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Abstract 

 

Background: Next generation sequencing (NGS) is a widely used technology in 

both basic research and clinical settings and it will continue to have a major 

impact on biomedical sciences. However, the use of incorrect normalization 

methods can lead to systematic biases and spurious results, making the selection 

of an appropriate normalization strategy a crucial and often overlooked part of 

NGS analysis.  

Results: We present a basic introduction to the currently available normalization 

methods for differential expression and ChIP-seq applications, along with best 

use recommendations for different experimental techniques and datasets.  

We demonstrate that the choice of normalization technique can have a 

significant impact on the number of genes called as differentially expressed in an 

RNA-seq experiment or peaks called in a ChIP-seq experiment.  

Conclusions: The choice of the most adequate normalization method depends on 

both the distribution of signal in the dataset and the intended downstream 

applications. Depending on the design and purpose of the study, appropriate bias 

correction should also be considered.  
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Background 

 

Normalization is a crucial step in any NGS data analysis pipeline. The purpose of 

this step is to transform the data in such a way as to make the data from different 

replicates and experimental conditions directly comparable. The transformation 

should ideally take into account any major factors that would shift or distort the 

data distribution, such as library size and differences in sample pools, as well as 

experimental biases introduced at any stage during the original experiment, 

library preparation or sequencing.  

 

High-throughput genomics normalization methods were initially developed from 

approaches applied to the analysis of microarray data, where a number of 

systematic biases made it essential to perform correct data normalization. For 

example, in two-channel microarrays, it is known that the different dyes are 

incorporated with different efficiencies [1]. It therefore became essential to 

incorporate this into the experimental design by performing dye swaps. Dye bias 

also needed to be accounted for in the normalization process, by performing 

background correction, data transformation and between-array normalization 

[2]. In this way data were adjusted for systematic effects arising from the 

experimental biases rather than genuine biological differences, before 

proceeding to downstream analysis.  
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Some of the systematic biases inherent to microarray analysis are not relevant to 

NGS technology: For example, dye incorporation and background corrections are 

no longer issues. However, while it has been suggested that sophisticated 

normalization of datasets is no longer required for applications such as RNA-seq 

[3], further studies argue that the reality is not that simple, and that 

normalization still remains an important consideration [4, 5]. However, this is 

just one of a number of factors to consider, as different parts of the analysis 

pipeline such as alignment and quantification all impact the end results [6].  

 

At a basic level, there is a need to normalise NGS data in order to account for 

different library sizes. Furthermore, systematic global differences in 

measurements may still be present in the samples, due to technical variation in 

the molecular biology leading up to the library preparation, and these must be 

corrected. Other biases are also apparent: for example, longer mRNAs are 

sampled more frequently, and in the case of ChIP, different sequences may be 

preferentially enriched or sequenced. Another complication is that for 

differential expression or enrichment analyses, any normalization method needs 

to remove the differences due to technical variation and sequencing depth, but 

not normalize away the genuine biological differences. This becomes difficult 

when the sequences of interest are a small subset of the total dataset, or when 

there are significant differences in expression between the different 

experimental conditions. 

 

Choice of normalization method depends on the nature of the data being 

analysed, and different choices are therefore appropriate for different 

techniques, experimental conditions and data profiles. Importantly, different 

normalization methods can give very different results in terms of differentially 

expressed genes in the context of RNA-seq, or peak calling in the context of ChIP-

seq.  Here, we present an overview of the currently used NGS normalization 

methods, alongside guidelines for best use in different contexts. 

 

 

Results and Discussion 

 

Library size based methods 

 

A number of NGS normalization methods take the size of each sequencing library 

as the basis for their normalization models. The reason for this is that even 

replicates from the same experiment sequenced together are usually sequenced 

to slightly different depths due to technical variability, and it is not uncommon to 

have very different sequence coverage between different experiments. 

Consequently some form of sequence read count transformation to make the 

library sizes comparable is a necessary step in NGS analysis.  

 

Total count 

 

The principle of total count (TC) based methods is that the total library count for 

each sample is used to calculate a normalization factor [7]. This method accounts 

exclusively for the differences in library size, and no other sources of variability. 
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In its most basic form, if one library had 10 million reads, one would divide it by 

10 to get a measure of reads per million (RPM). Alternatively, gene counts or 

binned read counts are divided by the number of total mapped reads in the 

sample, then multiplied by the mean total count across all the samples in the 

dataset. These have an equivalent effect – making the library sizes across 

samples comparable (Figure 1A and B).  

 

Variations of total count methods 

 

There are a number of similar approaches that use counts of subsets of the 

library, rather than the total count, to calculate normalization factors. The upper 

quartile (UQ) method calculates a normalization factor based on the upper 

quartile of counts at mRNAs with non-zero counts. The method uses the sum of 

all upper quartile mRNAs in each replicate, and divides the replicates by this 

value [5]. The rationale behind the UQ approach is to focus on the higher and 

more stable signal, ignoring the variable low signal parts of the dataset. 

However, this assumes a similar distribution of counts between datasets being 

normalized. The median (Med) method is another simple variation, which 

calculates the median mRNA count for each replicate, and divides by that. The 

advantage is that it removes the potential influence of outliers.  

 

Limitations of library size methods for RNA-seq 

 

The library size based approaches make intuitive sense, since a library that is 

twice as large is expected to have approximately twice as many sequenced reads 

across each mRNA. This is often a valid assumption, particularly for the 

comparison of relatively similar experimental conditions or for normalizing 

between biological replicates of the same condition. Furthermore, one of the 

advantages of library size based methods is that they make no assumptions 

about the data: they do not require, for example, a certain proportion of mRNAs 

to not be differentially expressed.  

 

However, problems arise when datasets with major differences in sample 

composition are compared. Total count-based normalization often biases the 

outcome when it is used for samples with large differences in expressed mRNA 

populations. If a particular set of mRNAs is very highly expressed in one 

experimental condition, but not the other, normalizing by a library size factor 

makes it appear that non-differentially expressed genes are in fact consistently 

downregulated, while minimising the genuine differences between the more 

highly expressed genes. As previously observed [4], this is often the case in RNA-

seq, where identifying large differences in gene expression between 

experimental conditions is often the purpose of the experiment.  Studying 

different sub-populations of genes is also known to produce this type of error. 

For example, focusing on tRNA genes within an RNA-seq experiment can pose 

problems because the proportion of tRNAs with respect to the total RNA 

composition may vary between experimental conditions. One way of adjusting 

for this is to use library size normalization on only a subset of the data; for 

example, normalizing by the total tRNA count, rather than the total library count.  
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While using this approach does remove some of the issues of library-based 

normalization, the issue of highly expressed genes still remains a problem, as 

these may still be present within sample sub-populations. Furthermore, since it 

is unknown in advance which genes will be highly differentially expressed 

between experimental conditions, it is not possible to remove this bias. It is 

instead generally preferable to use alternative normalization methods where 

possible.  

 

Limitations of library size methods for ChIP-seq 

 

Even libraries with a high depth of coverage have a finite number of reads; those 

reads are necessarily sampled from the population of molecules available in the 

sample. In a ChIP-seq experiment, the ChIP sample is expected to contain an 

enriched pool of DNA fragments that are bound by the protein of interest. This 

enrichment depletes the number of reads that will be sampled from other areas 

of the genome. When normalizing a ChIP library together with an input control 

library, which is expected to represent the distribution of background noise, 

scaling by total library size can inflate the noise in background regions, causing 

an artificially high FDR if a sample-swapping approach is used to estimate the 

empirical FDR [8, 9]. In both RNA-seq and ChIP-seq experiments, normalizing to 

total library size can lead to weak but biologically significant enriched regions or 

differentially expressed genes being missed.  

 

Scaling factors 

 

Although the strategy of normalizing by total library size or reads per million is 

intuitively straightforward, as described above, problems can arise when the 

libraries being normalized for comparison have very different read distributions. 

Scaling factor based methods were developed to take this problem into account. 

 

The general approach of scaling factor methods is to identify a subset of the 

signal that does not change between the experiments being compared and use 

that for normalization. For example, in the context of RNA-seq, it is assumed that 

the majority of mRNAs in a sample will not be differentially expressed. This 

population of stable mRNAs is used to normalize the rest of the samples, thus 

removing the issue of highly expressed genes. For ChIP-seq, most scaling factor 

approaches focus on identifying the background component of the ChIP dataset 

and scaling the input to match the background.  

 

Scaling Factors in RNA-seq 

 

For differential expression analysis of RNA-seq data, Robinson et al. suggest the 

trimmed mean of M-values (TMM) normalization method that uses the raw data 

to estimate appropriate scaling factors [4]. This can then be used in downstream 

analysis to account for the sampling properties of the data. This involves 

estimating relative abundances of different groups of genes and scaling the 

datasets accordingly. For example, if a group of liver-specific genes is highly 
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expressed in RNA-seq data from liver, normalizing by library size alone would 

suggest that general housekeeping genes are significantly downregulated 

compared to, for example, the kidney. This is exactly what Robinson et al. 

observe, with 8% of housekeeping genes upregulated and 70% downregulated in 

the liver using standard normalization methods. They show that applying their 

scaling method (implemented in the edgeR Bioconductor package) reduces this 

bias, and makes the proportions more even between the samples. When the 

scaling normalization method is applied, 26% are upregulated and 41% are 

downregulated.  

 

Another popular and widely used Bioconductor package, DESeq [10], and its 

more recent update DESeq2 [11], also use a variant of scaling factor 

normalization, based on the assumption that most genes are not differentially 

expressed. A scaling factor is computed for each sample, as the median of each 

gene’s scaling ratio (Figure 1D). The mRNA ratio is calculated as its read count 

over its geometric mean across all samples. The idea is that since most genes are 

not differentially expressed, they should therefore have a ratio of 1. If this is 

found not to be the case, a scaling factor is applied in order to make the data fit 

this assumption. This eliminates the problem of a set of highly expressed genes 

biasing the sequencing pool, since these are not taken into account during the 

normalization. However, the strategy is obviously only applicable if the 

assumption that most genes are not differentially expressed holds. The same 

constraint applies to the TMM normalization method, and is a general feature of 

scaling factor based methods, since they make use of invariant genes to scale the 

library accurately.  

 

Implementations for ChIP-seq 

 

A general solution to the scaling problem in ChIP-seq datasets involves 

separating the data into a signal component, corresponding to putative binding 

regions, and a background or noise component. A scaling factor is then calculated 

between the reads that make up the background of the ChIP and input libraries, 

the latter being assumed to be only background. This factor is then used to scale 

the entire dataset (Figure 2). The key parameter in this approach is how the 

background component is estimated, since the enriched regions are generally 

not known a priori [8]. Since ChIP-seq reads can show biologically interesting 

enrichment in any type of DNA, rather than just within genes or exons as is the 

case with RNA-seq, in a ChIP-seq analysis the genome is often divided into 

equally spaced bins or windows and the number of reads overlapping each bin 

counted. A number of different methods and implementations have been 

developed to assign each bin to either the enriched signal or the background; 

these can be roughly divided into methods that use a pre-determined cut-off to 

separate background from signal and methods that estimate the most 

appropriate threshold directly from the data. 

 

Several early methods, which were integrated with the first ChIP-seq peak 

calling algorithms, fall into the first category. These include PeakSeq, CisGenome, 

and SPP, among others. The strategies for determining background reads with 

CisGenome and SPP are similar but complementary; both are based upon the 
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observation that bins with enrichment in the ChIP sample will tend to have high 

read counts, while bins with a low number of reads will tend to fall into the 

background [8]. CisGenome designates all 100-bp bins with two or fewer reads 

as background and uses these bins to calculate the expected sampling ratio 

between sample and control in unbound regions. This ratio is then used in FDR 

estimation for each potential enriched bin [12]. SPP, on the other hand, estimates 

the background or nonspecific portion of the ChIP library by excluding highly 

enriched regions, defined as 1-kb regions with a number of tags that exceeds the 

expectation for a uniform Poisson distribution with a p-value less than 10-5 [13]. 

While these thresholding approaches are reasonable in most cases, it is not clear 

that they are appropriate for every dataset; indeed, the authors of CisGenome 

acknowledge that their methods may not be valid for datasets with low 

sequencing depth [12].  

 

PeakSeq offers a more tuneable approach, using a simulated background Poisson 

distribution to identify potential enriched peaks as a first pass and then 

excluding a certain fraction of those peaks, Pf, from the ChIP dataset to calculate 

the scaling factor between it and the input. While the Pf parameter can be set 

independently for each analysis, providing more flexibility, it is unclear how to 

identify an optimal value. The authors demonstrate a significant difference in the 

results obtained when Pf = 0 and when Pf = 1, with 0 being the most conservative 

setting, yet they suggest that it should ideally be somewhere between these two 

extremes [14].  

 

An alternative to specifying a fixed cutoff for determining the background 

component is to use properties of each dataset to estimate the optimal threshold 

directly. This adaptive approach recognizes that the selection of a count 

threshold for determining background bins implies a trade-off between bias and 

variance; smaller thresholds will tend to reduce bias more, as the resulting 

background bins will be very unlikely to contain weak but true regions of 

enrichment, but they will also display increased variance in the normalization 

factor estimates. Both NCIS and SES [8, 9] start by ranking bins by read count 

across the genome, then attempt to partition the bins into a subset containing 

only background and a subset in which enrichment is present. The normalization 

factor is then estimated at this partition point. NCIS searches for the minimum 

count threshold for which the ratio of ChIP counts in a bin to input counts in a 

bin is greater than that at the previous threshold and includes more than three-

quarters of all bins. SES uses order statistics to search for the bin in which the 

maximum difference exists between the percentage of all input reads allocated to 

bins and the percentage of all ChIP reads allocated to bins.  

 

A third approach, CCAT, models a ChIP library as a linear combination of signal 

and noise and estimates a noise rate from the input library, from which it is 

possible to calculate expected noise read counts in a given bin. Background bins 

are then defined as bins with read counts in the ChIP sample that are less than 

the expected noise counts [15]. However, there is evidence indicating that this 

algorithm may be sensitive to experimental artefacts, such as PCR 

overamplification during preparation of sequencing libraries, leading to 

significantly higher reads counts in the input library than in the ChIP library for 
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some regions [8]. Comparisons suggest that these data-adaptive scaling factor 

methods can increase power and true positive detection when compared to both 

fixed-cutoff methods such as PeakSeq and methods that scale by total sequencing 

depth such as MACS [8, 9, 15].   

Bias Correction 

 

As well as making library sizes comparable, ideally the normalization approach 

also considers any major biases arising from the experiment. These include 

biases based on gene length, as well as sequence content and accessibility. Here 

we present some popular methods for addressing these sources of bias.  

 

Gene length biases and RPKM normalization 

 

The Reads Per Kilobase per Million reads (RPKM) normalization was developed 

to specifically address transcript length bias and is a popular variant of library 

size based methods that is widely used for RNA-seq analysis (Figure 1C). It 

involves calculating a score relative to the size of each transcript, and is used as a 

way of facilitating a comparison of transcript levels while reducing the RNA-seq 

biases introduced by transcript length [16]. A similar concept, implemented in 

the Cufflinks software, is Fragments Per Kilobase of transcript per Million 

fragments mapped (FPKM). For single end data, RPKM and FPKM measures are 

the same, while in paired end data, FPKM treats paired reads as a single fragment 

[17].  

 

The RPKM method is reported to introduce some variability, particularly in the 

case of genes expressed at low levels [7]. The basis of the problem is that longer 

transcripts have more of an opportunity to be randomly featured in an RNA-seq 

dataset, simply because of their length. Thus changes in long mRNAs may appear 

more significant, while changes in shorter mRNAs are more difficult to detect. 

The RPKM method involves dividing the library-normalised score by the total 

exon length of each transcript (e.g. dividing by 2 for a 2kb transcript). However, 

this causes issues for particularly small transcripts. For example, the counts for a 

0.5kb transcript would be multiplied by 2, increasing the differences in the 

scores (Figure 1c). Since small transcripts are also likely to have low read counts, 

making them more prone to variability, this approach can result in the 

amplification of differences that are not genuinely biologically significant. 

Uneven transcript sequencing coverage is also a major issue, which can be 

unpredictable and vary significantly within and between samples, confounding 

analysis [18].  

 

RPKM normalization can be helpful when the objective is to identify a globally 

representative set of differentially expressed genes. For example, gene length 

bias can have a big impact on gene ontology (GO) enrichment and network 

analysis, as lengths of different groups of functional genes are non-random. 

Which parts of the gene are relevant for normalization purposes also varies by 

experiment - for example, long introns can lead to a gene length bias in ChIP 

depending on how the peaks were assigned to genes, whereas it is transcript 
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length that is relevant for RNA-seq. However, the downside is that it may remove 

genuine differentially expressed large genes in the process (an increase in false 

negatives), while at the same time adding false positive small genes whose 

originally small differences have as a result of normalization been flagged as 

significant.   

 

Alternatives to RPKM 

 

As mentioned, RPKM normalization introduces its own set of biases [7], and is 

considered not to be a valid between-sample normalization method [19]. 

However, the need to normalize for transcript length across samples still exists, 

and improved methods for achieving this have since been published. The 

Transcripts Per Million (TPM) measure is a modification of RPKM that is 

considered to be a more sound alternative for between-sample normalization 

[19, 20]. As well as taking into account the transcript length, it also considers the 

sequencing read length and the number of transcripts sampled, in order to 

estimate the relative molar concentration of RNA. TPM is an improvement, and is 

now included in a number of software packages such as RSEM, eXpress and 

sailfish.  

 

In terms of differential expression, the BaySeq package uses Bayesian methods 

and includes gene length in the model [21].  This is important when comparing 

conditions within a species [4, 22], but really becomes essential in cross-species 

comparisons, where homologues may have different lengths and can therefore 

end up with very different read counts. DESeq2, the newer version of DESeq,  

also includes an option for calculating normalization factors for gene length, 

which can be used to correct for gene length bias in a differential expression 

analysis [11].  

 

Sequence biases 

 

A separate but related issue in normalizing ChIP-seq libraries, or indeed any type 

of genome-wide count data, is that of correcting for biases that may be 

introduced by local variations in sequence mappability, sequence composition or 

chromatin accessibility. In early ChIP-seq experiments, it was assumed that the 

background followed a uniform Poisson distribution; however, analysis of input 

chromatin libraries showed that the background tag distribution exhibited 

significantly more clustering than expected [13]. These “background peaks” can 

arise for a number of reasons, including the tendency of sequencing chemistry to 

favour sequences with higher GC content [23], differences in chromatin 

accessibility resulting in some regions being sheared more readily during 

sonication, and differences in mappability, as sequences that map to more than 

one region of the genome are often excluded from analysis. Since these sources 

of bias can be correlated with functional genomic features (for example, exons 

tend to have a high GC content), it is important to correct for them to avoid 

systematically under- or over-estimating the significance of peaks in certain 

regions of the genome [14, 24].  
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The most straightforward way to correct for potential biases is to use a matched 

input control prepared under the same conditions as the sample, since this 

should be subject to all of the same sources of error. Many normalization and 

peak-calling methods do just this, either dividing the sample reads by the scaled 

input reads or subtracting the input reads from the sample reads at each position 

[12–14, 25]. Others, including the popular peak-caller MACS, use a sample-

swapping strategy to estimate the FDR by calling both sample peaks over the 

control and control peaks over the sample [26]. However, there is evidence to 

suggest that simply using an input sample to correct for local biases is not 

sufficient, as using different replicate inputs can give different results and even 

dividing one input library by another can yield regions of apparent enrichment 

[24]. Another possible control for a ChIP-seq experiment is a mock-IP, performed 

using an antibody that is not expected to bind to anything in the sample. While 

this approach may reduce false positives more efficiently than an input control, it 

can also be subject to bias and greater variability, as mock-IP samples often have 

a very low DNA yield and are thus vulnerable to PCR amplification artefacts [27].  
 
A commonly proposed solution to this problem is to correct libraries using 

independently determined data such as mappability profiles and calculations of 

% GC content across the genome. PeakSeq provides code to calculate mappability 

for fragments of a user-specified size across any given genome, and the resulting 

maps are used in the peak-calling process [14]. Several other tools, including 

MOSAiCS, BEADS and ZINBA, also make use of this type of data. Both MOSAiCS 

and ZINBA utilize mixture modelling, in which additional information such as GC 

content and mappability are treated as covariates [28]. ZINBA allows the 

incorporation of other data, such as copy number variations. This approach does 

not separate normalization and peak-calling into two different steps, but rather 

uses all available covariates to model three components of the data: background, 

enriched regions, and zero-counts corresponding to regions with insufficient 

coverage or low mappability [29]. On the other hand, BEADS does not call peaks 

but focuses solely on bias correction. It transforms raw data by weighting reads 

by mappability and GC content, as well as calculating a local correction from 

input data; the algorithm is quite flexible and can also be applied to input 

datasets themselves [24]. However, in order to apply it to ChIP datasets, 

potential enriched regions must first be identified using another method, as the 

GC content is calculated based on the background only. The resulting corrected 

data can then be normalized by library size or using one of the scaling factor 

methods outlined above. Bias correction using mappability and GC-content can 

also be a suitable solution for situations when an input dataset is not available. 

Other biases include more frequently mapping alleles that match the reference 

genome better than those that include sequence variants - these can be 

simulated using a known sequence set, and should be taken into account for any 

applications where variant-specific expression is important.   

 

 

Normalization methods comparison 
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We applied some of the more popular normalization methods to published 

datasets from human and fly, to test their impact on ChIP-seq and RNA-seq 

results.  

 

Impact of normalization on RNA-seq 

 

In the case of RNA-seq, we compared three popular normalization methods: 

library size total count, DESeq scaling factors, and RPKM normalization. We 

selected representative publicly available datasets, including single cell profiling 

of human zygotes and oocytes [30], and a comparison of Drosophila adult males 

and females from the modENCODE project [31, 32]. It was hoped that the fly data 

in particular would give us a good indication of false positives and false 

negatives, since male-female differences are well characterised from a genomic 

perspective.  

 

In terms of the differentially expressed genes, DESeq and library size 

normalization gave very similar results for both human and fly data (Figure 3A). 

While some minor differences were observed, over 90% of the identified genes 

were the same in both cases. The RPKM method on the other hand consistently 

identified a smaller number of differentially expressed genes with both human 

and fly data. The difference in the human data was more pronounced, with RPKM 

normalization identifying 1500 differentially expressed genes, compared to 

around 2300 total identified by both DESeq and library size normalization 

methods. Encouragingly, the great majority of RPKM-identified genes were also 

identified by the other two methods. This shared set of genes was also found to 

have similar expression patterns across all three experimental methods, 

meaning that at least in the case of these datasets, the library size normalization 

method did not lead to major data skew.  

 

Assessing the sizes of the differentially expressed genes found that the mean 

total exon length was significantly higher than the genome average for all three 

normalization methods, though more so for DESeq and library size. However, it 

is clear from the size distributions (Figure 3B) that the RPKM method more 

closely matches the genome distribution, while library size and DESeq are more 

skewed towards longer genes.  

 

Which normalization method should be applied depends both on the exact 

dataset in question, and the application for which the data is being analysed. 

Since it is possible to introduce a large systematic skew if there is a group of 

highly expressed genes present within a particular experimental condition, it 

seems prudent to use DESeq scaling factors by default to avoid this. However, 

there are also applications where gene length bias will significantly skew the 

results, and this might become the more important consideration. For example, 

any systems biology applications that require a relatively non-biased sampling of 

genes, such as GO enrichment or network analysis, would benefit from 

normalization that takes into account gene length bias. On the other hand, if 

sensitivity is an issue, DESeq or library size will likely pick up a larger number of 

differentially expressed genes. Conversely, to identify a robust set of reliable 
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genes for further biological validation, it may be worth trying out multiple 

methods and choosing the genes that are commonly identified.  

 

Impact of normalization on ChIP-seq 

 

We tested the effects of three normalization methods with both human and 

Drosophila ChIP-seq datasets: TC-based scaling, the SPP method, and the NCIS 

method. Sequencing reads were downloaded from a ChIP-seq experiment for the 

D. melanogaster embryonic segmentation transcription factor Knirps (Kni) and 

for the human liver-specific transcription factor CEBPA [32–34]. The Kni dataset 

consists of three ChIP replicates and three input replicates, while the CEPBA 

dataset consists of four ChIP replicates and four input replicates. In both cases, 

all ChIP and input replicates were pooled; while this does not allow for 

assessment of reproducibility, and while we would generally recommend 

analysing all replicates independently, it is the recommended procedure for 

using MACS, which we chose as a baseline peak-caller for evaluating different 

normalization methods. All reads were aligned against the most recent release of 

the respective reference genome.  

 

In order to visualize the distribution of reads in each dataset, mapped reads were 

counted in bins across the genome (500 bp for human and 100 bp for 

Drosophila) and input bins were scaled by the ratio determined by each of the 

normalization methods tested. ChIP reads versus input reads were then plotted 

for each bin (Figure 4). From these plots, it is immediately clear that different 

ChIP-seq datasets can have very different signal distributions; in comparison to 

the Kni dataset, the CEBPA dataset contains more bins with higher counts in the 

ChIP sample than in the input, which could be considered to be the bins 

containing the ChIP enrichment signal. Both datasets also contain a number of 

bins with higher counts in the input sample than in the ChIP, these outlier bins 

with very high counts in the input sample could be due to PCR overamplification. 

Over each scatterplot, we plotted lines at y=x, which represent the points at 

which bins have the same number of reads in both the ChIP and the input 

samples. Simplistically, bins falling above this line could be considered as 

candidate peaks, since they have more counts in the ChIP sample than in the 

input. These plots illustrate the effect that different normalization methods have 

on determining the threshold for the ChIP signal, as well as the differences 

between datasets. 

 

We wanted to decouple the effect of normalization from the peak-calling process, 

as many of the tools that implement different normalization methods also 

implement different algorithms for peak-calling. To do so, we used MACS, a 

popular ChIP-seq peak caller whose default setting is to scale the larger of the 

two datasets (either ChIP or input) to the smaller dataset using total library size. 

A patch available in MACS v1.4.4 

(https://github.com/taoliu/MACS/tree/macs_v1) allows users to specify a 

custom scaling ratio with which to scale the control library. We first confirmed 

that the default scaling factor used by MACS matches the ratio between the ChIP 

and control libraries calculated, either by NCIS or simply by dividing the total 
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number of reads in the ChIP library by the total number of reads in the input 

library, then ran MACS using the default p-value threshold of 1e-5 on each 

dataset to test the effect of TC normalization. We repeated the analysis using the 

--ratio option and specifying each alternative scaling ratio, with all other 

parameters remaining the same, to test the effect of each other normalization 

method.  

 

For the CEBPA dataset, scaling by the total library size resulted in 110069 peaks 

and 3559 negative peaks. Each alternative scaling method both increased the 

number of positive peaks and significantly decreased the number of negative 

peaks. Since MACS calculates the FDR by performing a sample swap and 

determining the number of peaks called in both ChIP versus control and control 

versus ChIP at any given p-value [26], this represents both an increase in 

numbers of peaks and a decrease in the estimated FDRs. The NCIS method, which 

estimated the lowest scaling ratio, was the most effective at maximizing positive 

peaks and minimizing negative peaks. For this dataset, NCIS estimates that 67% 

of bins in the ChIP sample correspond to the background component, with 33% 

containing ChIP signal. The differences between the TC method and the other 

methods can be seen in Figure 4A; scaling by the total library size clearly results 

in an overestimation of the background, with many more bins falling below the 

diagonal, while the other scaling factors fit the shape of the data more 

appropriately. A summary of the parameters, ratios, and results for each analysis 

is presented in Table 1. 

 

For the Kni dataset, 7143 peaks and 2103 negative peaks were called using the 

TC normalization. Using the NCIS-estimated scaling factor resulted in a slight 

increase in positive peaks and decrease in negative peaks; however, the 

estimated FDRs were still quite high (~20-30%) for the majority of peaks, 

reflecting the high number of apparently enriched regions in the input. The 

relatively modest improvement seen with the NCIS scaling factor may be 

explained by the fact that NCIS estimates that 95% of the 100-bp bins in the ChIP 

sample for this dataset correspond to the background component, meaning that 

in this case the difference between the background size and the total library size 

is small. Indeed, the NCIS scaling factor, 1.87, and the TC ratio, 1.97, are fairly 

close. This reflects what is seen in Figure 4B, where few bins fall above the 

diagonal. On the other hand, the SPP scaling factor estimate for this dataset is 

considerably lower, resulting in the greatest number of positive and lowest 

number of negative peaks. The different effects of these methods on the CEBPA 

and Kni datasets highlight the importance of plotting the data to understand its 

distribution and testing various methods of normalization before proceeding 

with downstream analysis. 

 

 

Conclusions 

 

Normalization is an essential step in any NGS analysis, and one that significantly 

impacts the results of downstream analysis. In the context of RNA-seq, we 

generally recommend the use of scaling factors such as those implemented in 
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DESeq and edgeR, as long as the data matches the required assumption that the 

majority of genes do not change expression. However, the optimal normalization 

method also depends on the application for which it is being used. When 

particular biases present a challenge for the downstream analysis, appropriate 

normalization methods should be used to counter those biases; for example, 

methods that take into account gene length bias. This becomes particularly 

crucial in cross-species analysis, where homologue length may change between 

species.  

 

In the context of ChIP-seq, we find that TC-based scaling between a ChIP and 

matched input sample is often overly conservative and can artificially raise the 

FDR. We recommend NCIS as an easy-to-use tool to estimate the percentage of 

ChIP bins in the background component and the corrected scaling factor 

between the input and the background. However, as our analysis of two different 

datasets shows, the background estimation can vary widely depending on the 

distribution of the data. Consequently, it is useful to plot the data beforehand and 

to test several different tools. We emphasise that the majority of tools that 

include an estimation of the background for normalization also use their own 

algorithms for calling peaks, meaning that the final set of peaks will also vary 

based on, for example, whether SPP or MACS is used as a peak caller. 

Nonetheless, it is important for researchers to understand how their data is 

normalized by such tools and to adjust it if necessary; tools like MACS which 

allow for flexibility in specifying a scaling ratio can be very helpful in this regard. 

 

For sensitive applications where data bias is likely to be a major issue, we 

recommend using an appropriate bias correction method, for example, 

correcting for transcript size in RNA-seq applications. However, we also 

emphasise that correct experimental design in both ChIP-seq and RNA-seq 

applications is essential, and will go a long way towards countering the biases 

inherent in the techniques.  

 

 

Methods 

 

RNA-seq normalization 

 

The datasets used were from single cell profiling of zygotes and oocytes in 

human [30], and a comparison of Drosophila adult males and females from the 

modENCODE project [31, 32]. Raw sequencing reads were downloaded from 

GEO, including zygote and oocyte data from series GSE36552 for human, and 

datasets GSM451804 and GSM451805 for fly. The SRA files were decompressed 

using SRA toolkit 2.3.5. The sequencing reads were aligned to the genome using 

Tophat v2.0.9 allowing for 2 splice mismatches (-m 2) [35]. Human data was 

mapped to the human genome version GRCh37/hg19 with Ensembl release 71 

gene annotations, while fly data was mapped to genome BDGP R5/dm3, Ensembl 

release 75 gene annotations [36–38]. Only uniquely mapping reads were used 

for the analysis. Sam files were created using SAMtools [39], and htseq-count 

was used to get summary counts for each transcript [40]. 
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DESeq was then used to call differentially expressed transcripts with the same 

settings in all cases [10], with the only variable being the normalization method 

used. The scaling factor method is native to DESeq, so the analysis for this was 

run using software defaults. For the library size methods, the DESeq scaling 

factors were replaced with library sizes in millions of reads for each replicate. 

For the RPKM method, the scaling factors were replaced by library sizes, and the 

counts were adjusted for exon length of each transcript before reading them into 

DESeq. All differentially expressed genes were called at the same cut-off (p-value 

<= 0.05).  

 

ChIP-seq normalization 

 

Raw sequencing reads for the Drosophila and human ChIP-seq experiments were 

downloaded from GEO [GEO:GSE23147] and ArrayExpress [ArrayExpress: E-

TABM-722], respectively. All reads for replicates from the same experimental 

condition were pooled. Reads were mapped against the D. melanogaster April 

2000 release (dm3) for Drosophila and the December 2013 (hg38) release for 

human, obtained from the UCSC Genome Browser (http://genome.ucsc.edu/) 

[36–38]. In the case of the human data, all unassembled chromosomes were 

excluded from further analysis. Bowtie2 was used for mapping with the default 

settings [41]. 

100-bp or 500-bp bins across the Drosophila and human genomes, respectively, 

were generated using the BEDTools makewindows utility [42]. Counts of reads 

in all bins were then calculated using the BEDTools coverage utility. Binned 

counts were plotted in R v3.1.0 using RStudio v0.98. NCIS and SPP were also run 

in R v3.1.0 using RStudio v0.98. Peaks were called using MACS v1.4.4 run with 

Python v2.7. For library-size based normalization, the following command was 

used: macs –t treatment_file.bam –c control_file.bam –f BAM –g genome –n name --

keep-dup all --to-large. For each other method, the appropriate calculated scaling 

ratio was used by substituting the --to-large option with the --ratio option.  
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Figure Legends 

Figure 1. The conceptual basis of different normalization methods. For RNA-seq, 

starting from a raw data count (A), a number of different normalization methods 

can be employed. The commonly used library size (B), RPKM (C) and DESeq (D) 

methods are shown here. (B) For the library size method, the library sizes are 

equalized between the samples. (C) For the RPKM method, in addition to being 

library normalized, the sample counts are also divided by the gene length in 

order to account for gene length bias. (D) DESeq finds the majority of genes that 

do not appear to change expression (in this case genes 2 and 3), and uses these 

to calculate a scaling factor to equalise the libraries accordingly. The red and 

green arrows indicate the gene expression change direction indicated by the 

counts.  

Figure 2. An illustration of the effect of total count scaling and scaling to the 

background in ChIP-seq. (A) A region of the Drosophila genome showing raw 

ChIP reads over input reads. In this dataset, there are roughly twice as many raw 

ChIP reads as input reads. (B) Scaling the input up to match the total size of the 

ChIP library results in amplification of noise in the input which could be 

interpreted as negative peaks, raising the FDR, as well as causing potentially real 

but weak peaks in the ChIP sample to be missed. Red boxes indicate areas of the 

input that could be called as negative peaks. (C) When the input is scaled to 

match the size of the background component of the ChIP signal, noisy regions of 

the input are less likely to be called as negative peaks and the sensitivity of peak-

calling is improved. The green box indicates a peak that may be missed with total 

count scaling but that is detected when using this technique. The tan shaded 

areas show the background regions in each sample that are normalized to match. 

 

Figure 3. A comparison of different RNA-seq normalization methods. (A) 

Differentially expressed genes were called using the DESeq package, but with 

different normalization methods. RNA-seq data from a single cell oocyte and 

zygote study was used for human [30], and modENCODE data comparing adult 

males and females was used for fly [31]. While there is a large amount of overlap 

across all normalization methods, RPKM shows a much lower sensitivity than the 

other two methods. (B) The probability density of total exon sizes for different 

transcripts is shown for the genome as a whole, as well as for the differentially 

expressed genes identified using RPKM, library size and DESeq normalization 

methods. The RPKM normalization method more closely matches the gene size 

distribution in the whole genome, while library size and DESeq methods contain 

more long genes than would be expected at random.  

 

Figure 4. Binned ChIP counts versus input counts after normalization. (A) 

CEBPA ChIP data from human livers [34] in 500-bp bins. (B) Knirps 

modENCODE ChIP data from Drosophila embryos [33] in 100-bp bins. Both 
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datasets were normalized by scaling binned input counts by the ratios derived 

from total library counts (TC), SPP and NCIS. A line at y=x is plotted on each 

graph to illustrate the point where bins have equal numbers of counts in the ChIP 

and input samples, roughly corresponding to the threshold of ChIP signal. The 

effect of different normalization strategies can be observed in the number of bins 

that fall above and below the line in each plot. 

 

Table 1. Scaling ratios derived from each normalization method for each ChIP-

seq dataset, along with positive and negative peaks called by MACS when using 

each ratio. 

 

 

Dataset CEBPA   Kni   

Method TC SPP NCIS TC SPP NCIS 

Scaling factor 1.14 0.801 0.77 1.97 1.51 1.87 

Peaks 110069 149701 152736 7143 10685 7976 

Negative peaks 3559 259 204 2103 751 1755 

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2014. ; https://doi.org/10.1101/006403doi: bioRxiv preprint 

https://doi.org/10.1101/006403
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2014. ; https://doi.org/10.1101/006403doi: bioRxiv preprint 

https://doi.org/10.1101/006403
http://creativecommons.org/licenses/by-nd/4.0/


A

B C

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2014. ; https://doi.org/10.1101/006403doi: bioRxiv preprint 

https://doi.org/10.1101/006403
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2014. ; https://doi.org/10.1101/006403doi: bioRxiv preprint 

https://doi.org/10.1101/006403
http://creativecommons.org/licenses/by-nd/4.0/


A	
  

B	
  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 19, 2014. ; https://doi.org/10.1101/006403doi: bioRxiv preprint 

https://doi.org/10.1101/006403
http://creativecommons.org/licenses/by-nd/4.0/

