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We give a brief application of mesoscopic response functions (MRFs) to a large set of networks of fungi and
slime moulds. We construct “structural networks” by estimating cord conductances (which yield edge weights)
from experimental data and “functional networks” by calculating edge weights based on how much nutrient
traffic is predicted to occur on each edge. Both types of networks have the same topology, and we compute
MRFs for both families of networks to illustrate two different ways of constructing taxonomies to compare large
sets of fungal and slime-mould networks to each other. We demonstrate that network taxonomies allow objective
groupings of networks across species, treatments, and laboratories. We believe that the groupings that we have
derived through our structural and functional taxonomic analyses of fungal networks could be of considerable
assistance to biologists in their attempts to capture the impact of treatment combinations on network behaviour.

PACS numbers: 47.63.Jd, 87.19.rh, 89.40.-a, 89.75.Fb

I. INTRODUCTION

Fungi are unusual multi-cellular macroscopic organisms:
their entire growth form is a living network of interconnected
microscopic tubular cells (termed “hyphae”) that can branch,
fuse, or aggregate to form larger, visible structures (termed
“cords”) [8]. The resulting mycelial network has to transport
nutrients from acquisition sites to the growing tips to fuel fur-
ther exploration for new resources that exist with an unknown
distribution in a fluctuating, patchy, and competitive environ-
ment [8]. Additionally, mycelial networks provide food for
small grazing invertebrates, and they thus suffer continuous
attack and damage [3].

Because fungi do not have a centralised system to co-
ordinate development, one can posit from the diversity of
recognisable network patterns that each fungal species uses
a (slightly) different set of local rules to continuously bal-
ance investment in growth, transport efficiency, and resilience
that collectively maximise the long-term global success of the
organism. Constructing taxonomies of fungal networks thus
have the potential to provide insights into adaptive fungal be-
haviour and to help elucidate the similarities and differences
among the underlying behavioural rules. A fungus is essen-
tially a living network; we describe the change in fungal net-
work architecture as network behaviour.

It is also relevant to compare fungal networks to the acel-
lular slime mould, Physarum polycephalum, which is a sec-
ond type of network-forming organism that is taxonomically
very distinct from fungi. (The acellular slime mould is essen-
tially a single giant animal cell.) One can grow fungi and
slime moulds in laboratories, and it is consequently possi-
ble to expose them to a wide variety of experimental condi-
tions, in multiple replicates, to generate a rich collection of
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networks for analysis. Therefore, investigating such adaptive,
self-organised networks — which are honed by evolution —
provides a fascinating opportunity to (1) uncover underlying
principles of network organisation in a biological context and
(2) explore how much utility biologically-inspired algorithms
have in other domains [6, 11, 18].

II. DATA AND METHODS

To make progress in the study of fungal networks, it is im-
portant to develop tools to characterise their structure, their
function, and how they develop over time and using different
treatments. Initial network characterisations were based on
translating a mycelial image to a planar, weighted, undirected
graph. In these characterisations, the nodes are located at hy-
phal tips, branches, and anastomoses (i.e., hyphal fusions).
The edges represent cords, and their weights are determined
from the Euclidean length (L) and radius (r) of each cord com-
bined either as (1) the cylindrical volume V = πr2L to repre-
sent the biological “cost” of the cord or (2) the predicted con-
ductance G = r2/L. The conductance assumes that the cords
are bundles of equally-sized vessels, so that the aggregate con-
ductance scales with the cross-sectional area of the whole cord
(rather than a single vessel, in which case the conductance
would scale with r4 for Pouiseille flow).1 In the present pa-
per, we refer to these network representations as structural
networks. Simple network measures — such as notions of
meshedness (for planar networks), clustering coefficients, and
betweenness centrality — have been measured from graph
representations of fungal networks [1]. However, the com-
putation of simple diagnostics has not been able to capture

1 Note that [15] used the cylindrical volume V = πr2L, although the authors
of that paper mistakenly wrote that they used conductance.
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the subtle differences in spatial structure between species or
in the same species when they are responding to different ex-
perimental conditions (which a human observer can describe
qualitatively but not quantitatively) [8]. More detailed mea-
surements and modelling have been used to (1) experimen-
tally define development of network architecture over time;
(2) predict the flow of water and nutrients through the result-
ing empirical network using an advection and diffusion model;
and (3) compare model output with experimentally measured
radiolabel distributions used to track the actual nutrient move-
ment [7, 8]. Although such an approach has revealed good
correlations between growth-induced fluid flows and nutrient
transport — and one can even see hints of the local rules that
optimise behaviour — it is too technically demanding and
costly to be used as a routine analysis across multiple data
sets. Other approaches are thus necessary to compare the
structures and function of a large set of fungal species (and
of the same species over time and in different experimental
conditions).

In a recent paper [15], two of us (and our coauthors) il-
lustrated that examining community structure of fungal net-
works using a mesoscopic response function (MRF) provides
biologically-sensible clusterings of (1) different species and
(2) developmental stages for a particular species. In the
present paper, we explore the utility of such community-based
classification using a large set of fungal networks that includes
a wide variety of different developmental stages and treat-
ments. We also examine the difference in classification based
on a structural view of such networks that uses only the pre-
dicted conductance G of each cord to one that is based on
a predicted functional view of the importance of each cord
for transport. For the latter, we calculate the weight of each
cord using a “path score”, which is a diagnostic (see the def-
inition below) that measures its importance for transport of
nutrients in a network in a way that is more nuanced than
the standard betweenness measures [13]. The computation
of path scores highlights “core-periphery structure” in fungal
networks that are based on transport properties rather than
on the usual density-based notions of core-periphery struc-
ture [4]. In a fungal (or slime-mould) network, we expect
core cords to highlight the dense parts of the network near
the inoculum (i.e., source material for a new culture) or in
parts that connect to additional resources, whereas the periph-
ery could correspond to the foraging margin. Transport-based
measures of core-periphery structure for both nodes and edges
in networks were recently investigated in a wide variety of net-
works and using different transportation strategies (e.g., both
geodesics and random walks) [13]. Because one of the pri-
mary predicted functions of fungal networks is nutrient trans-
port, it is more appropriate to examine core versus peripheral
edges (i.e., cords) rather than nodes.

As discussed in [13], we quantify a transport-based mea-
sure of “coreness” called the path score (PS) for each edge
by examining which cords appear the most often on “backup
paths” if any particular cord is broken. This measure thereby
incorporates elements of both betweenness centrality and net-
work resilience. We expect that core edges in a network
should occur more frequently than peripheral edges in short

backup paths. One can define path scores for both directed and
undirected networks and for both weighted and unweighted
networks. We treat the networks that we construct from our
fungal systems as weighted and undirected.

Let the set of edges be denoted by E = {( j, k)| node j is
adjacent to node k}. The PS for edge e is defined by

PS(e) =
1
|E|

∑
( j,k)∈E

∑
{p jk}

σ jek[E \ ( j, k)] , (1)

where σ jek[E \ ( j, k)] = 1/|{p jk}| if edge e is in the set {p jk}

that consists of “optimal backup paths” from node j to node
k (where we stress that the edge ( j, k) is removed from E) and
σ jek[E \ ( j, k)] = 0 otherwise.

To determine an optimal path between nodes i and j, we
find the backup path pb(i j) that consists of the set of con-
nected edges between i and j that minimises the sum of the
resistances,

∑
(k,l)∈pb(i j) Rkl, for all edges (k, l) of the network

in which the edge ei j := (i, j) has been removed. The resis-
tance of edge (k, l) is Rkl = 1/Gkl, where the conductance is
Gkl = r2/L, the quantity r is the radius of a cord, and L is
the length of edge (k, l). We set Rkl = 0 (instead of Rkl = ∞)
when an edge is removed because the edge simply does not ex-
ist. To capture a functional view of the fungal networks (i.e.,
to obtain so-called functional networks), we also construct
weighted networks in which we preserve topology but use PS
values instead of conductance values as the edge weights.

In Fig. 1, we show a network formed by Phanerochaete ve-
lutina growing from five wood-block inocula that are placed
in a pentagonal arrangement on a compressed black-sand sub-
strate. The fungal network that forms has a relatively densely
interconnected core and relatively tree-like foraging branches
on the periphery. Adding a radiolabel to one of the wood
blocks and subsequently doing photon-counting scintillation
imaging (PCSI) provides a snapshot of how nutrients are
transported at that particular instant through some of the core
cords to a second wood block and then outwards to part of the
network periphery. The PS values on the edges of a fungal
network reflect the actual movement path in the region of the
colony in which label was translocated, suggesting that the PS
values capture some aspects of real nutrient movement in fun-
gal networks. However, there is not a simple correspondence
between PS values and observed nutrient transport, as there
are cords with high PS values that could have been utilised
to reach the neighbouring wood block on the left even though
there is no detectable radiolabel translocation over the 12 hour
time period of the measurement.

III. RESULTS AND DISCUSSION

To compare the properties of the various structural and
functional networks, we produce a taxonomy of the fungal
networks from MRFs of each network [15] that highlight the
mesoscale “community structure” [5, 16]. In network terms,
communities are densely connected internally, and there are
sparse connections between communities relative to a null
model. To identify community structure, we optimise a multi-
resolution version of the modularity quality function. We use
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TABLE I: Species and experimental conditions used in Fig. 2.
Attribute Code/Level (Colour) Descriptions
Species Pp Physarum polycephalum: an acellular slime mould that forms

networks but is taxonomically distinct from fungi
Pv Phanerochaete velutina: a foraging saprotrophic woodland fungus

that forms reasonably dense networks
Ag Agrocybe gibberosa: a foraging saprotrophic fungus that is isolated

from garden compost and forms dense networks
Pi Phallus impudicus: forms regular, highly cross-linked networks

but grows relatively slowly
Rb Resenicium bicolor: forages rapidly with a sparse network

that is not very cross-linkeded
Sc Strophularia caerulea: a foraging saprotrophic woodland fungus

that is isolated from birch woodland and forms dense networks
resources I/min (blue) Inoculum only

I+R/level 1 Initial colonised wood block (inoculum, I) plus a single additional
wood-block resource (R)

I+4 × R/level 2 Inoculum plus four additional wood-block resources
(positioned as a cross)

I+4 × R/level 2 Inoculum plus four wood-block resources placed together
5 × I/level 3 Five inocula placed in a pentagonal arrangement
Tokyo/level 4 Pattern of oat flakes placed to match the major cities around Tokyo
UK/max (red) Pattern of oat flakes placed to match the major cities in the UK

grazing U/min (blue) Ungrazed
Fc/level 1 Folsomia candida: a small soil arthropod that grazes on fungal

networks with low density (10 per microcosm) [19]
Fc or Fc-M/level 2 Fc with medium density (20 per microcosm)
Fc-H/max (red) Fc with high density (40 per microcosm)

substrate A/blue Agar: used as a growth medium (substrate) for
Physarum polycephalum

B/white Black sand: a nutrient-free substrate used for radiolabel imaging
experiments

S/red Compressed, non-sterile soil that closely represents the natural
growth environment for the fungi

the Newman-Girvan null model augmented by a resolution
parameter and examine communities of different size scales
by tuning a resolution parameter [14, 17]. For each network,
we obtain curves for several scaled and renormalised quanti-
ties (number of communities, modularity, and entropy) as a
function of the resolution parameter. These diagnostics yield
a mesoscale fingerprint for each network. Two networks are
close to each other in the taxonomy if their MRF curves have
similar shapes to each other. (See [15] for details.) We thereby
construct two taxonomies — one for the structural networks
and another for the functional networks — that give a pair of
“family trees” that describe how closely the various networks
are related in the form of a dendrogram.

In Fig. 2, we show the resulting dendrograms for 270 fun-
gal networks based on structure and function. (We include
the data for all networks as Supplementary Material.) Re-
call that the structural and functional networks have the same
topologies, but their edge weights are different: the weights
are given by estimated conductance values for the structural
networks and by PS values for the functional networks. For
both the structural and functional fungal networks, the sim-
plest network measures for each leaf (number of nodes, edges
and node density) only reveal a limited correlation with the
major branches in the dendrogram. This suggests that the clas-

sification is not trivially dominated by the size of each network
and also that it is necessary to go beyond the computation
of only such simple measures to produce a reasonable tax-
onomy. When we code leaves according to the values of the
major attributes in each experiment (species, substrate, time
point, resource level, and grazing intensity), we observe that
groups with similar attributes begin to emerge and are visible
as substantial contiguous blocks in the dendrograms. Nev-
ertheless, we also observe that each attribute is not uniquely
associated with one group, which suggests that the classifi-
cations are again not a trivial separation by any one of these
attributes (e.g., species) alone. This suggests, in particular,
that they also reflect similarity in the topologies and weights
(i.e., geometries) of the networks.

The Pearson correlation coefficient between the MRF dis-
tance values (see Appendix B 2 of [15]) for the structural and
functional network sets is 0.418. (The p-value is less than
10−308, which is the minimum value of floating-point variables
in Python.) In contrast, the mean correlation coefficient from
100 uniform-at-random permutations of the MRF distance
values is 2.12 × 10−5, with a standard deviation 3.67 × 10−3.
We infer that there is some degree of correlation between the
weights in the structural and functional networks, although
they clearly capture different properties of the fungi.
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A key challenge is to try to interpret the taxonomic group-
ings from a biological perspective to yield additional insight
that cannot be captured from qualitative descriptions of each
network, particularly when making comparisons between dif-
ferent experiments from different laboratories over an ex-
tended time period. To do this, we follow the major branch
points of the dendrograms in a top-down analysis of each
taxonomy. We label branches in the dendrograms in the or-
der in which they occur in the taxonomic hierarchies. In
the conductance-based classification [see Fig. 2(A)], a small
group splits off at a high level (1). This group then sepa-
rates into two parts: one contains Resinicium bicolor (Rb)
with some grazing (4), and the other has Phanerochaete ve-
lutina (Pv) grown on black sand (5). The other main branch
splits to give two clusters (3), but the underlying rationale is
not immediately obvious, as both parts include a mixture of
different conditions of the attributes (see Table I). The clear-
est subsequent groupings emerge as clusters of Pv on black
sand (6) and Rb with grazing at earlier time points (10).

Following the same top-down approach on the PS-based
taxonomy [see Fig. 2(B)] provides groupings that are easier
to interpret than the ones from the conductance-based taxon-
omy. The first set of high-level branch points (1, 2, 3, 5, and 6)
all separate clades of Pv on black sand, and the sub-parts are
grouped roughly according to the amount of resource. Branch
point (4) separates a group of Rb with varying levels of graz-
ing. Branch point (7) yields a single Pi network that sepa-
rates from a large grouping with a fine-grained structure. Ly-
ing under junction point (10) are two primary clusters of net-
works. In the first, there appears to be a trade-off between
large amount of resource, longer time points, and grazing (and
Pv, Rb, and Pp are all represented). We infer that different
treatments can yield networks that nevertheless exhibit similar
functional behaviour for several species. The second cluster is
more homogeneous; it consists predominantly of Pv on black
sand with high levels of resource. Finally, the groups under
junction point (11) consist of Pv, Rb, and Pp with a mix of
attributes.

It is not surprising that the structural and functional tax-
onomies both contain fine-grained complexity in their termi-
nal groups, as several of the attributes have opposing effects
that depend on the developmental age of each species and
the combination of treatments For example, as a fungal net-
work grows, its tends to change from a branching tree to a
more highly cross-linked network through hyphal and cord
fusions, whose core subsequently starts to thin out as it ex-
plores further until resources run out and the network progres-
sively recycles more cords and again becomes a very sparse
network [1, 2]. (“Cross-links” arise when one cord connects
to another.) Additionally, some of the clearest clusters in
the PS-based taxonomy correlate with substrate, as there are
distinct branches in the taxonomy that consist predominantly
of Pv grown on black sand. Thus, even though Pv is well-
represented in the dendrogram, there is a distinguishable ef-
fect of substrate on network architecture that is not readily
apparent to a human observer. Such observations underscore
the fact that taxonomical groupings of fungal networks that
are derived through network analysis can be of considerable

assistance to biologists in their attempts capture the impact of
treatment combinations on network behaviour. The construc-
tion and analysis of network taxonomies also allow objective
groupings of networks across species, treatments, and labora-
tory settings.

Constructing structural and functional taxonomies has the
potential to be crucial for the development of increased under-
standing of subtle behavioural traits in biological networks.
This type of approach should become more important as more
networks are included in the classification — particularly if
at least some have associated experimentally validated func-
tional attributes [7–9]. Recently developed sophisticated net-
work extraction algorithms [12] can dramatically improve the
speed, accuracy, and level of detail of fungal networks. They
also facilitate automated, high-throughput analysis of fungal
network images, which can in turn be used to construct a
richly detailed set of networks that are ripe for study via struc-
tural and functional network taxonomies.

IV. CONCLUSIONS

We calculated mesoscopic response functions (MRFs) for
a large set of networks of fungi and slime moulds. We con-
sidered two types of networks: (1) “structural” networks in
which we calculate edge weights based on conductance val-
ues; and (2) “functional” networks in which we calculate edge
weights based on an estimate of how important edges are for
the transport of nutrients. Calculating MRFs for the fungal
and slime-mould networks in each of these two situations
makes it possible to construct taxonomies and thereby com-
pare large sets of fungal networks to each other. We illus-
trated that network taxonomies allow objective groupings of
networks across species, treatments, and laboratories. We thus
believe that the groupings that we have derived through our
structural and functional taxonomic analyses of fungal net-
works could be of considerable assistance to biologists in their
attempts capture the impact of treatment combinations on net-
work behaviour.

Supplementary Material

We include the entire set of 270 networks as Supplemen-
tary Material online at https://sites.google.com/
site/lshlj82/fungal_networks_MATLAB.zip,
which includes the sparse adjacency matrices A and the
coordinate matrices (the first and second columns represent
horizontal and vertical coordinates, respectively) of the
node coordinates in Matlab format. We use the codes in
Table I to name the files, and the folders Conductance
and PathScore contain the conductance-based and
PS-based edge weights, respectively. The complete list
of fungal networks is also provided as a spreadsheet file
list of fungal networks.xlsx in Microsoft Excel
format.
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FIG. 1: (A) One of the fungal networks formed by Phanerochaete velutina after 30 days of growth across a compressed black-sand substrate
from a pentagonal arrangement of wood-block inocula. (B) Path of radiolabeled nutrient (14C-amino-isobutyrate) added at 30 days and imaged
using photon-counting scintillation imaging for 12 hours. (C) Merged overlay of panels (A) and (B) to highlight the path that is followed
by the radiolabel. (D) We colour the edges of the manually-digitised network according to the logarithm of the conductance values. Edge
thickness represents cord thickness. (E) We colour the edges according to the path score (PS) values of the fungal network. (F) MRF curves
for conductance-based and PS-based weights. We show MRF curves for effective energy (Heff), effective entropy (S eff), and effective number
of communities (ηeff). See [15] for details, and note that the energy is proportional to the negative of optimised modularity. (In panels (D) and
(E), the edges include nodes with degree 2 (as they are needed to trace the curvature of the cords). In the MRF analysis, we remove the nodes
with degree k = 2, and we adjust the weight of the edge that connects the remaining nodes to include the values of the intermediate links for
each k = 2 segment.
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FIG. 2: Taxonomies of 270 fungal (and slime-mould) networks determined using (A) conductance G and (B) (next page) PS values [13] as
the edge weights. We produced this taxonomy using an MRF analysis [15], where we applied average linkage clustering [14] to the MRF-
distance from the principal component analysis from the three different mesoscopic response functions (effective energy, effective energy, and
effective number of communities) [15]. We used the same methodology (including the determination of community structure using modularity
optimisation with a resolution parameter) as in Ref. [15]. See Table I for the species abbreviations, and the levels of substrate, resources,
and grazing. At the bottom of the taxonomies, we also show the logarithms of number of nodes N and edges M, and the edge density
ρ = 2M/[N(N − 1)]. We label the main branch points in each dendrogram in parentheses. (Note that “branches” in a fungal network are
different from “branches” in a taxonomy. It is standard to use such terminology in both contexts.)
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