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Abstract

De novo RNA-Seq assembly facilitates the study of transcriptomes for species without se-
quenced genomes, but it is challenging to select the most accurate assembly in this context. To
address this challenge, we developed a model-based score, RSEM-EVAL, for evaluating assem-
blies when the ground truth is unknown. Our experiments show that RSEM-EVAL correctly
reflects assembly accuracy, as measured by REF-EVAL, a refined set of ground-truth-based scores
that we also developed. With the guidance of RSEM-EVAL, we assembled the transcriptome of
the regenerating axolotl limb; this assembly compares favorably to a previous assembly.

Background

RNA-Seq technology is revolutionizing the study of species that have not yet had their genomes
sequenced by enabling the large-scale analysis of their transcriptomes. In order to study such
transcriptomes, one must first determine a set of transcript sequences via de novo transcriptome
assembly, the task of reconstructing transcript sequences from RNA-Seq reads without the aid
of genome sequence information. A number of de novo transcriptome assemblers are currently
available, many designed for Illumina platform data [2, 4, 12, 27, 35, 37, 40, 45] and others targeted
for Roche 454 Life Science platform data [3, 15, 26, 49]. These assemblers, combined with their
often sizable sets of user-tunable parameters, enable the generation of a large space of candidate
assemblies for a single data set. However, appropriately evaluating the accuracy of assemblies in
this space, particularly when the ground truth is unknown, has remained challenging.

A number of recent studies have been devoted to the evaluation of de novo transcriptome assem-
blies [6,10,18,24,29,31,34,48]. Assembly evaluation measures used in such studies can be grouped
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into two classes: reference-based and reference-free. Reference-based measures are those that are
computed using previously known sequences. For example, after establishing a correspondence be-
tween assembly elements and a reference transcript set, one can calculate the fraction of assembly
elements that accurately match a reference transcript (precision), the fraction of reference tran-
scripts that are matched by assembly elements (recall), or a combination of these two (e.g., the
F1-measure) [2, 29, 34]. In addition to transcript sets, genome and protein sequences can also be
used as references for assembly evaluation [12,18,35,45,48].

However, in most cases where de novo assembly is of interest, reference sequences are either not
available, incomplete, or considerably diverged from the ground truth of a sample of interest, which
makes the assembly evaluation task markedly more difficult. In such cases, one must resort to
reference-free measures. Commonly used reference-free measures include median contig length,
number of contigs, and N50 [18, 29, 34]. Unfortunately, these measures are primitive and often
misleading. For example, N50, one of the most popular reference-free measures, can be maximized
by trivial assemblies. N50 is defined as the length of the longest contig such that all contigs of at
least that length compose at least 50% of the bases of the assembly [28]. The motivation for this
measure is that better assemblies will result from a larger number of identified overlaps between
the input reads and thus will have more reads assembled into longer contigs. However, it is easy
to see that a trivial assembly constructed by concatenating all of the input reads into a single
contig will maximize this measure. In short, N50 measures the continuity of contigs but not their
accuracy [36]. Other simplistic reference-free measures can be similarly misleading regarding the
accuracy of assemblies.

We improve upon the state-of-the-art in transcriptome assembly evaluation by presenting the
DETONATE (DE novo TranscriptOme rNa-seq Assembly with or without the Truth Evalua-
tion) methodology and software package. DETONATE consists of two components: RSEM-EVAL
and REF-EVAL. RSEM-EVAL, DETONATE’s primary contribution, is a reference-free evaluation
method based on a novel probabilistic model that depends only on an assembly and the RNA-Seq
reads used to construct it. RSEM-EVAL is similar to recent approaches using statistical models to
evaluate or construct genome [33] and metagenome [5,20] assemblies, but, as we will discuss, is nec-
essarily more complex because of widely-varying abundances of transcripts and alternative splicing.
Unlike N50, RSEM-EVAL combines multiple factors, including the compactness of an assembly and
the support of the assembly from the RNA-Seq data, into a single, statistically-principled evaluation
score. This score can be used to select a best assembler, optimize an assembler’s parameters, and
guide new assembler design as an objective function. In addition, for each contig within an assem-
bly, RSEM-EVAL provides a score that assesses how well that contig is supported by the RNA-Seq
data and can be used to filter unnecessary contigs. REF-EVAL, DETONATE’s second component,
is a toolkit of reference-based measures. It provides a more refined view of an assembly’s accuracy
than existing reference-based measures.

We have performed a number of experiments on both real and simulated data to demonstrate
the value of the RSEM-EVAL score. First, we generated a set of perturbed assemblies around a
single “true” assembly, and we show that RSEM-EVAL ranks the truth among the highest scoring
assemblies. Second, we computed RSEM-EVAL scores and REF-EVAL reference-based measures
on over 200 assemblies for multiple data sets, and we find that the RSEM-EVAL score generally
correlates well with reference-based measures. The results of these first two experiments together
show that the RSEM-EVAL score accurately evaluates de novo transcriptome assemblies, despite
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not having knowledge of the ground truth. Lastly, as a demonstration of the use of the RSEM-
EVAL score, we assembled the transcriptome of the regenerating axolotl limb with its guidance.
This new assembly allowed for the identification of many more genes that are involved in the process
of axolotl limb regeneration than had been found with an assembly from a previous study.

Results

DETONATE: a software package for the evaluation of de novo transcriptome
assemblies

The main contribution of our work is DETONATE, a methodology for the evaluation of de novo
transcriptome assemblies and a software package that realizes this methodology. DETONATE
consists of two components: RSEM-EVAL, which does not require a ground truth reference, and
REF-EVAL, which does. The high-level workflow of DETONATE is shown in Figure 1. In the
following subsections, we (1) describe the RSEM-EVAL reference-free score and show that the “true”
assembly is an approximate local maximum of this score, (2) describe the REF-EVAL reference-
based scores and show that RSEM-EVAL’s score correlates well with these measures, indicating
that RSEM-EVAL reflects the accuracy of a transcriptome assembly, and (3) demonstrate our
methods’ practical usefulness by assembling the transcriptome of the regenerating axolotl limb
with the guidance of RSEM-EVAL. To best understand the components of DETONATE and the
experiments we have performed with them, we first define what is considered to be the “true”
assembly of a set of RNA-Seq reads, which is critical to the assembly evaluation task.

The “true” assembly according to DETONATE

Ideally, the goal of transcriptome assembly would be to construct the full-length sequences of all
transcripts in the transcriptome. Unfortunately, it is rarely possible to acheive this goal in practice,
because sequencing depths are usually not high enough to completely cover all transcripts, especially
those of low abundance. Thus, a transcriptome assembly is, in general, a set of contigs, with each
contig representing the sequence of a segment of a transcript. When paired-end data are assembled,
one can also consider constructing scaffolds, or chains of contigs separated by unknown sequences
with estimated lengths. In this work, we restrict our attention to contig assemblies constructed
from single-end data.

Both RSEM-EVAL and REF-EVAL make use of the concept of the “true” assembly of a set of
RNA-Seq reads, which is the assembly one would construct if given knowledge of the true origin
of each read. A precise definition of the “true” assembly is provided in the Methods. Intuitively,
for each nonnegative integer w, the “true” assembly at minimum overlap length w is the collection
of transcript subsequences that are covered by reads whose true alignments overlap by at least w
bases. The “true” assembly at minimum overlap length 0 is the collection of transcript subsequences
covered by reads whose true alignments are contiguous (that is, overlap by 0 bases) or overlap by
at least one base. The “true” assembly at minimum overlap length 0 is the best theoretically
achievable assembly in that it represents all supported segments of the transcript sequences, and no
unsupported segments. Figure 2 gives an example of “true” assemblies at minimum overlap lengths
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Figure 1: The DETONATE package workflow. The DETONATE package consists of two compo-
nents: RSEM-EVAL and REF-EVAL. Combined, these two components allow for the computation
of a variety of evaluation scores for a de novo transcriptome assembly. RSEM-EVAL produces
an evaluation score that is based only on an assembly and the set of reads from which it was
constructed. When a reference transcript set is available, REF-EVAL may be used to compute a
number of reference-based measures. For most measures, REF-EVAL requires only an assembly
and a reference transcript set. For weighted measures and measures with respect to an estimated
“true” contig set, REF-EVAL additionally requires the set of reads that were assembled (dashed
arrow).

w = 0 and w = 1.

RSEM-EVAL is a novel reference-free transcriptome assembly evaluation mea-
sure

RSEM-EVAL, our primary contribution, is a reference-free evaluation measure based on a novel
probabilistic model that depends only on an assembly and the RNA-Seq reads used to construct
it. In short, the RSEM-EVAL score of an assembly is defined as the log joint probability of the
assembly A and the reads D used to construct it, under a model that we have devised. In symbols,

scoreRSEM-EVAL(A) = logP (A,D).

RSEM-EVAL’s intended use is to compare several assemblies of the same set of reads, and under
this scenario, the joint probability is proportional to the posterior probability of the assembly given
the reads. Although the posterior probability of the assembly given the reads is a more natural
measure for this application, we use the joint probability because it is more efficient to compute.

The details of the RSEM-EVAL model are provided in the Methods. In summary, the RSEM-EVAL
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Figure 2: An example construction of “true” assemblies with different minimum overlap lengths. Six
reads (red) are positioned at their true places of origin along one transcript (blue). The assembly
with minimum overlap length w = 0 consists of two contigs (green). For w = 1, the assembly
instead consists of three contigs because the second and third reads from the left are immediately
adjacent but not overlapping.

score consists of three components: an assembly prior, a likelihood, and a BIC penalty. That is,

logP (A,D) = log

∫
Λ
P (A|Λ)P (D|A,Λ)dΛ

≈ logP (A|ΛMLE)︸ ︷︷ ︸
assembly prior

+ logP (D|A,ΛMLE)︸ ︷︷ ︸
likelihood

− 1

2
(M + 1) logN︸ ︷︷ ︸

BIC penalty

, (1)

where N is the total number of reads, M is the number of contigs in the assembly, and ΛMLE

is the maximum likelihood (ML) estimate of the expected read coverage under P (A,D|Λ). For
typical sizes of RNA-Seq data sets used for transcriptome assembly, the likelihood is generally the
dominant component of the RSEM-EVAL score in the above equation. It serves to assess how
well the assembly explains the RNA-Seq reads. However, as we will show later, only having this
component is not enough. Thus we use the assembly prior and BIC components to assess an
assembly’s complexity. These two components penalize assemblies with too many bases or contigs,
or with an unusual distribution of contig lengths relative to the expected read coverage. Thus, these
two components impose a parsimony preference on the RSEM-EVAL score. The three components
together enable the RSEM-EVAL score to favor simple assemblies that can explain the RNA-Seq
reads well.

The ground truth is an approximate local maximum of the RSEM-EVAL score

As we have discussed, the “true” assembly at minimum overlap length 0 is the best possible assembly
that can be constructed solely from RNA-Seq data. Therefore, we consider it to be the ground truth
assembly. A good evaluation measure should score the ground truth among its best assemblies.
Ideally, we would have explored the entire space of assemblies and shown that the RSEM-EVAL
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score for the ground truth assembly is among the highest scores. However, such a global search of
assembly space is computationally infeasible. Thus, we instead performed experiments that assess
whether in the local space around the ground truth, the ground truth is among the best scoring
assemblies. In other words, we tested whether the ground truth assembly is approximately a local
maximum of the RSEM-EVAL function.

We explored the local space of assemblies around that of the ground truth by generating assemblies
that were slightly perturbed from it. We performed experiments with two kinds of perturbations:
random perturbations and guided perturbations. In our random perturbation experiments, assem-
blies were generated by randomly mutating the ground truth assembly. Since the minimum overlap
length is a critical parameter for constructing assemblies, we also assessed the RSEM-EVAL scores
for “true” assemblies with different minimum overlap lengths in guided perturbation experiments.
A good evaluation score should generally prefer “true” assemblies with small minimum overlap
lengths, which are closest to the ground truth.

For these experiments, it was critical that the ground truth assembly be known, and therefore we
primarily used a simulated set of RNA-Seq data, in which the true origin of each read is known. In
addition, for our guided perturbation experiments, we used the real mouse data set on which the
simulated data were based, and we estimated the true origin of each read. For details about these
real and simulated data, see the Methods.

Random perturbation

With our random perturbation experiment we wished to determine how well, in terms of the RSEM-
EVAL score, the ground truth compares to assemblies in the local space surrounding it. In order
to thoroughly explore the space of assemblies centered at the ground truth, we used four types
of mutations (substitution, fusion, fission, and indels), each of which was applied at five different
strength levels (see Methods). Therefore, in total, we generated 20 classes of randomly perturbed
assemblies. For each class, we generated 1000 independent randomly perturbed assemblies in order
to estimate the RSEM-EVAL score population mean and its 95% confidence interval for assemblies
of that class.

On average, the perturbed assemblies had RSEM-EVAL scores that were worse than that of the
ground truth (Figure 3(A)). In addition, the higher the mutation strength, the worse the mean
score of the perturbed assemblies. This suggests that the ground truth assembly behaves similarly
to a local maximum of the RSEM-EVAL function. Even though the population mean scores of
the perturbed assemblies were estimated to be always worse than the score of the ground truth,
individual perturbed assemblies could have had higher scores. Therefore, for each class of perturbed
assemblies, we calculated the fraction of assemblies with RSEM-EVAL scores larger than that of the
ground truth, which we refer to as the error rate. Error rates decreased dramatically with increasing
mutation strength and, for all mutation types except fusion, error rates were only non-zero for the
weakest mutation strength level (Figure 3(B)). RSEM-EVAL had the most trouble with the fusion-
perturbed assemblies, with more than half of such assemblies at the weakest mutation strength
having a score above that of the ground truth. From individual examinations of these assemblies,
we observed that in many of these cases, the assemblies contained fusions of contigs with low
abundances, which are difficult to distinguish from true contigs, especially with the ground truth
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defined as the “true” assembly with minimum overlap length w = 0.
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Figure 3: Random perturbation results. Comparison of the RSEM-EVAL score of the ground truth
assembly to those of randomly perturbed versions of that assembly. (A) Changes in the relative
scores of the perturbed assemblies with increasing mutation strength. For each class of perturbed

assemblies, we computed the mean relative ratio change, ρ, which is defined as ρ = log10
|Sg |

Sg−Sm
,

where Sg is the RSEM-EVAL score for the ground truth assembly and Sm is the mean RSEM-
EVAL score for the 1000 randomly-perturbed assemblies in that class. Smaller (worse) mean scores
correspond to smaller values for ρ. For each mutation type, ρ is plotted as a function of the mutation
strength, with error bars corresponding to 95% confidence intervals for ρ. (B) RSEM-EVAL error
rates for each perturbed assembly class. Error bars correspond to the 95% confidence intervals for
the mean error rates.

Guided perturbation

With the guided perturbation experiments, we measured the RSEM-EVAL scores of assemblies
constructed with different values of the minimum overlap length, which is a common parameter in
assemblers. Since the “true” assembly at minimum overlap length 0 is the best achievable assembly,
a good evaluation score should be maximized at small minimum overlap lengths. As described
before, we used one simulated and one real mouse RNA-Seq data set for these experiments. For
each data set, we constructed the “true” assemblies with minimum overlap lengths ranging from 0
to 75. The “true” assembly at minimum overlap length 76 (the read length) was not constructed
because of prohibitive running times. For the real RNA-Seq data, “true” assemblies were estimated
using REF-EVAL’s procedure, described below. We then calculated the RSEM-EVAL scores for all
of these assemblies.

As we had hoped, we found that the RSEM-EVAL score was maximized at small minimum overlap
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lengths, for both the simulated and real data sets (Figure 4). In contrast, the ML score increased
with minimum overlap length and peaked at minimum overlap length w = 75. These results
support the necessity of the prior component of the RSEM-EVAL model, which takes into account
the complexity of an assembly.

To explore the effects of the minimum overlap length parameter, w, in the RSEM-EVAL model, we
also performed the guided perturbation experiments with w = 50 for the RSEM-EVAL model. We
did not observe any major differences between these results and those for w = 0 (Additional file 1,
Figure S3, S4). In order to explain this result, note that although the RSEM-EVAL model uses w in
both the prior and likelihood correction components, our estimation procedure for the uncorrected
likelihood component (see Methods) does not explicitly check for violations of the minimum overlap
length by the assembly (i.e., regions that are not covered by reads that overlap each other by at
least w bases). Thus, the minimum overlap length does not play a role in the uncorrected likelihood,
which is the dominant term of the RSEM-EVAL score.

REF-EVAL is a refined toolset for computing reference-based evaluation mea-
sures

Our first experiment, above, shows that RSEM-EVAL has an approximate local maximum at the
“true” assembly. However, this does not necessarily imply that RSEM-EVAL induces a useful
ranking of assemblies away from this local maximum.

Thus, in order to assess the usefulness of RSEM-EVAL’s reference-free score, it is of interest to
compare the ranking RSEM-EVAL assigns to a collection of assemblies to the ranking assigned
by comparing each assembly to a reference. This raises two questions: (1) what reference to
compare against, and (2) how to perform the comparison. REF-EVAL constitutes an answer to
both questions. The tools REF-EVAL provides are also of independent interest for reference-based
evaluation of transcriptome assemblies.

In answer to question (1), REF-EVAL provides a method to estimate the “true” assembly of a set
of reads, relative to a collection of full-length reference transcript sequences. The estimate is based
on alignments of reads to reference transcripts, as described in the Methods. As we have previously
discussed, we wish to compare assemblies against the set of “true” contigs instead of full-length
reference sequences because the latter cannot, in general, be fully reconstructed from the data and
we want to reward assemblies for recovering read-supported subsequences of the references.

In answer to question (2), REF-EVAL provides two kinds of reference-based measures. First, REF-
EVAL provides assembly recall, precision, and F1 scores at two different granularities: contig and
nucleotide. Recall is the fraction of reference elements (contigs or nucleotides) that are correctly
recovered by an assembly. Precision is the fraction of assembly elements that correctly recover a
reference element. The F1 score is the harmonic mean of recall and precision. For precise definitions
and computational details, see Methods.

Although the contig- and nucleotide-level measures are straightforward and intuitive, both have
drawbacks and the two measures can be quite dissimilar (Figure 5). For example, if two contigs
align perfectly to a single reference sequence, but neither covers at least 99% of that sequence,
the nucleotide-level measure will count them as correct, whereas the contig-level measure will not
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Figure 4: Guided perturbation results. RSEM-EVAL (top row) and ML (bottom row) scores of
“true” assemblies for different values of the minimum overlap length w on both simulated (left
column) and real (right column) data sets. The maximizing values (red circles) are achieved at
w = 0, w = 2, w = 75 and w = 75 in a top-down, left-right order. For better visualization of the
maximizing values of w, RSEM-EVAL scores for the local regions around the maximal values are
shown in Additional file 1, Figure S2.

(Figure 5(B)). In general, the contig-level measurement can fail to give a fair assessment of an
assembly’s overall quality, since it uses very stringent criteria and normally only a small fraction of
the reference sequences are correctly recovered. And whereas the nucleotide-level measure arguably
gives a more detailed picture of an assembly’s quality, it fails to take into account connectivity
between nucleotides. For example, in the example depicted in Figure 5(B), the nucleotide-level
measure does not take into account the fact that the correctly predicted nucleotides of the reference
sequence are predicted by two different contigs.

Motivated, in part, by the shortcomings of the contig- and nucleotide-level measures, REF-EVAL
also provides a novel transcriptome assembly reference-based accuracy measure, the k-mer com-
pression score (KC score). In devising the KC score, our goals were to define a measure that would
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g

Figure 5: The different granularities of reference-based measures computed by REF-EVAL. (A)
The contig level measure requires at least 99% alignment between a matched contig and reference
sequence in a one-to-one mapping between an assembly and the reference. (B) The nucleotide
level measure counts the number of correctly recovered nucleotides without requiring a one-to-one
mapping. Unlike the contig level measure, it gives full credit to the two short contigs. The table on
the right gives both the contig-level and nucleotide-level recall values for (A) and (B).

(1) address some of the limitations of the contig- and nucleotide-level measures, (2) provide further
intuition for what the RSEM-EVAL score optimizes, and (3) be relatively simple. The KC score is
a combination of two measures, weighted k-mer recall (WKR) and inverse compression rate (ICR),
and is simply defined as

scoreKC = WKR− ICR. (2)

The WKR measures the fidelity with which a particular assembly represents the k-mer content of
the reference sequences. Balancing the WKR, the ICR measures the degree to which the assembly
compresses the RNA-Seq data. The WKR and ICR are defined and further motivated in the
Methods.

The RSEM-EVAL score correlates highly with reference-based measures

Having specified a framework for reference-based transcriptome assembly evaluation via REF-EVAL,
we then sought to test whether the RSEM-EVAL score ranks assemblies similarly to REF-EVAL’s
reference-based measures. To test this, we constructed a large number of assemblies on several
RNA-Seq data sets from organisms for which reference transcript sequences were available, and
we computed both the RSEM-EVAL score and reference-based measures for each assembly. The
RNA-Seq data sets used were the simulated and real mouse strand non-specific data from the
perturbation experiments, a real strand-specific mouse data set, and a real strand-specific yeast
data set. Four publicly available assemblers, Trinity [12], Oases [37], SOAPdenovo-Trans [45] and
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Trans-ABySS [35], were applied to assemble these data sets using a wide variety of parameter
settings.

Overall correlation

For each data set, we computed Spearman’s rank correlation between the reference-based measure
values and the RSEM-EVAL scores to measure the similarity of the rankings implied by them.
RSEM-EVAL scores had decent correlation with the contig and nucleotide-level F1 measures on
both the strand non-specific (Figure 6) and strand-specific (Additional file 1, Figure S5) data sets.
Specifically, the correlation of the contig and nucleotide-level F1 measures to the RSEM-EVAL
score is comparable to the correlation of the contig and nucleotide-level F1 measures to each other.
In contrast, N50 had poor correlation with these reference-based measures, particularly at the
nucleotide level (Additional file 1, Figure S6, S7).
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Figure 6: Correlation of the RSEM-EVAL score with reference-based measures on the strand non-
specific data sets. Scatterplots are shown for the simulated (top row) and real mouse (bottom row)
data sets and for both the nucleotide-level F1 (left column) and contig-level F1 (center column)
measures. For comparison, scatterplots of the nucleotide-level F1 against the contig-level F1 are
shown (right column). The Spearman rank correlation coefficient (bottom-right corner of each
plot) was computed for each combination of data set and reference-based measure.
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The RSEM-EVAL scores had markedly higher correlations with the KC score (k = L, the read
length) for both the strand non-specific (Figure 7) and strand-specific (Additional file 1, Figure
S8) data sets, which confirmed our expectations given the mathematical connections between these
scores. As with the contig and nucleotide-level measures, N50 similarly had poor correlation with
the KC score (Additional file 1, Figure S9, S10). In order to assess the impact of the k-mer size on
the KC score, we also computed correlations between the RSEM-EVAL score and the KC score at
half (k = 36) and double (k = 152) the read length for the strand non-specific data. We found that
these correlation values were not sensitive to the value of k (Additional file 1, Figure S11, S12).
These results provide some intuition for what the RSEM-EVAL score assesses and indicate that the
RSEM-EVAL score could be used as a proxy for the KC score when reference sequences are not
known.
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Figure 7: Correlation of the RSEM-EVAL and KC scores on the strand non-specific data sets. The
Spearman rank correlation coefficient (bottom-right corner of each plot) was computed for each
data set.

Although this experiment was not designed as a comprehensive evaluation, some features of these
results are suggestive of the relative accuracies of the assemblers. First, given the selected assembler
versions and parameter settings, Trinity produced the most accurate assemblies on all data sets with
respect to the contig- and nucleotide-level F1 scores and the KC score. Unlike N50, the RSEM-EVAL
score supported this result, with the Trinity assemblies also obtaining the highest RSEM-EVAL
scores. Second, varying the parameters of Trinity had a relatively small effect on the accuracy of
the resulting assemblies, as compared to Oases and SOAPdenovo-Trans, which produced assemblies
that spanned a large range of accuracies.
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Within-assembler correlation

One important potential application of RSEM-EVAL is the optimization of the parameters of an
assembler. Thus, it is of interest whether the RSEM-EVAL score correlates well with reference-based
measures for assemblies generated by a single assembler. In the previous subsection, we showed that
the RSEM-EVAL score has high correlation with the KC score on real and simulated data when
several different assemblers are used. Looking at each assembler separately, we also find that the
RSEM-EVAL score has high correlation with the KC score when only the assembler’s parameters
are changed, for both strand non-specific (Figure 8) and strand-specific (Additional file 1, Figure
S13) data sets. This suggests that RSEM-EVAL can be used to optimize the parameters of an
assembler for a given data set when the KC score is of interest for measuring the accuracy of an
assembly.
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Figure 8: Within-assembler correlation of the RSEM-EVAL and KC scores on the strand non-
specific data sets. Scatterplots are shown for the simulated (top row) and real mouse (bottom row)
data sets and for the Trinity (left column), Oases (center column), and SOAPdenovo-Trans (right
column) assemblers. TransABySS was omitted because it had only one assembly. The Spearman
rank correlation coefficient (bottom-right corner of each plot) was computed for each combination
of data set and assembler.
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Assessing the relative impact of individual contigs within an assembly

The RSEM-EVAL score is an assembly-level measure that allows one to compare different assemblies
constructed from the same data set. It is also of interest to compute scores for individual contigs
within an assembly that reflect their relative impacts. One natural way to do this statistically is to
compare the hypothesis that a particular contig is a “true” contig with the null hypothesis that the
reads composing the contig are actually from the background noise. For each contig, we use the log
of the ratio between the probabilities for these two hypotheses as its contig impact score. Through
a decomposition of the RSEM-EVAL score logP (A,D) into contig-level components, we are able
to calculate these contig impact scores efficiently (Additional file 1, Section 5).

RSEM-EVAL’s contig impact score measures the relative contribution of each contig to explaining
the assembled RNA-Seq data. This suggests a strategy to improve the accuracy of an assembly:
“trim” it by removing contigs that contribute little to explaining the data. To evaluate this strategy
(and by extension the contig impact score itself), we trimmed assemblies of the simulated data
using the RSEM-EVAL contig impact scores and computed the resulting changes in the evaluation
measures. Assemblies were trimmed by removing all contigs with negative scores.

In general, the trimmed assemblies had better evaluation scores than their untrimmed counterparts
(Additional file 1, Table S2 and Figure S14). The largest improvements were seen for assemblies
produced by Oases and Trans-ABySS, which tend to produce large numbers of contigs. In fact,
for both the nucleotide- and contig-level F1 scores, the trimmed Oases assemblies were the most
accurate of all assemblies (both trimmed and untrimmed), supporting the usefulness of the RSEM-
EVAL contig impact score. This suggests that the RSEM-EVAL contig impact scores are correctly
identifying contigs that are either erroneous or redundant within these assemblies.

RSEM-EVAL guides creation of an improved axolotl assembly

The axolotl (Ambystoma mexicanum) is a neotenic salamander with regenerative abilities that have
piqued the interests of scientists. In particular, there is significant interest in studying the molecular
basis of axolotl limb regeneration [39]. Although the axolotl is an important model organism, its
genome is large and repetitive, and, as a result, it has not yet been sequenced. In addition, a publicly
available, complete and high quality set of axolotl transcript sequences does not exist, which makes
it challenging to study the axolotl’s transcriptome.

To demonstrate the use of RSEM-EVAL, we employed it to select an assembler and parameter
values for a set of previously published RNA-Seq data from a timecourse study of the regenerating
axolotl limb blastema [39]. This data set consisted of samples taken at 0 hours, 3 hours, 6 hours,
12 hours, 1 day, 3 days, 5 days, 7 days, 10 days, 14 days, 21 days, and 28 days after the start of
regeneration and had a total of 345,702,776 strand non-specific, single-end reads. Because of the
large size of this data set and our goal of testing many different assemblers and parameter settings,
we first restricted our analysis to data from three of the time points (6 hours, 14 days, and 28
days), which made up a total of 55,559,405 reads. We ran Trinity, Oases and SOAPdenovo-Trans
on these data to produce over 100 different assemblies, each of which we scored using RSEM-EVAL.
Trans-ABySS was not included due to some difficulties in running it.

Since we did not have a known axolotl transcript set, we were unable to use the reference-based
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measures we have discussed thus far to assess the RSEM-EVAL score’s effectiveness on these data.
Therefore, to obtain an orthogonal measure of accuracy with which to validate the RSEM-EVAL
score on this data set, we instead used alignments of the assembly contigs to the known protein
sequences of the frog species Xenopus tropicalis. Specifically, we aligned the assemblies against the
frog protein sequences with BLASTX [1] and calculated the the number of frog proteins that were
recovered to various percentages of length by an axolotl contig (Additional file 1, Section 9). We
found that, in general, the assemblies with higher RSEM-EVAL scores were those that were also
considered better by comparison with the Xenopus protein set (Figure 9). Thus, the RSEM-EVAL
score appears to be selecting the highest quality axolotl assemblies.
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Figure 9: RSEM-EVAL scores and Xenopus protein recovery for the axolotl blastema transcriptome
assemblies. The y-axis represents the percent of proteins with at least x percent of their length
(x-axis) recovered by an axolotl contig. The curve for each assembly is colored according to its
RSEM-EVAL score, with red representing the highest RSEM-EVAL score. The assembly with the
curve closest to the upper-right corner is the best in terms of its comparison with the Xenopus
protein set.

We then pooled all timepoints of the timecourse and built an assembly using the assembler (Trinity)
and parameter set (--glue_factor 0.01 --min_iso_ratio 0.1) that maximized the RSEM-EVAL
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score on the subset described above. This assembly is publicly available at the DETONATE website.
We compared this assembly to a published axolotl assembly [39]. We find that the new assembly is
longer overall and has a larger N50 score than the published assembly (Additional file 1, Table S3).

As length-based measures may not be indicative of a higher quality assembly, we also evaluated the
assemblies based on the number of expressed genes and the number of up-regulated differentially
expressed genes (DE UP) at each timepoint in the the axolotl RNA-seq timecourse. To enable direct
comparisons with the published assembly, we used data and methods identical to those in [39], which
used a comparative technique that analyzes the axolotl transcripts in terms of their orthologous
human genes. With the new RSEM-EVAL guided assembly, we identify both more expressed genes
at each timepoint and more DE UP genes at each timepoint (Additional file 1, Figure S15). The
majority of DE UP genes found in the published assembly are captured in the new assembly (608
of 888 = 68%), while only 39% (608 of 1576) of the DE UP genes found in the new assembly are
captured in the published assembly. The new assembly identifies many new DE UP genes (968) not
captured in the old published assembly.

Because transcription factors (TFs) are important for setting and establishing cell state [41], we
further evaluated the list of TFs found in the new assembly that are not found in the published
assembly across the axolotl RNA-seq timecourse. Prior results indicate that oncogenes are upreg-
ulated early in the timecourse [39]. Using the new assembly we identify two additional DE UP
oncogenes (FOSL1 and JUNB) that are not identified using the published assembly [39]. The prior
assembly identified many genes associated with limb development and limb regeneration as being
DE UP during the middle phase (3d-14d) of the timecourse [39]. The new assembly identifies ad-
ditional limb development and limb regeneration genes during this middle phase such as HOXA11,
HOXA13, MSX1, MSX2, and SHOX. HOXA11 and HOXA13 are important specifiers or markers of
positional information along the proximal/distal and anterior/posterior axes of the limb [46]. MSX1
and MSX2 have been shown to be expressed in the axolotl blastema [17]. SHOX mutants in human
exhibit short limbs and overall stature [7]. The identification of many more expressed and DE UP
genes, a number of which have previous support for involvement in limb regeneration, suggests that
the new assembly gives a more comprehensive view of the genes expressed in the axolotl.

Discussion

Related work

RSEM-EVAL is related to several recently developed methods for de novo genome and metagenome
assembly. Although the evaluation of de novo genome assemblies is a relatively mature area of re-
search [8, 9, 13, 23, 30, 32, 36, 43, 47], only recently has the need for statistically-principled methods
been recognized [14]. Notably, Rahman and Pachter [33] developed CGAL, a principled probabilis-
tic model–based method for evaluating genome assemblies without the ground truth. RSEM-EVAL
and CGAL are closely related in that they both make use of the likelihood to score an assem-
bly. However, RSEM-EVAL is necessarily more complex due to important differences between the
tasks of transcriptome and genome assembly. In particular, with genome assembly it is generally
assumed that all chromosomes are sequenced to the same sequencing depth, whereas with transcrip-
tome assembly one has to consider variable sequencing depth because of widely-varying transcript
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abundances. Therefore, as we demonstrated through our experiments, use of the likelihood alone
is suboptimal for evaluating transcriptome assemblies. In fact, even for de novo genome assembly
evaluation, one can show that use of the likelihood alone is not optimal. For example, the likelihood
criterion cannot distinguish between the “true” assembly and assemblies constructed by duplicat-
ing each contig of the “true” assembly c times. RSEM-EVAL corrects for this limitation by prior
modeling of assemblies.

Because the task of de novo metagenome assembly is roughly equivalent to that of de novo transcrip-
tome assembly, RSEM-EVAL also has close connections to methods developed for metagenomics.
Metagenomic data are similar to transcriptomic data in that each distinct element of the population
is present at varying multiplicities. Laserson et al. [20] showed that metagenome assembly can be
improved by finding an assembly that maximizes a probabilistic model–based objective function.
However, unlike RSEM-EVAL, their objective function does not handle multi-mapping reads ap-
propriately, which are of great significance in de novo transcriptome assembly primarily because of
alternative splicing. Clark et al. [5] developed ALE, a probabilistic model–based evaluator for both
genome and metagenome assemblies that models the prior of each assembled contig by its 4-mer
frequencies. ALE’s prior can be used to detect chimeric contigs formed by wrongly fusing two or
more genomes, but it does not model an assembly’s complexity. In addition, ALE’s model does
not take strain frequencies into consideration, which reduces its utility for evaluating transcriptome
assemblies or metagenome assemblies in which the strains are present at highly variable frequencies.

Limitations and future work

We stress that the correlation experiments presented in this study were primarily designed to eval-
uate the RSEM-EVAL score, not to determine which assembler is most accurate, in general. The
versions of the assemblers used were not the most recent ones at the time of this writing and the
parameter variations used were not necessarily those recommended by the assemblers. Nevertheless,
with our selected assembler versions and parameter variations (which included the default settings
for each assembler), our results provide some evidence that Trinity is more accurate than the other
assemblers. To confirm this, future benchmarking will require use of the latest versions of these
actively-developed assemblers, additional data sets, and more carefully selected parameters.

We also note a couple of important limitations regarding the use of RSEM-EVAL. First, it is critical
that RSEM-EVAL be run on the same RNA-Seq data set that was provided to the assemblers as it
assumes that an assembly is compatible with the data. Second, RSEM-EVAL should not be used
if genome information is used during transcriptome assembly because its model is purely based on
the RNA-Seq data and therefore might be misleading for genome-guided assemblies. Lastly, RSEM-
EVAL currently only focuses on contig assemblies constructed from single-end Illumina RNA-Seq
data. We choose to focus on the Illumina platform as it is currently the most popular RNA-
Seq platform and to restrict our methods to single-end reads and contig assemblies for simplicity.
However, the methods we have presented can, in principle, be extended to paired-end data, scaffold
assemblies, and other sequencing platforms, and we plan to do so in the near future.

Since RSEM-EVAL does not currently handle paired-end reads explicitly, the performance of as-
semblers may be different than that suggested by RSEM-EVAL because assemblers differ in their
utilization of paired-end information. However, RSEM-EVAL can be used to evaluate the contigs
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of assemblies built with paired-end data with the workaround of providing the union of the two
mates as one single-end data set to RSEM-EVAL. Although this is not ideal, in part because the
two mates of a paired-end reads are not independent, we expect it will give reasonable results until
RSEM-EVAL fully supports paired-end data and scaffolding.

In addition to handling paired-end data, we plan to extend our framework to support other sequenc-
ing platforms (e.g., Roche 454 sequencing, Ion Torrent and Pacific Biosciences), indel alignments,
and correction for sequencing biases. We also plan to investigate remedies to RSEM-EVAL’s weak-
ness of scoring assemblies with incorrectly fused contigs above the ground truth. Although it is
unlikely that any reference-free measure can score the ground truth above all other assemblies,
our random perturbation experiments suggest that RSEM-EVAL is permissive of assemblies that
concatenate low-coverage contigs, perhaps because of its modeling of the “true” assembly with
minimum overlap length 0.

Conclusions

We presented DETONATE, a methodology and corresponding software package for evaluating de
novo transcriptome assemblies that has the ability to compute both reference-free and reference-
based measures. RSEM-EVAL, our reference-free measure, uses a novel probabilistic model–based
method to compute the joint probability of both an assembly and the RNA-Seq data as an evaluation
score. Since it only relies on the RNA-Seq data, it can be used to select a best assembler, tune
the parameters of a single assembler, and guide new assembler design, even when the ground truth
is not available. REF-EVAL, our toolkit for reference-based measures, allows for a more refined
evaluation compared to existing reference-based measures. The measures it provides include recall,
precision and F1 scores at the nucleotide and contig levels, as well as a k-mer compression score.

Experimental results based on both simulated and real data sets show that our RSEM-EVAL score
accurately reflects assembly quality. Results from perturbation experiments that explored the local
assembly space around the ground truth suggest that RSEM-EVAL ranks the ground truth among
the locally highest scoring assemblies. In contrast, a score based only on the likelihood fails to
rank the ground truth among its best scores, which highlights the importance of including a prior
on assemblies as part of an evaluation score. Through correlation experiments we measured the
similarity of the RSEM-EVAL scores to different reference-based measures. We find that, in general,
the RSEM-EVAL score correlates well with reference-based measures. In contrast, the commonly
used N50 measure does not correlate well, which suggests that it is inappropriate for evaluating
transcriptome assemblies.

To demonstrate the usage of RSEM-EVAL, we assembled a set of contigs for the regenerating axolotl
limb with its guidance. Evaluation of this new assembly suggests that it gives a more comprehensive
picture of genes expressed and genes up-regulated during axolotl limb regeneration. Thus, RSEM-
EVAL is likely to be a powerful tool in the building of assemblies for a variety of organisms where
the genome has not yet been sequenced and/or the transcriptome has not yet been annotated.
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Methods

The “true” assembly according to DETONATE

As discussed in the Results above, both RSEM-EVAL and REF-EVAL rely on the concept of
the “true” assembly of a set of RNA-Seq reads, which is the assembly one would construct if
given knowledge of the true origin of each read. For each read, r, let transcript(r), left(r), and
right(r), denote the transcript from which r truly originates, the leftmost (5’) position of r along the
transcript, and the rightmost (3’) position of r along the transcript, respectively. We parameterize
this notion of a “true” assembly by a length, w, which is the minimum overlap between two reads
required for the extension of a contig. Given w, we define the sequence of a segment, [start, end],
of a transcript, t, to be a “true” contig if there exists an ordered set of reads, (r1, r2, . . . , rn), such
that, (i) transcript(ri) = t,∀i, (ii) right(ri) − left(ri+1) + 1 ≥ w,∀i < n, (iii) left(r1) = start,
(iv) right(rn) = end, and (v) [start, end] is maximal. The first four conditions ensure that the
segment is completely covered by reads overlapping by at least w bases and the last condition
ensures that one contig cannot be contained within another. The “true” assembly is then defined
as the set of all “true” contigs. Such an assembly is the best theoretically achievable by a de novo
assembler that requires at least w bases of overlap to merge two reads. The “true” assembly at
minimum overlap length w = 0 is the best theoretically achievable assembly in that it represents
all contiguously-covered segments of the transcript sequences.

Overview of RSEM-EVAL

RSEM-EVAL models an RNA-Seq data set, D, consisting of N single-end reads, each of length
L, and an assembly, A, consisting of M contigs, with the length of contig i denoted by `i and its
sequence by ai. RSEM-EVAL also models the expected read coverage Λ = {λi} of each contig’s
parent transcript, where the expected read coverage of a transcript is defined as the expected number
of reads that start from each valid position of the transcript, given the sequencing throughput, N .
A transcript’s expected read coverage is proportional to its relative expression level (Additional file
1, Section 1).

A natural way to decompose the joint distribution of an assembly and the reads used to construct
it, P (A,D), would be to (1) specify a prior distribution over the unobserved transcript sequences
and their abundances, (2) model the generation of reads from these transcripts, and (3) model A as
being the “true” assembly at minimum overlap length 0 of the reads in D (Additional file 1, Figure
S1(a)). Unfortunately, this decomposition requires us to integrate out the unobserved transcript
sequences in order to obtain the distribution P (A,D), and doing so is computationally infeasible.

Instead, RSEM-EVAL decomposes the joint distribution in an equally valid but more computation-
ally convenient manner, as follows. (1) We specify a prior distribution, P (A|Λ), over the assembly
A, given the expected read coverage of each contig’s parent transcript, Λ. (2) We model the gen-
eration of a set of reads D consistent with the assembly A and the expected read coverage Λ; this
model defines the likelihood P (D|A,Λ), the probability of the reads D given the assembly A and
the expected read coverage Λ. (3) Instead of specifying a concrete distribution over the number of
contigs M and the expected read coverage Λ, we approximately integrate out these variables using
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the Bayesian information criterion (BIC) [38].

Based on this decomposition, the RSEM-EVAL score, logP (A,D), can be expressed as a sum of
three terms, the assembly prior, the likelihood, and a BIC term (Equation 1 in the Results). These
three terms are detailed in the next three subsections. The relationship between the “natural”
decomposition and the RSEM-EVAL model is further discussed in Additional file 1, Section 2.

RSEM-EVAL’s assembly prior component

RSEM-EVAL’s prior distribution over assemblies is based on a simple parametric model of the
transcriptome and the reads, together with the concept of a “true” assembly as we have described.
Details are as follows.

First, a key assumption of the prior model is that each contig is generated independently. This
assumption is useful, even though it is not satisfied in practice since multiple contigs can be generated
from the same transcript. With this assumption, we may express the the prior as

P (A|Λ) =

M∏
i=1

P (ai|λi).

Second, each contig’s parent transcript is modeled as follows. (1) The transcript’s length follows a
negative binomial distribution, the parameters of which may be estimated from a known transcrip-
tome. (2) The transcript’s sequence follows a uniform distribution, given the transcript’s length. (3)
For each position in the transcript, the number of reads starting at that position follows a Poisson
distribution (mean = expected read coverage), independently, given the transcript length and the
expected read coverage.

Third, each contig’s distribution is induced from the distribution of its parent transcript, as follows.
Imagine that we repeat the following steps until we have a large enough number of contigs in the
bag. (1) A transcript and its reads are generated as above. (2) The “true” assembly at minimum
overlap length w = 0 is constructed from these reads. (3) All contigs in the “true” assembly are put
into the bag. The frequency of contigs in the resulting bag defines our per-contig prior P (ai|λi).

The above specification leads to the following functional form for the prior:

P (A|Λ) =

(
M∏
i=1

P (`i|λi)

)
︸ ︷︷ ︸
contig length prior

(
1

4

)∑M
i=1 `i

︸ ︷︷ ︸
assembly size prior

.

One can work out a dynamic programming algorithm to compute P (`i|λi), by means of which the
prior can be computed efficiently (Additional file 1, Section 3).

The practical contribution of the prior is as follows. Each term of the contig length prior, P (`i|λi),
penalizes contigs with aberrant lengths that are not likely given the expected read coverage of their

parent transcripts. The assembly size prior, (1
4)

∑M
i=1 `i , imposes a parsimony preference on the total

length of an assembly and pushes the RSEM-EVAL score to favor assemblies using fewer bases to
explain the RNA-Seq data.
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RSEM-EVAL’s likelihood component

For modeling the RNA-Seq reads, we build off of the model used by RSEM [21, 22] for the task
of transcript quantification. The RSEM model provides a probability distribution for an RNA-Seq
data set, D, given known transcript sequences, T , and relative abundances of those transcripts
encoded by the parameters, Θ. Given this model, RSEM uses the Expectation-Maximization (EM)
algorithm for efficient computation of the ML estimates for Θ. Unfortunately, we cannot directly
use the likelihood under the RSEM model because (1) we do not observe the full-length transcript
sequences and (2) we require that the RNA-Seq reads are consistent with an assembly in that they
completely cover the contigs. Nevertheless, the RSEM model can be used as part of a generative
process that results in a proper probability distribution over D, given an assembly, A. This process
follows a simple two-step rejection procedure. (Step 1) Generate a set of reads, D′, according to
the RSEM model with the contigs in A treated as full-length transcripts. (Step 2) If the reads in
D′ completely cover the contigs, then set D = D′, otherwise go back to Step 1. This process results
in the following form for RSEM-EVAL’s likelihood:

P (D|A,ΛMLE) =
PRSEM(D|T = A,Θc

MLE)

PRSEM(C = 1|T = A,Θc
MLE)

, (3)

where PRSEM denotes a probability under the RSEM model and C = 1 denotes the event that every
position in the assembly is covered by reads that overlap with each other by at least w bases. Θc

MLE

denotes the equivalent parameter values of the RSEM model given the ML expected read coverage
values, ΛMLE. We refer to the denominator of Equation 3 as the likelihood correction term. This
term can be calculated efficiently (Additional file 1, Section 4).

RSEM-EVAL’s BIC penalty component

The BIC penalty is proportional to the product of the number of free parameters and the logarithm
of the size of the data. The free parameters consist of the expected coverage of each contig, plus
one extra parameter for the expected number of reads from RSEM’s model, for M + 1 parameters
in total. The data size is N , which represents the number of reads. The BIC penalty imposes a
parsimony preference on the total number of contigs in an assembly.

The inference algorithm used to compute the RSEM-EVAL score

We use the following heuristic inference algorithm to calculate the RSEM-EVAL score:

1. Learn ΘMLE using RSEM, treating the input assembly A as the true transcript set.

2. Convert ΘMLE into ΛMLE via the formula λMLE,i =
NθMLE,i

`i+L+1 , for i > 0.

3. Calculate the RSEM-EVAL score, logP (A,D), using ΛMLE and Equation 1.

In step 1, RSEM requires use of a short-read alignment program to generate candidate alignments
of each read to the assembly [21,22]. The Bowtie aligner (v0.12.9) [19] was used for all experiments
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except the random perturbation experiments. Bowtie was called through RSEM with RSEM’s
default Bowtie parameters. For the random perturbation experiments, since the perturbations were
subtle, we chose to use a more sensitive aligner, GEM (binary pre-release 3) [25]. In order to
produce alignments with similar criteria as Bowtie, we first extracted the first 25bp (seed) of every
read and aligned the seeds using GEM with -q ignore --mismatch-alphabet ACGNT -m 2 -e 0

--max-big-indel-length 0 -s 2 -d 200 -D 0 options set for gem-mapper. Lastly, we filtered
any alignments for which the seed could not be extended to the full read length.

In step 2, we do not use the contig level read coverage,
NθMLE,i

`i−L+1 to approximate the expected read
coverage of its parent transcript, λi, because it is likely to overestimate λi, especially for short
contigs. Instead, to partially correct for this overestimation, we adjust the denominator in this
estimator to `i + L + 1 to account for the fact that no reads started within L bases of the start
positions of the reads making up the contig (otherwise, the contig would have been extended, since
our model considers the assembly to have been created using minimum overlap length w = 0).

REF-EVAL’s estimate of the “true” assembly

REF-EVAL estimates a set of “true” contig sequences from a given set of transcripts and RNA-Seq
reads using the following procedure:

1. Align the reads against the transcript sequences using RSEM.

2. For each alignable read, sample one of its alignments based on the posterior probability that
it is the true alignment, as estimated by RSEM. The set of alignments for each read includes
the null “alignment” that the read comes from background noise.

3. Treat the sampled alignments as true alignments and compute the “true” contigs with mini-
mum overlap length w = 0.

REF-EVAL’s contig- and nucleotide-level measures

Given a set of ground truth reference sequences, REF-EVAL provides assembly recall, precision,
and F1 scores at two different granularities. Recall is the fraction of reference elements (contigs
or nucleotides) that are correctly recovered by an assembly. Precision is the fraction of assembly
elements that correctly recover a reference element. The F1 score is the harmonic mean of recall
and precision:

F1 =
2× recall× precision

recall + precision
.

Because the F1 score is a combination of both recall and precision, it gives a more balanced view
of an assembly’s accuracy than either precision or recall does alone.

REF-EVAL provides these measures at two different granularities: contig and nucleotide. Taking
recall as an example, the measures at the two levels can be summarized as follows. For both levels,
we first compute all significant local alignments between the assembly contigs and the reference
sequences, using BLAT [16]. The contig level measurement [29, 34, 35] counts the number of cor-
rectly recovered reference sequences after a one-to-one mapping is established between contigs and
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reference sequences. At the nucleotide level, the recall measure instead counts the number of cor-
rectly recovered nucleotides based on the alignments between the assembly and the ground truth
sequences [2, 37]. The precision measures for both levels are calculated similarly by switching the
roles of the assembly contigs and reference sequences.

In detail, REF-EVAL defines the contig recall as follows. For a reference sequence to be correctly
recovered, at least 99% of its sequence must be identical to that of the contig to which it is aligned,
and the total number of insertions and deletions in the alignment between the two must be no more
than 1% of the length of either sequence. Each percentage is computed relative to the length of the
contig or the length of the reference sequence, whichever is most stringent. Under these criteria,
multiple reference sequences can be recovered by the same contig. To handle this issue, we define a
bipartite graph in which the vertices are the assembly contigs and the reference sequences, and the
edges correspond to alignments that meet the above criteria. The contig recall is the cardinality of
the maximum cardinality matching of this graph.

In detail, REF-EVAL defines the nucleotide recall as follows. A nucleotide in a reference sequence is
considered to be correctly recovered if the corresponding nucleotide in the contig alignment selected
for that position is identical. To handle the issue of multiple local alignments overlapping a given
reference position, we select a single alignment for each position by picking alignments in order of
their marginal contribution to the nucleotide recall, given the alignments that have already been
selected.

Algorithms to compute the contig and nucleotide measures are given in Additional file 1, Sections
6 and 7.

REF-EVAL’s k-mer compression score

The k-mer compression score (KC score) is a combination of two measures, weighted k-mer re-
call (WKR) and inverse compression rate (ICR) (Equation 2). Details about the WKR and ICR
measures are provided below.

The WKR measures an assembly’s recall of the k-mers present in the reference sequences, with
each k-mer weighted by its relative frequency within the reference transcriptome. It has several
advantages over the contig and nucleotide level recall measures. First, unlike the nucleotide measure,
it takes into account connectivity between nucleotides, but is not as stringent as the contig measure
because it only considers connectivity of nucleotides up to k−1 positions apart. Second, it is biased
towards an assembler’s ability to reconstruct transcripts with higher abundance, which are arguably
more informative for evaluation because there is generally sufficient data for their assembly. Lastly,
it is relatively easy to compute because it does not require an alignment between the assembly and
the reference sequences.

To compute the WKR, the relative abundances of the reference elements are required. These abun-
dances may be estimated from the RNA-Seq data used for the assembly, and REF-EVAL uses
RSEM for this purpose. Given the reference sequences and their abundances, a k-mer occurrence
frequency profile, p, is computed, with individual k-mer occurrences weighted by their parent se-
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quences’ abundances: for each k-mer r, we define

p(r) =

∑
b∈B n(r, b)τ(b)∑
b∈B n(b)τ(b)

where B is the set of reference sequences, and for each reference sequence b in B, n(r, b) is the
number of times the k-mer r occurs in b, n(b) is the total number of k-mers in b, and τ(b) is the
relative abundance of b. Letting r(A) be the set of all k-mers in the assembly, WKR is defined as

WKR =
∑
r∈r(A)

p(r).

Since recall measures only tell half of the story regarding accuracy, the KC score includes a second
term, the ICR, which serves to penalize large assemblies. We define the ICR of an assembly as

ICR =
|A|
NL

.

As this term’s name suggests, we can view an assembler as a “compressor” for RNA-Seq data
and the assembly it outputs as the “compressed” result. The uncompressed data size is the total
number of nucleotides in the data, NL, and the compressed result size is the total length of the
assembly, |A|. The smaller the ICR value, the more efficient the assembler is in compressing the
data. We chose to use ICR over other possible precision-correcting schemes (e.g., F1 score) because
of important mathematical connections between the RSEM-EVAL and KC scores (Additional file 1,
Section 8). Thus, as we showed with our experiments, the reference-based KC score provides some
additional intuition for what the reference-free RSEM-EVAL score is measuring. The theoretical
links between the two scores suggest that the KC score would benefit from some additional terms
(Additional file 1, Section 8), however, in keeping with our goal of simplicity, we restricted the KC
score to the two most dominant terms.

RNA-Seq data used in the perturbation experiments

Both the random and the guided perturbation experiments (see Results) use a simulated set of
RNA-Seq reads. We simulated these reads from a mouse transcript set (Ensembl Release 63 [11]),
using RSEM’s [21,22] RNA-Seq simulator and simulation parameters learned from the first mates of
a set of real paired-end mouse data (SRA accession SRX017794 [42]). The resulting simulated data
set contained around 42 million strand non-specific, 76bp single-end reads. For reasons of compu-
tational efficiency, in the random perturbation experiments, we only used reads from transcripts on
chromosome 1, and we constructed the ground truth accordingly. This resulted in 1,843,797 reads
that formed 10,974 contigs in the ground truth assembly.

For our guided perturbation experiments, we additionally used a real data set consisting of the first
mates of the mouse data previously mentioned. This real data set also contained around 42 million
strand non-specific, 76bp single-end reads. The true origin of each read in the real data set was
estimated using REF-EVAL.
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Construction of randomly-perturbed assemblies

The random perturbation experiments (see Results) compare the “true” assembly’s RSEM-EVAL
score to the scores of numerous perturbed variants of this assembly. These perturbed assemblies
were constructed as follows.

Substitution assemblies (randomly-perturbed assemblies with substitution mutations) were gen-
erated by randomly and independently substituting each base of the ground truth at a specific
substitution rate. Fusion assemblies were generated by repeatedly joining two randomly selected
contigs until the specified number of fusion events was reached. For each join, if the two selected
contigs shared a common sequence at their ends to be joined, the contigs were overlapped such that
the shared sequence only appeared once in the fused contig. To generate a fission assembly, each
contig position at which two reads were merged in the ground truth was independently selected as
a fission point at the specified fission rate. If reads overlapped at a fission point, the overlapped
segment was made to appear in both contigs after the fission. To generate an indel-perturbed as-
sembly, insertions and deletions were introduced across the ground truth assembly according to the
specified indel rate. The length of each indel was sampled from a geometric distribution with mean
3, to model the short indels occasionally observed in high-throughput sequencing data.

For substitution and indel assemblies, the mutation strength was the mutation rate per contig
position, which was varied among 1e-6, 1e-5, 1e-4, 1e-3 and 1e-2. For example, in the substitution
experiment, at mutation rate 1e-3, a substitution was introduced at each position of each contig
with probability 1e-3. The fission experiments used the same range of mutation rates, but with the
rate defined as per pair of immediately adjacent and overlapping reads. For fusions, the mutation
strength was the number of fusion events, which ranged among 1, 10, 100, 1000, 10000.

RNA-Seq data used in the correlation experiments

For our experiments measuring the correlation between the RSEM-EVAL score and reference-based
measures we used four data sets: the simulated and real mouse, strand non-specific, single-end RNA-
Seq data sets used in the perturbation experiments, and the strand-specific mouse and yeast data sets
from Grabherr et al. [12]. The entirety of each data set was used, except for the simulated data set,
from which we used roughly half of the simulated reads (reads from transcripts in chromosome 1 to
10) because of computational efficiency reasons. For each assembler, we used a variety of parameter
settings (Additional file 2), resulting in a total of 211 assemblies for each of the strand non-specific
data sets and 159 assemblies for each of the strand-specific data sets (Table 1). Because the versions
of SOAPdenovo-Trans and Trans-ABySS we used did not take into account strand-specificity, they
were not run on the two strand-specific data sets. The reference-based measures were computed
relative to the estimated “true” assemblies at minimum overlap length w = 0. These assemblies
were estimated using the mouse Ensembl annotation (release 63) for the three mouse data sets and
the PomBase [44] S. pombe annotation (v09052011) for the yeast data set.
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Table 1: The assemblers and the number of assemblies generated by them (using different parameter
settings) for the correlation experiments. SOAPdenovo-Trans and Trans-ABySS were not run on
the strand-specific data sets.

Assembler Trinity Oases SOAPdenovo-Trans Trans-ABySS

Version r2012-03-17 0.2.06 1.01 1.3.2

# of assemblies 86 73 51 1

Software availability
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[25] S. Marco-Sola, M. Sammeth, R. Guigó, and P. Ribeca. The GEM mapper: Fast, accurate and
versatile alignment by filtration. Nature Methods, 9(12):1185–1188, 2012.

28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2014. ; https://doi.org/10.1101/006338doi: bioRxiv preprint 

https://doi.org/10.1101/006338
http://creativecommons.org/licenses/by/4.0/


[26] M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka, M. S.
Braverman, Y. J. Chen, Z. Chen, S. B. Dewell, L. Du, J. M. Fierro, X. V. Gomes, B. C. Godwin,
W. He, S. Helgesen, C. H. Ho, G. P. Irzyk, S. C. Jando, M. L. Alenquer, T. P. Jarvie, K. B.
Jirage, J. B. Kim, J. R. Knight, J. R. Lanza, J. H. Leamon, S. M. Lefkowitz, M. Lei, J. Li, K. L.
Lohman, H. Lu, V. B. Makhijani, K. E. McDade, M. P. McKenna, E. W. Myers, E. Nickerson,
J. R. Nobile, R. Plant, B. P. Puc, M. T. Ronan, G. T. Roth, G. J. Sarkis, J. F. Simons, J. W.
Simpson, M. Srinivasan, K. R. Tartaro, A. Tomasz, K. A. Vogt, G. A. Volkmer, S. H. Wang,
Y. Wang, M. P. Weiner, P. Yu, R. F. Begley, and J. M. Rothberg. Genome sequencing in
microfabricated high-density picolitre reactors. Nature, 437(7057):376–380, 2005.

[27] J. Martin, V. M. Bruno, Z. Fang, X. Meng, M. Blow, T. Zhang, G. Sherlock, M. Snyder, and
Z. Wang. Rnnotator: An automated de novo transcriptome assembly pipeline from stranded
RNA-Seq reads. BMC Genomics, 11:663, 2010.

[28] J. R. Miller, S. Koren, and G. Sutton. Assembly algorithms for next-generation sequencing
data. Genomics, 95(6):315–327, 2010.

[29] M. Mundry, E. Bornberg-Bauer, M. Sammeth, and P. G. D. Feulner. Evaluating characteristics
of de novo assembly software on 454 transcriptome data: A simulation approach. PLoS One,
7(2):e31410, 2012.

[30] G. Narzisi and B. Mishra. Comparing de novo genome assembly: The long and short of it.
PLoS One, 6(4):e19175, 2011.

[31] S. T. O’Neil and S. J. Emrich. Assessing de novo transcriptome assembly metrics for consistency
and utility. BMC Genomics, 14(1):465, 2013.

[32] A. M. Phillippy, M. C. Schatz, and M. Pop. Genome assembly forensics: Finding the elusive
mis-assembly. Genome Biology, 9(3):R55, 2008.

[33] A. Rahman and L. Pachter. CGAL: Computing genome assembly likelihoods. Genome Biology,
14(1):R8, 2013.

[34] X. Ren, T. Liu, J. Dong, L. Sun, J. Yang, Y. Zhu, and Q. Jin. Evaluating de Bruijn graph
assemblers on 454 transcriptomic data. PLoS One, 7(12):e51188, 2012.

[35] G. Robertson, J. Schein, R. Chiu, R. Corbett, M. Field, S. D. Jackman, K. Mungall, S. Lee,
H. M. Okada, J. Q. Qian, M. Griffith, A. Raymond, N. Thiessen, T. Cezard, Y. S. Butterfield,
R. Newsome, S. K. Chan, R. She, R. Varhol, B. Kamoh, A.-L. Prabhu, A. Tam, Y. Zhao, R. A.
Moore, M. Hirst, M. A. Marra, S. J. Jones, P. A. Hoodless, and I. Birol. De novo assembly
and analysis of RNA-seq data. Nature Methods, 7(11):909–912, 2010.

[36] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc, S. Koren, T. J. Treangen, M. C.
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