G, T}. Each of these children themselves

have four similar children, with edges for each of the nucleotides. This continues until every path from the

root to a leaf node has exactly k edges on it. In this way, a complete, 4-ary tree of depth k is constructed

such that any path from the root to a leaf spells out a unique kmer, and every possible kmer corresponds to

some such path in T . The set of kmers K that appear at the start of some read corresponds to a subset of

those possible paths, and we can construct a subtree T|K from T by removing all edges that are not used

when spelling out any kmer in K. Knowing T|K allows us to reconstruct K precisely: K consists of those

kmers spelled out by some path from the root to a leaf in T|K .

T|K can be encoded compactly by performing a depth-first search starting at the root, visiting each child

of every node in a fixed order (say A then C then T then G) and emitting a 1 bit whenever an edge is

traversed for the first time and a 0 bit if we attempt to go to a child that does not exist. This bit stream is then

compressed using a general purpose compressor (gzip; Gailly and Adler, 2014). T|K can be reconstructed

from this stream of 0s and 1s by performing a depth-first search on T traversing a edge whenever a 1 bit

encountered but pruning subtrees whenever a 0 bit is read. K is then reconstructed as the set of kmers

corresponding to the leaves we encountered.

The trie T never need be actually built to perform the encoding or the decoding. Rather, a sorted list

of the kmers is sufficient for simulating the traversal of the trie to encode, and decoding only ever needs to

implicitly construct the part of the trie that is on the current depth-first search path. Pseudocode for bit tree

encoding is given in Algorithm 1. In practice, encoding and decoding of very large collections of kmers

takes very little time or memory.

The same kmer may start many reads, but the encoding of T|K only records which kmers were used, not

the number of times each was used. To store this, we write out a separate file called the count file with the

count of each kmer in T|K in the order that the kmers will be visited during the decoding of T|K . This file

stores counts as space-separated ASCII integers, and the entire file is compressed using the gzip (Gailly and

Adler, 2014) algorithm. T|K also does not record the order in which the kmers were used as read heads, so
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we reorder the read set to put reads with the same start adjacent to one another in the same order as their

starts will be encountered during the decoding of T|K .

This data structure is essentially the same as a S-tree (de Jonge et al., 1994) specialized to kmer tries,

except that no data is stored at the leaves, and because the length of every sequence is a known constant

k we need not store any information about the (always nonexistent) children of nodes at depth k. It is a

simplification of Steinruecken (2014) since counts are stored only for the leaves.

4.4 Arithmetic coding of read tails

Arithmetic coding (Moffat et al., 1998; Rissanen and Langdon, 1979; Witten et al., 1987) compresses a

message by encoding it as a single, high-precision number between 0 and 1. During the encoding, an

interval [a, b] is maintained. At the start, this interval is [0, 1], and at each step of the encoding, it is reduced

to a subinterval of the current interval. At the end, a real number within the final interval is chosen to

represent entire message. The interval is updated based on the probability of observing each symbol in a

particular context. For path encoding, we store a probability distribution pu(·) associated with each node u

in G on its outgoing edges such that pu(v) gives an estimate for the probability that edge (u, v) will be the

one used by a path leaving u. We also give the outgoing edges of u an arbitrary, fixed order 〈v1, . . . , vd(u)〉,

where d(u) is the out-degree of u (when encoding DNA or RNA, d(u) is always 4). Using this ordering, we

can compute the cumulative distribution p′u(vj) =
∑

i<j pu(vi). The probability distributions pu(·) for each

node in G represent the statistical generative model that encodes the information about which sequences are

more or less likely.

Let Pi = 〈u1, . . . , u`〉 be a sequence of nodes of the path Pi that we are encoding. When beginning to

encode Pi, the current node is u1, the current interval is [0, 1]. The first node u1 is encoded using the bit

tree approach described above. Suppose we have encoded u1, . . . , uj−1 and the current interval is [a, b]. To

encode uj , we update the interval to:

[
a+ (b− a)p′uj−1

(uj), a+ (b− a)
(
p′uj−1

(uj) + puj−1(uj)
)]

. (1)

This chooses a subinterval of [a, b] that corresponds to the interval for uj in p′uj−1
. The intuition for why

this approach achieves compression is that it requires fewer bits to specify a number that falls in a high-

probability (large) interval than in a low probability (small) interval. Therefore, if we choose the distributions
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pu(·) well so that common edges are given high probability, we will use few bits to encode frequently

occurring symbols.

In practice, Equation 1 is not used directly because it would require infinite precision, real arithmetic

which is not available on digital computers. Rather, an approach (Moffat et al., 1998) that uses only fi-

nite, small precision, integer arithmetic and that rescales the current interval when necessary is used. This

practical arithmetic coding has achieved state-of-the-art compression in many applications (Rissanen and

Langdon, 1979; Witten et al., 1987).

4.5 Initializing and updating the sequence generative model

The probability distributions pu(·) for each node u specify what we consider to be a high-probability se-

quence (which is equivalent to a high probability path). It is here that we can use shared, prior information

to influence the encoding. These distributions need not be constant — so long as the decoder can reconstruct

any changes made to the distributions, we can adapt them to observed data as we see it.

We derive pu(v) using counts cu(v), which are set according to:

cu(v) =


10(nuv + 2) if (u, v) occurs in the reference

10nuv if nuv ≥ 2 and (u, v) does not occur in the reference

1 otherwise

(2)

where nuv is the number of times edge (u, v) was observed in the read paths that have been encoded so far.

This expression for cu(v) requires an edge (u, v) to either occur in the reference or be used at least twice

in a read path before it is given the larger weight. This is to reduce the impact of sequencing errors that are

frequent, but unlikely to occur twice. The 1 in the third case of Equation 2 acts as a pseudocount for edges

that have not yet been observed, and the 10 in the first two cases sets the relative weight of observations

versus this pseudocount. We compute pu(v) = cu(v)/
∑

w cu(w).

During the encoding of reads, it is possible that we encounter a kmer that we have never seen before.

In this case, we encode the base following this kmer using a default probability distribution derived from

a distinct count distribution c0(b) that gives the number of times we encoded base b using this default

distribution. After the first time we see a new kmer, we add it to the graph G and on subsequent observations,

we treat it using Equation 2.
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An alternative way to view the arithmetic coding scheme above is that the probability distribution is

provided by a fixed-order (k) Markov chain for which the transition probabilities are updated as edges are

traversed. The k preceding bases provide a context for estimating the probability of the next base. The read

heads provide the initial context for the Markov chain. This view also motivates the need to handle sequence

errors and (less common) sequence variants effectively, since an error in a read will produce an incorrect

context for k bases, resulting in decreased compression. This is the reason for the step-function update

rule in Equation 2. We found that using the read head as the context at the start of the read, rather than

concatenating all the reads together, resulted in improved compression because it was no longer necessary

to encode bases using a context that consisted of the non-biological joining of two reads.

4.6 Other considerations

The reference model only includes the forward strand of the transcript but, in an unstranded RNA-seq pro-

tocol, reads may come from either strand. We implement a heuristic for selecting whether or not to reverse

complement the input read. To do this, we estimate whether the forward read r or its reverse complement

rc(r) will produce a smaller encoding by summing the number of observations of the kmer transitions in

the read that also occurred in some reference transcript for both r and rc(r). If rc(r) has a higher number of

observed transitions in the statistical model, we reverse complement the read before encoding. The decision

to reverse complement reads is made for all reads at the beginning of compression before any reads are

encoded and before the read starts are encoded. We typically do not need to store whether a read was flipped

or not since the choice of strand recorded in the file was arbitrary to begin with. However, if it is important

to store the string in the direction it was originally specified, a single bit per read is recorded indicating

whether the read was reverse complemented.

Due to biases in RNA-seq, and due to pooling of technical replicates, it is often the case that the exact

same read sequence is listed more than once in a read file. To more compactly encode this situation, we

check whether the set of reads that start with a given kmer m consists entirely of d duplicates of the same

sequence. In this case, we record the number of reads associated with m in the count file as −d rather than

d, and we only store one of the tails in the path file. Encoding of duplicates in this way provides a small

decrease in size for most files, but when many duplicate reads are present can result in a large decrease.

To simplify the statistical model, any Ns that appear in the input file are translated to As upon initial

input. This is a strategy taken by other compressors (Hach et al., 2012) because the lowest quality value
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always indicates an N and all Ns must have the lowest quality value. If quality scores are not stored with the

sequences and the locations of the Ns are needed, a separate file is output with their locations.

Because reads are reordered, the two ends of a mate pair cannot be encoded separately if pairing infor-

mation is to be preserved. Instead, when dealing with paired-ended RNA-seq, we merge the ends of the

mate pair into a longer read, encoding this “read” as described above. If the library was constructed with

the mate pairs from opposite strands, one strand is reverse complemented before merging so that the entire

sequence comes from the same strand in order to better match the generative model described above. This

transformation can be undone when the reads are decoded.

4.7 Implementation details

Software implementing the path encoding and decoding method was written in the Go programming lan-

guage, using a translation of the arithmetic coding functions of Moffat et al. (1998). The software is

parallelized and can use up to 8 threads to complete various steps of the encoding and decoding algo-

rithms simultaneously. To limit memory usage, the counts cu(·) described above were stored in 16-bit

fields. This resulted in some loss of compression effectiveness compared with 32-bit fields but large

improvements in running times for the larger files. The software is open source and freely available at

http://www.cs.cmu.edu/∼ckingsf/software/pathenc.

4.8 Comparison with other methods

SCALCE (Hach et al., 2012) version 2.7 was run with its default parameters, using -r for paired-end read

sets. The file sizes reported are the sizes of the .scalcer files it produces, which encode the sequence

data (except the positions of the Ns). The program fqzcomp (Bonfield and Mahoney, 2013) version 4.6 was

run using the recommended parameters for Illumina data (-n2 -s7+ -b -q3). The file sizes used were

the sizes of only the portion of its output file that encodes for the sequences, as printed by fqzcomp. Running

fqzcomp with -s8 instead of -s7+ produced files that were still larger than SCALCE. For paired-end reads,

fqzcomp often achieved better compression if it was provided with a FASTQ file that contained both ends

merged into a single read, and so sizes for compressing these files (the same as provided to path encode)

were used. Despite this, fqzcomp always produced files that were larger than SCALCE, and so only the

SCALCE numbers are reported. Both SCALCE and fqzcomp are de novo compressors. Experiments with

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2014. ; https://doi.org/10.1101/006551doi: bioRxiv preprint 

https://doi.org/10.1101/006551
http://creativecommons.org/licenses/by-nc-nd/4.0/


the de novo version of fastqz always produced larger files than fqzcomp and so its results are not reported

here. The reference-based version of fastqz (Bonfield and Mahoney, 2013) version 1.5 was provided the

same reference as used with path encoding (a multi-fasta file with transcripts), processed with the fapack

program. The file sizes reported for fastqz are the sum of the sizes of its output files .fxb.zpaq and

.fxa.zpaq that encode the sequences (except the Ns).

CRAM (Fritz et al., 2011) is designed for compressing BAM files. To adapt it to compress sequences,

read files were aligned with Bowtie (Langmead et al., 2009) using --best -q -y --sam to an index

built from the same transcriptome as used for path encoding. Quality values, sequence names, and sequence

descriptions were stripped from the file (fields 1 and 11), MAPQ values were all set to 255, and the RNEXT

and PNEXT fields were set to “*” and “0” respectively. The resulting simplified SAM file was converted to a

sorted BAM file using samtools (Li et al., 2009). This file was then encoded using CRAM, and the reported

file size is that of the resulting .cram file. (Leaving the MAPQ, RNEXT and PNEXT fields unchanged

resulted in compressed files of nearly identical size.)
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Figure 1: Fraction of two-bit encoding size for files produces by various de novo and reference-based meth-
ods.
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Figure 2: Sizes of the various components of the compressed files. “Read tails” are the portion of the reads
encoded using arithmetic encoding. “Bit tree” gives the storage used by the bit tree for encoding the read
starts (the first k = 16 letters of each read). “Read head counts” is the space taken to store the number of
reads with each start. “N locations” is the space to store the location of input Ns that were changed to As
upon encoding. “Flipped bits” gives the space needed to record (in a compressed format) a single bit for
each read indicating whether the read was reverse complemented.
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Figure 3: Performance when several features of the path encoding scheme are disabled. All values are given
as percentage over the encoding size for the encoding that uses all the features. (A) “No reference” starts
with an empty transcriptome reference. “No reverse complement” disables the reverse complementation of
the reads. “No duplicate handling” disables the recognition and special encoding of exact duplicate reads.
(B) “No dynamic updates” gives the compression when the probabilities of the statistical model are not
updated as reads are encoded. 24
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Figure 4: File size, represented as a fraction of the two-bit encoding size, using various kmer lengths k.

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2014. ; https://doi.org/10.1101/006551doi: bioRxiv preprint 

https://doi.org/10.1101/006551
http://creativecommons.org/licenses/by-nc-nd/4.0/


Algorithm 1 Algorithm to encode set of kmers K using a bit tree.

start, end, depth← 0, LENGTH(K), 0
S ← NEWSTACK({(start, end, depth)}) . S is stack of 3-tuples
while S not empty do

start, end, depth← POP(S)
if start = end then

OUTPUT(0) . Empty range =⇒ empty subtree
else

OUTPUT(1) . Nonempty range =⇒ nonempty subtree
if depth < k then

for c ∈ “ACGT” do
. find sub-range of (start, end) with c at posn depth+ 1:
a, b← CHILDRANGE(start, end, depth+ 1, c)
PUSH(S, (a, b, depth+ 1))

end for
end if

end if
end while
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Figure 5: Size of the bit tree for storing sets of kmers of various lengths (k). Each kmer set is the first k
characters of each read in SRR037452, and the size is plotted as fraction of the size obtained for compressing
the same set using gzip -9.

8. TABLES
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Table 1: Short-read, RNA-seq data sets compressed in this study.

Read Set S / Pa No. Reads Read
Len.

Description

SRR037452 S 11,712,885 35 Human brain tissue (MAQC study); Bullard et al. (2010)
SRR445718 S 32,943,665 100 Human preimplantation embryos (Oocyte); Yan et al. (2013)
SRR490961 S 49,127,668 100 Human 4-cell embryo; Yan et al. (2013)
SRR635193 P 27,265,881 108 Pooled amnion from 5 term birth placentas; Kim et al. (2012)
SRR1294122 S 39,666,314 101 Human ES cell line UCLA6; Friedli et al. (2014)
SRR689233 P 16,407,945 180 Mouse oocyte; Xue et al. (2013)
SRR519063 P 27,000,358 102 Pseudomonas aeruginosa PAO1; Winsor et al. (2011)

a “P” indicates paired-end reads. In this case, read length is the sum of length of the two ends. “S” indicates
non-paired-end reads.

Table 2: Compressed sizes using various methods.

Read Set 2-Bitb SCALCE c fastqz d CRAM e PathEnc No.
Trans.f

SRR037452 102,487,744 66,630,706 80,465,928 156,554,323 43,009,811 4.08
SRR445718 823,591,625 252,989,168 238,180,853 375,901,891 154,873,354 0.98
SRR490961 1,228,191,700 300,176,711 316,478,709 518,183,711 170,546,140 0.74
SRR635193 736,178,787 294,524,283 272,862,515 366,789,369 187,169,742 0.90
SRR1294122 1,001,574,429 299,329,267 285,710,714 369,774,561 187,637,194 0.86
SRR689233 738,357,525 233,812,737 266,126,542 929,644,204 167,586,546 1.48
SRR519063 688,509,129 100,403,786 183,275,880 714,193,963 84,683,932 6.14

b “2-Bit” gives the size of the sequence file in bytes if it were simply encoded using 2-bits per base.
c The size of the sequence portion of the SCALCE encoding.
d fastqz is a reference-based approach that was provided the same transcriptome as PathEnc.
e See Methods for how CRAM’s BAM encoding was adapted to sequence encoding.
f The number of transmissions of similar files to make transmitting the shared reference more effective than
encoding with SCALCE.
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