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Abstract

In this study Markov chain models of gene regulatory networks (GRN)
are developed. These models gives the ability to apply the well known
theory and tools of Markov chains to GRN analysis. We introduce a new
kind of the finite graph of the interactions called the combinatorial net
that formally represent a GRN and the transition graphs constructed from
interaction graphs. System dynamics are defined as a random walk on the
transition graph that is some Markovian chain. A novel concurrent up-
dating scheme (evolution rule) is developed to determine transitions in a
transition graph. Our scheme is based on the firing of a random set of
non-steady state vertices of a combinatorial net. We demonstrate that
this novel scheme gives an advance in the modeling of the asynchronicity.
Also we proof the theorem that the combinatorial nets with this updat-
ing scheme can asynchronously compute a maximal independent sets of
graphs. As proof of concept, we present here a number of simple combina-
torial models: a discrete model of auto-repression, a bi-stable switch, the
Elowitz repressilator, a self-activation and show that this models exhibit
well known properties.

1 Introduction
Efforts to study gene expression regulation networks has led to a detailed

description many of them, and many more are to be identified in the near
future. Therefore there is a need to develop methods of computational and
theoretical analysis of GRNs. One of the most promising directions is to re-
duce the problem to the study of Markov chains, generated in some way from
the GRN [1, 2, 3, 4, 5]. Usually Boolean networks [6] are used as a formal
representation of GRN. Classification of process states, the study of long-term
behavior [7], and development of optimal strategies for therapeutic interven-
tion [8, 9, 10, 7, 11, 12, 13, 14, 15] provide good examples of this approach
[16]. In contrast to the Boolean network, the Hopfield networks are defined
using arithmetic operations [17]. It is a well-developed branch of science which
deals with stochastic processes of asynchronous state switching as a result of
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interactions. As such they are similar to Boolean networks. A Hopfield like
formalism also leads to the definition of the Markov chain. In the Hopfield net-
work area essential results were obtained in the study of various update schemes
[18], network oscillations [19], solving of combinatorial optimization problems
[20, 21, 22, 23, 19, 24, 25, 26], and estimating the rate of the convergence and
many others. This makes it valuable to study the possibility of using Hopfield
like networks for the construction of Markov chains from GRNs and other inter-
actions graphs. We consider a GRN as a kind of interaction graph. Interaction
(regulatory) graphs are emerged in various fields of the life science [27] . Nowa-
days, their transition graphs are often used to analyze properties of interactions
(regulations). One promising way to understand the nature of the regulation
or interactions represented by interaction graphs is to analyze the Markovian
chain associated with their transition graphs.

2 Method
The proposed method may be viewed as a version of the Hopfield like network

[17] where groups of randomly selected unstable units are updated in parallel
[18].

2.1 The interactions graph and non steady state vertices
Let G = (V,E) be a directed graph, where V is set of vertices and E is set

of edges. Let B = {0, 1} be a set of vertex states.We say that the vertex is
active if the state of this vertex is equal to ”1”, otherwise we say that vertex is
inactive. The map function M : V → B give us the state of each vertex. If some
vertex v ∈ V , then M(v) is the state of the vertex v that correspond to map
M . M(v) = 1 is equivalent to the vertex v is active under map M. M(v) = 0 is
equivalent to the vertex v is inactive. The weight function W : E → R gives the
value of each edge of the graph G,which represent the power of interactions. If
e = (u, v) than we say that u is a direct ancestor of v and v is a direct descendant
of u. The influence on v under the map M is defined as the sum of weights of
edges from all direct active ancestors of vertex v. The influence on v under the
map M is denoted by I(v,M) (also called "the local field or the net input").
That is

I(v,M) =
∑

{u|(u,v)∈E}

W ((u, v)) ·M(u) (1)

This influence is determined by map function M and weight function W .
Only if the weight function W is assumed to be constant over time then we say
that influence I(v,M) is influence of map M on vertex v. If I(v,M) ≥ 0 we
say that map M activate vertex v otherwise we say that map M repress vertex
v. Now we can give most important definition of vertex steady state under the
map M . Let v be the active under map M, if map M activate v then the state
of v is a steady state under the map M , else the state of v is a non steady state
under the map M . Let v be inactive under map M , if map M inactivate v then
the state of v is a steady state under the map M , else the state of v is a non
steady state under the map M . If all vertices are in steady state under the map
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M we say that map M is steady map. The forced state of the vertex v under
map M is defined as follows:

F (v,M) =

{
0, if I(v,M) < 0 ;
1, if I(v,M) ≥ 0 .

(2)

By definition, if forced state and current state of v are the same then state
of the vertex v under the map M is steady. Next equation give us the formal
definition:

steady(v,M) =

{
0, if F (v,M) = M(v) ;
1, if F (v,M) 6= M(v) .

(3)

2.2 The Random Set update rule
Now we consider a stochastic process{Yj , j = 1, 2, 3, . . . } that takes on the

set of maps of some interaction graph G, where Yj denote the map of G at time
period j. At each time period j for each non steady-state vertex vi under the
map Yj we change the current vertex state to a forced state with the probability
pi, and the current state stays unchanged with the probability 1 − pi. Let
S = {v1, v2, . . . , vn} be a set of all non steady-state vertices at the time period
j. Vertices chosen to change their state in one-step transition form a random
set X ⊆ S. To make the new map that direct accessible from current map Yj

all vertices from X simultaneously change their state whereas another vertices
stay unchanged. Let P={p1, p2, . . . , pn} be some vector of numbers such that
0 ≤ pi ≤ 1, we refer to pi as the probability of the state changing (firing) of the
non steady-state vertex vi. For any X ⊆ S let 1X : S → B be indicator function
such that 1X(vi) = 1 if vi ∈ X, otherwise 1X(vi) = 0. Let PX : S → [0.0, 1.0]
denote the function such that PX(vi) = pi if 1X(vi) = 1, otherwise PX(vi) =
1 − pi. Hence we assume that each vi acts independently to make random set
X then the production of PX give us pX that is the firing probability of the
random set X

pX =
∏
v∈S

PX(v) (4)

Evidently, ∑
X⊆S

∏
v∈S

PX(v) = 1 (5)

Now we can apply this definition of Random Set update rule and its probabilities
to define the transitions graph of the combinatorial net models.

2.3 The transitions graph of the interactions graph
Let S be the set of non steady state vertices under map M = Yj . S represent

a full set of vertices each of which can flip to a forced state at next j+1 time step.
In the combinatorial model steady state vertices can not flip. To construct a
transition graph we should define the full set of maps M1,M2, . . . that are direct
reachable from the map M . Each pair (M,Mi) will correspond to one edge in
transition graph. What is the set of maps M1,M2, . . ., which can be direct (by
one-step transition) reached from map M? To represent the independence and
the asynchronicity we assume that any random set of non steady state vertices
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X ⊆ S can produce next map from current map. Let MX be map such that
MX(v) = F (v,M)) if v ∈ X and MX(v) = M(v) if v /∈ X, then we say that
MX produced by X from M . That is,the random set X of non steady state
vertices produce the map MX from a map M . The weight of edge from map M
to a map MX are given by the probability defined by equation (4).

2.4 The random walk network dynamics
We suppose that whenever the process is in state M , there is a probability

pX such that at next step it will be in state MX . This probability is defined for
each random set X of non-steady state vertices of map M .

3 Random Set update rules are more general
It is well known that asynchronous and Random Set update rules are equiv-

alent in the sense of global stable states [28]. But in the sense of the reachability
of one state from another they are not equivalent. Figure 1 show the Mace com-
binatorial model that illustrate this fact .The vertex e provides constant level
of repression for vertex c, that is equal -2. Let the vertex d of the Mace will be
active at the start. Then it can activate both middle vertices a and b. Due to
repression, the vertex c of the Mace can be activated only if both middle vertices
a and b will be active simultaneously. Asynchronous (one at a time) updating
exclude simultaneous activation of these vertices, but Random Set update rule
do not. Synchronous update rule do not exclude simultaneous activation of a
and b, but it make the system deterministic. The Random Set update rule is
more general than both synchronous and asynchronous update rules, because it
allow all possible paths of a system evolution. Therefore, transition graphs of
both synchronous and asynchronous update rules are subgraphs of Random Set
update graph.

a

b

cl d l e-1.5

+1.5

-1.5

+1.5

+1

+1

+1
-2

+1

Figure 1: The Mace
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Figure 2: The interaction graph of: (a) The Autorepression model; (b) The
Bistable Switch model; (c) The Elowitz repressilator model; (d) The self-
activation model.

4 Examples of combinatorial models
Next we use described above method to develop models of some important

graphs of repressive interactions of self activating nodes and prove their main
properties. Such models we call combinatorial models.

4.1 The combinatorial model of an Auto-repression
A negative auto-regulation or an auto-repression occurs when products of

some gene represses its own gene. This form of a simple regulation serve as
a basic building block of most important transcription networks [27, 29]. An
Auto-repression can produce oscillations. For example embryonic stem cells
fluctuate between high and low Nanog expression and the Nanog activity is
auto-repressive [30]. Our model of an auto-repression shown in Figure 3a and
Figure 2a also exhibit stochastic oscillating behavior. Figure 2a present a graph
of interactions G = (V, E) of the Auto-repression model. The set V contains
a single vertex v1. And the set E consist of a single edge e1 = (v1, v1) from
vertex v1 to itself. The weight of e1 is equal to -1. Let the M0 be a starting
map and M0(v1) = 0, i.e. v1 is inactive under the M0. Therefore, influence of
M0 to vertex v1 equals -1, I(v1,M0) = −1. By equation [2], F (v1,M0) = 0,
then state of the vertex v1 is non steady under the map M0. Let p1 = 1/2 then
the state of the vertex v1 could be changed to active state with probability 1/2
and could stay unchanged with probability 1/2. The another state of the model
are also non steady. Therefore, there is only non steady states in the model.
Thus, it will oscillate infinitely between 0 and 1. Figure 3a show full transition
graph of the auto-repression model.

4.2 The combinatorial model of a Bi-stable Switch
A Bi-stable Switch is bi-stable gene regulatory network that constructed

from a two mutually repressive genes [31]. They are widely common in nature
and most used in synthetic biology [32, 33]. ODEs used to construct their math-
ematical models are convenient way for analyzing in detail some small circuits.
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Here we develop techniques that can be used to construct models of large net-
works of bis-table switches and to prove some their important properties. Thus,
we use probabilistic coarse-scale modeling approach [34] instead of fine-scale
ODE modeling. Our model of Bis-table Switch shown in Fig 2b and Fig 3b
exhibit two steady states. Figure 2b present a graph of interactions G = (V,E)
of the Bi-stable Switch model. The set V = {v1, v2} contains two vertices and
E contains two edges, which weights are -1. Probabilities of firing non steady
state vertices let be 1/2. Figure 3b present the transition graph of the model.
Maps 00 and 11 are non steady, whereas maps 01 and 10 are steady. To show
that a map M is steady we must show that each vertex v is steady under map
M . To show that a vertex v is steady under map M we must compute value of
influence F (v,M) of map M on vertex v and compare it to the state v under
map M , i.e. M(v). Now we will show that map 01 is steady.

4.3 The combinatorial model of the Elowitz Repressilator
Elowitz repressilator consists of three genes [35]. Each of these genes are

constitutively expressed. The first gene inhibits the transcription of the second
gene, whose protein product in turn inhibits the expression of a third gene, and
finally, third gene inhibits first gene expression, completing the cycle. Such a
negative feedback loop lead to oscillations. The combinatorial model of Elowitz
repressilator produce oscillations and consists of three vertices and three edge,
which weights is equal to -1. Figure 2c present a graph of interactionsG = (V,E)
of the Elowitz repressilator model, where the set V = {v1, v2, v3} contains three
vertices and E = {(v1, v2), (v2, v3), (v3, v1)} contains three edges. Oscillations
are produced by circle {1,3,2,6,4,5} in Figure 3c. Decimal, binary, and graphical
representations of the state space of the Elowitz repressilator are shown in Table
1.

4.4 The combinatorial model of the self-activation
A constitutively expressed gene represent an example of a self-activation.

Such gene do not require any interaction to be active. A combinatorial model of
the self-activation consist of one vertex and no edges. In any case the influence
on it equals 0 since there are no other vertices. Therefore a forced state of the
vertex equals 1. Thus 1 is steady state and 0 is non steady state. Vertex starting
in steady state will stay in it infinitely. Vertex starting in non steady state with
probability p flip to steady state and with probability 1-p stay in non steady
state. The amount of time periods T which the vertex spent in non steady
state is the random variable. The distribution of this random variable is the
shifted geometric distribution with parameter p. Figures 2d and 3d represents
the combinatorial model of a self-activation.

Pr (T = k) = p (1− p)
k−1

E[T ] = 1/(1− p)
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(c) Transition graph of Elowitz Repressilator model

0 11-p
p

1

(d) A Self-activation

Figure 3: The Transition Graphs of : (a) The Autorepression model; (b)
The Bistable Switch model; (c) The Elowitz repressilator model; (d) The self-
activation model.

5 The network of bi-stable switches
An independent set (IS) in a graph is a set of vertices no two of which are

adjacent . An independent set is called maximal(MIS) if there is no independent
set that it contains properly. Hopfield network whose stable states are exactly
maximal independent sets was developed by Shrivastava [36]. An independent
set in a graph is a clique in the complement graph and vice versa. Thus, cliques
can be used to find or to enumerate MISs [20, 21]. Finding independent sets (or
cliques) has applications in various fields [37]. Combinatorial nets can be used to
compute maximal independent sets of graphs in a distributed self-organization
fashion. A stable states of a network of bi-stable switches derived from a graph
are exactly maximal independent sets of its underlying graph. Now we consider
simple graph H, that is, graph without directed, multiple, or weighted edges,
and without self loops. Let C(H) denote the graph obtained from H by deleting
an each undirected edge (u, v) of H and adding instead of this edge new two
directed edges (u, v) and (v, u). The set of vertices of C(H) let be the same as
the set of vertices of H. Let -1 be a weight of each edge of C(H). The Bi-stable
Switch can be seen as combinatorial net derived from simple graph of order 2.

For example Figure 4b demonstrates the network derived from the graph
shown in Figure 4a. The first switch is formed by the subgraph induced by
the {1,2} set of vertices of the C(H) network . The second switch is formed
by the {2,3} set of vertices. The vertex 2 is common one of these switches,
therefore they interact by means of this vertex. Each edge of an underlying
graph correspond to a switch in a derived network. If two incident edges share
a common vertex then the corresponding switches interact because this vertex
have the same state in both of them. We refer to C(H) as the derived network
of bi-stable switches, and we refer to H as the underlying graph.
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(a)
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-1
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Figure 4: The network C(H) derived from a graph H: (a) The graph H; (b) The
network C(H) derived from the graph H;

Lemma 1. A steady state map M of a combinatorial net that derived from a
simple graph does not have two adjacent active vertices u and v.

Proof. Assume by contradiction that u and v are adjacent active vertices, then
I(u,M) < 0 and the forced state of the u is inactive. If a state is steady and
the forced state is inactive then the state of the vertex is inactive, whereas by
conditions of the lemma u is active.

Lemma 2. If a map M of a combinatorial net that derived from a simple graph
is steady and some vertex is inactive then there is at least one active vertex
adjacent to it.

Proof. Assume by contradiction, that there are no active adjacent vertices of
v, then influence I(v,M) = 0 and then forced state of v is active. Hence the
map M is steady state, forced state of vertex is equal to current state, then state
of the vertex is active in contradiction to conditions of the lemma.

Lemma 3. Under steady state map M of the combinatorial net C(H) derived
from simple graph H the set of all active vertices is maximal independent set of
H.

Proof. Let us prove the independence first. Assume by contradiction that the
set of active vertices of some steady state map C(H) is not an independent set
of vertices of the graph H. Then there is a pair of adjacent vertices in H, which
are simultaneously active under this steady state map M. But by lemma 1 there
are no two adjacent active vertices under steady state map. This contradiction
proves the independence of the set of active vertices under the steady state map.
Now we consider maximality of the set of active vertices under a steady state
map. Assume that there is a some inactive vertex which not adjacent to any
active vertex. So that it may be added to this set to form the bigger independent
set. But if such vertex exist then the map is not steady by lemma 2.

Lemma 4. Any maximal independent set of some simple graph H forms the
full set of active vertices of some steady state map of the combinatorial net that
derived from the H.

Proof. The desired map M is constructed as follows. Let all vertices from the
maximal independent set be active under M , but another vertices let be inactive
under M . Evidently, this map M is the steady state map.
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Theorem about steady states of the network of bi-stable switches .
Let C(H) be the combinatorial net derived from simple graph H, then the map
M is steady state if and only if the set of all active vertices under map M is
maximal independent set of vertices of the graph H.

Proof. Lemmas 3 and 4 prove the theorem.

6 Conclusions
A similar approach to construct Markov chains for interaction graphs was

developed in our earlier works for neural and gene regulatory networks [38, 39,
40, 41, 42]. Both approaches can be used to construct Markov chains of gene
regulatory networks. Systems of mutually repressive elements are ubiquitous in
nature. The network of bi-stable switches can be used to create models of their
stable states and the self-evolution of such systems toward a stable states.
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Table 1: Decimal, binary, and graphical representations of the state space of
the Elowitz repressilator
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