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We investigate the application of mesoscopic response functions (MRFs) to characterise a large set of net-
works of fungi and slime moulds grown under a wide variety of different experimental treatments, including
inter-species competition and attack by fungivores. We construct “structural networks” by estimating cord con-
ductances (which yield edge weights) from the experimental data, and we construct “functional networks” by
calculating edge weights based on how much nutrient traffic is predicted to occur on each edge. Both types of
networks have the same topology, and we compute MRFs for both families of networks to illustrate two different
ways of constructing taxonomies to group the biological networks into related clusters. Although both network
taxonomies generate intuitively sensible groupings of networks across species, treatments, and laboratories, we
find that clustering using the functional-network measure appears to give more parsimonious groups. We argue
that MRFs provide a useful quantitative measures of network behaviour that can help to summarise an expand-
ing set of increasingly complex experimental biological networks and to present the information in an accessible

form.

PACS numbers: 47.63.]Jd, 87.19.rh, 89.40.-a, 89.75.Fb

Fungi are unusual multi-cellular macroscopic organisms:
their entire growth form is a living network of interconnected
microscopic tubular cells (termed “hyphae”) that can branch,
fuse, or aggregate to form larger, visible structures (termed
“cords”). The resulting mycelial network has to transport nu-
trients from sites of acquisition to the growing tips to fuel fur-
ther exploration for new resources that exist with an unknown
distribution in a fluctuating, patchy, and competitive environ-
ment [8]. Additionally, mycelial networks provide food for
small grazing invertebrates, and they thus suffer continuous
attack and damage [5)]. Although most growth is out of sight
in the soil and leaf litter, this belies the essential role that fungi
play in critical ecosystem services, such as decomposition of
organic matter and mineral nutrient recycling. Furthermore,
the influence of climate change, seasonal temperature shifts,
and anthropogenic inputs are all likely to have an impact on
network organisation, foraging success, and outcome of multi-
species competitive interactions [1}[2} l4].

Because fungi do not have a centralised system to co-
ordinate development, one can posit from the diversity of
recognisable network patterns that each fungal species uses
a (slightly) different set of local rules to continuously balance
investment in growth, transport efficiency, and resilience that
collectively maximise the long-term global success of the or-
ganism. However, unlike most species, fungi have a highly
plastic morphology with few quantifiable traits. Thus, to date,
most descriptions of fungal behaviour have relied on relatively
simple growth measures, coupled with qualitative descriptors,
with no detailed evaluation of subtle changes in growth form
and network organisation. Constructing taxonomies of fungal
networks thus has the potential to provide insights into adap-
tive fungal behaviour and to help elucidate the similarities and
differences among the underlying rules that govern behaviour.
As a fungus is essentially a living network, we describe the
change in fungal network architecture as network behaviour.

It is also relevant to compare fungal networks to the acel-
lular slime mould, Physarum polycephalum, which is a sec-
ond type of network-forming organism and which is taxonom-
ically very distinct from fungi. The acellular slime mould
is essentially a single giant multi-nucleate animal cell. One
can grow fungi and slime moulds in laboratories, and it is
consequently possible to expose them to a wide variety of
experimental conditions and species interactions, in multiple
replicates, to generate a rich collection of networks for analy-
sis. Therefore, investigating such adaptive, self-organised net-
works — which are honed by evolution — provides a fascinat-
ing opportunity to uncover underlying principles of network
organisation in a biological context, evaluate the relevance
of network descriptors that have been developed in related
disciplines to evolved network behaviour, and explore how
much utility biologically-inspired algorithms have in other do-
mains [6} 19, [13]].

In Fig. [I} we show time series of fungal growth for one
species (Resinicium bicolor) that tends to grow as a rela-
tively sparse network [panel (A)] and a second species (Phane-
rochaete velutina) that forms more cross-links. For the lat-
ter, we illustrate the impact of increasingly complex micro-
cosms for which the level and positioning of resources are
both varied [panels (B) and (C)], resources become depleted
and the networks shrink, in both the presence and the absence
of attack by mycophagous insects [panels (D) and (E)], and
networks are grown in competition with another species (Hy-
pholoma fasciculare) both with and without predation [panels
(F) and (G)]. The variety of examples in Fig. [I| gives a visual
indication of the challenges facing biologists when trying to
describe the variation in network organisation, as the struc-
tural changes in these different scenarios can be rather subtle.

We have just discussed network architecture, but we are
also interested in the function of the network in long-distance
nutrient transport from sources (wood blocks) to sinks (grow-
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ing hyphae at the foraging margin). In Fig.[2] we show a net-
work formed by Phanerochaete velutina growing from five
wood-block inocula that are placed in a pentagonal arrange-
ment on a compressed black-sand substrate, in a similar ar-
rangement to Fig. [I(C). The network emerges [panel (A)] as
cords fuse and are strengthened, or are recycled and disap-
pear. One can map functional flows in the network using ra-
diotracers [panel (B)] to provide a snapshot of nutrient trans-
port [panel (C)]. One can extract the network architecture us-
ing image analysis and determine edge weights according to
conductance [3} 8, [12] to give a “structural network™ [panel
(D)] or according to “path score” (PS) that indicates edge im-
portance [10] to estimate a “functional network” [panel (E)].
(See Sec.[ST]in the Supplementary Text and Table for the de-
tailed definitions of the two types of networks.) Using either
of the networks, one generate three mesoscopic response func-
tions [MRFs; panel (F)] [12] to examine network “community
structure” at multiple scales. In Fig.[3| we show the resulting
taxonomy for 270 fungal networks based on structure [panel
(A)] and function [panel (B)]. For more details on data and
analyses, see the Supplementary Text and Table. We also in-
clude the data for all networks as Supplementary Material.

In both the structural and functional networks, the complex-
ity of the wide range of experimental conditions is reduced to
a set of intuitively sensible clusters. We also observe that the
“functional” PS measure provides more harmonious group-
ings, which are clustered by species, substrate, resource level,
grazing, and interaction. We also observe that networks that
arise from some treatments are spread across the taxonomy.
In particular, as large networks of Phanerochaete velutina de-
plete their resources, they move from clusters with well cross-
linked networks to very sparse networks, similar to the normal
growth pattern of Resinicium bicolor.

Supplementary Material

We provide detailed descriptions of data, methodology, and
results as Supplementary Text and Table. We include the
entire set of 270 networks as additional Supplementary Ma-
terial online at https://sites.google.com/site/
1shlj82/fungal_networks_MATLAB. zip, whichin-
cludes the sparse adjacency matrices (denoted as A) and
the coordinate matrices (the first and second columns rep-
resent horizontal and vertical coordinates, respectively) of
the node (denoted as coordinates) in MarLaB format. We
use the codes in Table [ST| in the Supplementary Text and
Table to name the files, and the folders Conductance
and PathScore, respectively, contain the conductance-
based and PS-based edge weights. We also provide the
complete list of fungal networks as a spreadsheet file
(list_of_fungal_networks.x1sx) in Microsoft EXceEL
format (in the .zip file).
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FIG. 1: (A) Growth of Resinicium bicolor on soil as a relatively sparse network. (B) Growth of Phanerochaete velutina on black sand
with an additional set of four wood-block resources. (C) Network formation in Phanerochaete velutina over 30 days on a compressed black-
sand substrate from a pentagonal arrangement of wood-block inocula. (D) Large microcosm (57 mm X 57 mm) of Phanerochaete velutina
supplemented with four additional resources. The network begins to regress as it consumes the resources. (E) Similar experimental microscosm
to (D), except that grazing insects were added on day 49. (F) Phanerochaete velutina growing in competition with Hypholoma fasciculare.
(G) Phanerochaete velutina growing in competition with Hypholoma fasciculare in the presence of grazing insects. [Each scale bar (see the
left panels) represents 50 mm, and the upper right corner of each panel gives the amount of time in days.]
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FIG. 2: (A) One of the fungal networks formed by Phanerochaete velutina after 30 days of growth across a compressed black-sand substrate
from a pentagonal arrangement of wood-block inocula. (B) Path of radiolabeled nutrient ('*C-amino-isobutyrate) added at 30 days and imaged
using photon-counting scintillation imaging for 12 hours. (C) Merged overlay of panels (A) and (B) to highlight the path that is followed
by the radiolabel. (D) We colour the edges of the manually-digitised network according to the logarithm of the conductance values. Edge
thickness represents cord thickness. (E) We colour the edges according to the path score (PS) values of the fungal network. (F) MRF curves
for conductance-based and PS-based weights. We show MRF curves for effective energy H.g, effective entropy S ., and effective number of
communities 7. See [12] for details on MRFs, and note that the energy is proportional to the negative of optimised modularity. For the MRF
analysis, we remove nodes with degree k = 2, and we adjust the weights of the edges that connect the remaining nodes to include the values
for each k = 2 segment. [The edges in panels (D) and (E) include nodes with degree 2, as they are needed to trace the curvature of the cords.]
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FIG. 3: Taxonomies of 270 fungal (and slime-mould) networks determined using (A) conductance G and (B) (next page) PS values [10] as
the edge weights. We produced the dendrogram that represents this taxonomy using an MRF analysis [12]], where we applied average linkage
clustering [IT]] to the MRF-distance from principal component analysis of the three different MRFs (effective energy, effective energy, and
effective number of communities) [12]. We used the same methodology (including the determination of community structure using modularity
optimisation with a resolution parameter) as in [12]]. See Table S1 in the Supplementary Text and Table for the species abbreviations; the levels
of substrate, resources, and grazing; and a discussion of the numbered branching points. At the bottom of the taxonomies, we also show the
logarithms of number of nodes N, number of edges M, and the edge density p = 2M/[N(N — 1)]. We label the main branch points in each
dendrogram in parentheses. (Note that “branches” in a fungal network are different from “branches” in a taxonomy. It is standard to use such

terminology in both contexts.)
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Supplementary Text and Table

S1. DATA AND METHODS

To make progress in the study of fungal networks, it is im-
portant to develop tools to characterise their structure, their
function, and how they develop over time and using different
treatments. There is a long history of qualitative description of
fungal networks that dates back to the seminal work of Buller
in the 1930s (see, e.g., [S3l]). More recently, network char-
acterisations have been based on translating a mycelial image
to a planar, weighted, undirected graph [S1} IS6l S8]. In such
characterisations, the nodes are located at hyphal tips, branch
points, and anastomoses (i.e., hyphal fusions). The edges rep-
resent cords, and their weights are determined from the Eu-
clidean length (L) and radius () of each cord combined either
as (1) the cylindrical volume V = n7?L to represent the bi-
ological “cost” of the cord or (2) the predicted conductance
G = r*/L. The conductance assumes that the cords are bun-
dles of equally-sized vessels, so that the aggregate conduc-
tance scales with the cross-sectional area of the whole cord
(rather than a single vessel, in which case the conductance
would scale with r* for Pouiseille flow).!

In the present paper, we refer to the above network repre-
sentations as structural networks. Simple network measures,
such as notions of meshedness (for planar networks), cluster-
ing coefficients, and betweenness centrality, have been cal-
culated from graph representations of fungal networks [S1].
However, the computation of simple diagnostics has not been
able to capture the subtle differences in spatial structure be-
tween species or in the same species when they are respond-
ing to different experimental conditions [S8|]. Although such
features are hard to describe quantitatively, human observers
can see them qualitatively.

Detailed measurements and modelling have been used to
experimentally define development of network architecture
over time, predict the flow of water and nutrients through the
resulting empirical network using an advection and diffusion
model, and compare model output with experimentally mea-
sured radiolabel distributions used to track the actual nutrient
movement [S7,[S8]. Although such an approach has revealed
good correlations between growth-induced fluid flows and nu-
trient transport, and one can even see hints of the local rules
that optimise behaviour, it is too technically demanding and
costly to be used as a routine analysis of network behaviour
across multiple data sets. Other approaches are thus neces-
sary to compare the structures and function of a large set of
fungal species or the same species over time and in different
experimental conditions.

In a recent paper [S15], two of us (and our coauthors) il-
lustrated that examining community structure of fungal net-

! Note that [S15] used the cylindrical volume V = 2L for the edge weights
in fungal networks, although the authors of that paper mistakenly wrote
that they used conductance.

works using a mesoscopic response function (MRF) provides
biologically-sensible clusterings of different species and de-
velopmental stages for a particular species. In the present
paper, we explore the utility of such community-based clas-
sification using a much larger set of fungal networks that in-
cludes a wide variety of different developmental stages, nu-
trient regimes, growth substrates, competition, and levels of
predation. We also examine the difference in classification
based on a structural view of such networks that uses only the
predicted conductance G of each cord to one that is based on
a predicted functional view of the importance of each cord for
transport. For the latter, we calculate the weight of each cord
using a “path score”, which is a diagnostic (see the definition
below) that measures the importance of an edge for transport
of nutrients in a network in a way that is more nuanced than
standard measures of betweenness centrality [S12]].

The computation of path scores also highlights core-
periphery structures in fungal networks that are based on
transport properties rather than on the usual density-based no-
tions of such structures [S4]. In a fungal (or slime-mould)
network, we expect core cords to highlight the dense parts
of the network near the inoculum (i.e., source material for a
new culture) or in parts that connect to additional resources,
whereas the periphery could correspond to the foraging mar-
gin. Transport-based measures of core-periphery structure
for both nodes and edges in networks were recently investi-
gated in a wide variety of networks and using different trans-
portation strategies (e.g., both geodesics and random walks)
IS12]. (See [S13]] for related theoretical work.) Because one
of the primary predicted functions of fungal networks is nu-
trient transport, it is more appropriate to examine core versus
peripheral edges (i.e., cords) rather than nodes.

As discussed in [S12], we quantify a transport-based mea-
sure of “coreness” called the path score (PS) for each edge by
examining which cords appear most often on “backup paths”
if any particular cord is broken. This measure thereby incor-
porates elements of both betweenness centrality and network
resilience. We expect that core edges in a network should
occur more frequently than peripheral edges in short backup
paths. One can define path scores for both directed and undi-
rected networks and for both weighted and unweighted net-
works. We treat the networks that we construct from our fun-
gal systems as weighted and undirected.

We denote the set of edges by E = {(j, k)| node j is adjacent
to node k} and the number of edges by M = |E|. The PS for
edge e is defined by

1
PS(@) =~ D D oialB\ (bl (SD

(G)EE {pjic}

where 0 j[E \ (j, k)] = 1/[{pj}l if edge e is in the set {pj}
that consists of “optimal backup paths” from node j to node k
(where we stress that the edge (j, k) is removed from E) and
0jelE \ (k)] = 0 otherwise. Note that a notion of core-
ness based on the response to node removal was used in [S19]
in the context of closeness centrality rather than betweenness
centrality.

To determine an optimal path between nodes i and j, we
find the backup path p,(ij) that consists of the set of con-
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nected edges between i and j that minimises the sum of the
resistances, X pnep,j) Ri» for all edges (k, ) of the network
in which the edge e;; := (i, j) has been removed. The resis-
tance of edge (k, /) is Ry; = 1/Gy, where the conductance is
Gu = r*/L, the quantity r is the radius of a cord, and L is
the length of edge (k, ). We set Ry; = 0 (instead of Ry = o)
when an edge is removed because the edge simply does not ex-
ist. To capture a functional view of the fungal networks (i.e.,
to obtain so-called functional networks), we also construct
weighted networks in which we preserve topology but use PS
values instead of conductance values as the edge weights.

In Fig. [2| of the main text, we show a network formed by
Phanerochaete velutina growing from five wood-block inoc-
ula that are placed in a pentagonal arrangement on a com-
pressed black-sand substrate. The fungal network that forms
has a relatively densely interconnected core and relatively
tree-like foraging branches on the periphery. Adding a ra-
diolabel to one of the wood blocks and subsequently doing
photon-counting scintillation imaging (PCSI) provides a snap-
shot of how nutrients are transported at that particular instant
through some of the core cords to a second wood block and
then outwards to part of the network periphery. The PS val-
ues on the edges of a fungal network reflect the actual move-
ment path in the region of the colony in which radiolabel was
translocated, suggesting that the PS values capture some as-
pects of real nutrient movement in fungal networks. However,
there is not a simple correspondence between PS values and
observed nutrient transport, as there are cords with high PS
values that could have been utilised to reach the neighbour-
ing wood block on the left even though there is no detectable
radiolabel translocation over the 12-hour time period of the
measurement.

S2. RESULTS AND DISCUSSION

To compare the properties of the various structural and
functional networks, we produce a taxonomy of the fun-
gal networks from MRFs of each network [S15]] that high-
light mesoscale “community structure” [S5l [S16]. In net-
work terms, communities are densely connected internally,
and there are sparse connections between communities rel-
ative to a null model. To identify community structure, we
optimise a multi-resolution version of the modularity quality
function. We use the Newman—Girvan null model augmented
by a resolution parameter and examine communities of differ-
ent size scales by tuning that parameter [S14}|S17]]. For each
network, we obtain curves for several scaled quantities (num-
ber of communities, modularity, and entropy) as a function of
the resolution parameter. These diagnostics yield a mesoscale
fingerprint for each network. Two networks are close to each
other in the taxonomy if their MRF curves have similar shapes
to each other. (See [S15] for details.) We thereby construct
two taxonomies — one for the structural networks and an-
other for the functional networks — that give a pair of “fam-
ily trees” that describe how closely the various networks are
related in the form of a dendrogram.

In Fig. 3] of the main text, we show the resulting dendro-

grams for 270 fungal networks based on structure and func-
tion. (We include the data for all networks as Supplementary
Material.) Recall that the structural and functional networks
have the same topologies, but their edge weights are different:
the weights are given by estimated conductance values for the
structural networks and by PS values for the functional net-
works. For both the structural and functional fungal networks,
the simplest network measures for each leaf (e.g., number of
nodes, number of edges, and node density) only reveal a lim-
ited correlation with the major branches in the dendrogram.
This suggests that the classification is not trivially dominated
by the size of each network and also that it is necessary to go
beyond the computation of only such simple measures to pro-
duce a reasonable taxonomy. When we code leaves accord-
ing to the values of the major attributes in each experiment
(species, substrate, time point, resource level, and grazing in-
tensity), we observe that groups with similar attributes begin
to emerge and are visible as substantial contiguous blocks in
the dendrograms. Nevertheless, we also observe that each
attribute is not uniquely associated with one group, which
suggests that the classifications are again not a trivial sepa-
ration by any one of these attributes (e.g., species) alone. This
suggests, in particular, that they also reflect similarity in the
topologies and weights (i.e., geometries) of the networks.

The Pearson correlation coefficient between the MRF dis-
tance values (see Appendix B 2 of [S15]) for the structural
and functional network sets is 0.418. (The p-value is less than
1073%8, which is the minimum value of floating-point variables
in PytHoN.) In contrast, the mean correlation coefficient from
100 uniform-at-random permutations of the MRF distance
values is 2.12 x 1075, with a standard deviation 3.67 x 1073,
We infer that there is some degree of correlation between the
weights in the structural and functional networks, although
they clearly capture different properties of the fungi.

A key challenge is to try to interpret the taxonomic group-
ings from a biological perspective to obtain insights that can-
not be captured from qualitative descriptions of each network,
particularly when making comparisons between different ex-
periments from different laboratories over an extended time
period. To do this, we follow the major branch points of the
dendrograms in a top-down analysis of each taxonomy. We
label branches in the dendrograms in the order in which they
occur in the taxonomic hierarchies. In the conductance-based
classification [see Fig. [3(A) of the main text], a small group
splits off at a high level (1, 2). This group then separates into
two parts: one contains Resinicium bicolor (Rb) with some
grazing (5), and the other has Phanerochaete velutina (Pv)
grown on black sand (4). The other main branch splits to
give two clusters (3), but the underlying rationale is not im-
mediately obvious, as both parts include a mixture of different
conditions of the attributes (see Table[ST). The clearest sub-
sequent groupings emerge as clusters of Rb with grazing at
earlier time points (6, 9) and Pv on black sand with high re-
sources (10).

Following the same top-down approach on the PS-based
taxonomy [see Fig.[3[B) of the main text] provides groupings
that are easier to interpret than the ones from the conductance-
based taxonomy. The first set of high-level branch points (1,
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Supplementary Table S1: Species and experimental conditions used in Fig. [3|of the main text.

Attribute Code/Level (Colour) Descriptions
Species Pp Physarum polycephalum: an acellular slime mould that forms
networks but is taxonomically distinct from fungi
Py Phanerochaete velutina: a foraging saprotrophic woodland fungus
that forms reasonably dense networks
Ag Agrocybe gibberosa: a foraging saprotrophic fungus that is isolated
from garden compost and forms dense networks
Pi Phallus impudicus: forms regular, highly cross-linked networks
but grows relatively slowly
Rb Resinicium bicolor: forages rapidly with a sparse network
that is not very cross-linked
Sc Strophularia caerulea: a foraging saprotrophic woodland fungus
that is isolated from birch woodland and forms dense networks
resources  I/min (blue) Inoculum only
[+R/level 1 Initial colonised wood block (inoculum, I) plus a single additional
wood-block resource (R)
[+4 x R/level 2 Inoculum plus four additional wood-block resources
(positioned as a cross)
[+4 x R/level 2 Inoculum plus four wood-block resources placed together
5 x I/level 3 Five inocula placed in a pentagonal arrangement
Tokyo/level 4 Pattern of oat flakes placed to match the major cities around Tokyo
UK/max (red) Pattern of oat flakes placed to match the major cities in the UK
grazing U/min (blue) Ungrazed
Fc/level 1 Folsomia candida: a small soil arthropod that grazes on fungal
networks with low density (10 per microcosm) [S18]|
Fc or Fe-M/level 2 Fc with medium density (20 per microcosm)
Fc-H/max (red) Fc with high density (40 per microcosm)
substrate A/blue Agar: used as a growth medium (substrate) for
Physarum polycephalum
B/white Black sand: a nutrient-free substrate used for radiolabel-imaging
experiments
S/red Compressed, non-sterile soil that closely represents the natural
growth environment for the fungi
interaction N/blue no interaction: fungal species grown on its own
Hf/red competition with Hypholoma fasciculare

2, 5, and 6) all separate clades of Rb, where subsequent divi-
sions reflect the level of grazing. Branch point (4) separates
a group of Pv on black sand with relatively high levels of re-
source, and branch point (7) yields a single Pv network from
one of the large, shrinking network sequences. Interestingly,
these networks are interspersed across the whole dendrogram.
(See the isolated pink and red bars in the “In(time)” bar.) Dur-
ing development, these large networks initially cluster with
other well-connected networks, but they progressively shift
towards clustering better with sparser networks as the network
regresses until they eventually group with the Rb networks.
The other arm of branch point (7) leads to a large grouping
containing a set of well defined clusters. Branch point (8)
splits off a small group with both Rb and Pv represented, but
there is no clear common linkage. Conversely, branch point
(9) yields a large group that is composed predominantly of Pv
on black sand (with subgroups based on resource levels) and
a few interspersed large networks, followed by a well-defined
set of groups lying under branch point (10). The first clus-
ter contains most of the Pi and Pp networks (although a few
such networks are located in the adjacent clusters), and the
second cluster has sequential groups of Pv with high levels

of resource but little grazing, a group with both grazing and
species interaction, and a group with just species interaction.

It is not surprising that the structural and functional tax-
onomies both contain fine-grained complexity in their termi-
nal groups, as several of the attributes have opposing effects
that depend on the developmental age of each species and the
combination of treatments. For example, as a fungal network
grows, it tends to change from a branching tree to a more
highly cross-linked network through hyphal and cord fusions
that connect to each other. The core parts of a fungal net-
work subsequently start to thin out as it explores further until
resources run out; the network progressively recycles more
cords and again becomes a very sparse network [S1}S2].

Some of the clearest clusters in the PS-based taxonomy cor-
relate with substrate, as there are distinct branches in the tax-
onomy that consist predominantly of Pv grown on black sand.
Thus, even though Pv is well-represented in the dendrogram,
there is a distinguishable effect of substrate on network archi-
tecture that is not immediately obvious to a human observer.
Likewise, it is surprising that clear signatures are recovered in
the PS dendrogram that correlate with resource level, grazing,
and interactions with other species. Such observations under-
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score the fact that taxonomical groupings of fungal networks
that are derived through network analysis can be of consid-
erable assistance to biologists in their attempts to capture the
impact of treatment combinations on network behaviour. The
construction and analysis of network taxonomies also allow
objective groupings of networks across species, treatments,
and laboratory settings.

Constructing structural and functional taxonomies has the
potential to be crucial for the development of increased under-
standing of subtle behavioural traits in biological networks.
This type of approach should become more important as more
networks are included in a classification — particularly if
at least some have associated experimentally validated func-
tional attributes [S7HS9]]. Recently developed sophisticated
network extraction algorithms [S11]] can dramatically improve
the speed, accuracy, and level of detail of fungal networks.
They also facilitate automated, high-throughput analysis of
fungal network images, which can in turn be used to construct
a richly detailed set of networks that are ripe for study via
structural and functional network taxonomies.

S3. CONCLUSIONS

We calculated MRFs for a large set of networks of fungi
and slime moulds. We considered two types of networks:
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(1) “structural” networks in which we calculate edge weights
based on conductance values and (2) “functional” networks
in which we calculate edge weights based on an estimate of
how important edges are for the transport of nutrients. Cal-
culating MRFs for the fungal and slime-mould networks in
each of these two situations makes it possible to construct tax-
onomies and thereby compare large sets of fungal networks to
each other. We illustrated that network taxonomies allow ob-
jective groupings of networks across species, treatments, and
laboratories. The classification provides fine-grained structure
that recovers the subtle interplay between species, substrate,
resource level, grazing pressure, and inter-species competi-
tion. We also observed that networks undergoing major tran-
sitions, such as regressing from a fully connected meshwork
to a sparse tree as resources run out, are dispersed across the
tree. This reflects the shift in their functional behaviour amidst
such transitions.
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