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Many decades of theory have demonstrated that in non-recombining systems, slightly 

deleterious mutations accumulate non-reversibly1, potentially driving the extinction of 

many asexual species. Non-recombining chromosomes in sexual organisms are thought to 

have degenerated in a similar fashion2, however it is not clear the extent to which these 

processes operate along recombining chromosomes with highly variable rates of crossing 

over. Using high coverage sequencing data from over 1400 individuals in The 1000 

Genomes and CARTaGENE projects, we show that recombination rate modulates the 

genomic distribution of putatively deleterious variants across the entire human 

genome.  We find that exons in regions of low recombination are significantly enriched for 

deleterious and disease variants, a signature that varies in strength across worldwide 

human populations with different demographic histories. As low recombining regions are 

enriched for highly conserved genes with essential cellular functions, and show an excess of 

mutations with demonstrated effect on health, this phenomenon likely affects disease 

susceptibility in humans.  

The recent human demographic expansion has resulted in an excess of rare variants 3,4, a large 

proportion of which are putatively functional. Although these variants potentially have 

phenotypic effects, their distribution across the genome has yet to be fully characterized.  

Recombination (or linkage) is an important factor in determining the spatial distribution of these 

rare and potentially disease associated variants along the genome. In the absence of 

recombination, theory predicts that mildly disadvantageous mutations accumulate on haplotypes, 
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as mutation-free haplotypes cannot be regenerated once they are lost - a process termed “Muller’s 

ratchet” 1,5. Although mostly explored in asexual systems, evidence for this process has recently 

been described in non-recombining regions of model organisms such as in Drosophila 

melanogaster 6,7 or, for mammalian Y-chromosomes, where the suppression of recombination is 

the primary model explaining why most Y-linked genes are no longer active 2, after an 

irreversible accumulation of genetic defects during millions of years.  

Most of the human genome undergoes recombination, at a rate that varies dramatically between 

different genomic regions; large regions with low recombination called coldspots (CS) are 

punctuated by short hotspots of recombination where most of the crossovers occur, forming 

highly recombining regions (HRR) (Figure 1, online supporting note 1). Autosomal coldspots 

span about a third of the human genome, and 25.3Mb of the exome, while 634.2 Mb genome-

wide and 17.8Mb of the exome are within HRRs (Material and Methods, Table S1A). The 

absolute number of variants within CS is greater than the absolute number of mutations in HRR, 

although the number of variants per Kb is smaller in CS (Table S1), reflecting reduced neutral 

genetic diversity in low recombining regions (Figure S1) 8,9. Physical linkage of neutral variants 

to adaptive mutations, “selective sweeps”, are likely to have a role in reducing this genetic 

variation 10,11, but background selection appears to be largely responsible for removal of neutral 

diversity linked to deleterious variants 11-13. Functional variants may also have reduced frequency 

due to more complex processes, as these alleles can influence each other’s evolutionary dynamics 

by competing with each other to become fixed within a population 14, a process known as Hill-

Robertson interference 1,15. Conversely, genetic recombination reduces interference by allowing 

these sites to segregate independently and generate new haplotypes, with the net effect of slowing 

down the accumulation of rare deleterious variants within exons 16.   

The impact of recombination on diversity via Hill-Robertson interference is a long-standing 

question among evolutionary biologists, however the theoretical expectations have yet to be 

empirically demonstrated in human autosomes. Here, we ask whether variable recombination 

across the human genome has a significant impact on the spatial distribution of deleterious 

variation. Using single nucleotide variants (SNVs) from RNA and exome-sequencing data we 

generated for 521 French-Canadians (online supporting note 2) recruited by the CARTaGENE 

Project 17,18 and from high-coverage exome data in 911 individuals from worldwide populations 
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from the 1000 Genomes Project 19, we test whether putatively damaging variants accumulate 

differentially between CS and HRR. Annotation of all SNVs using public resources (Material and 

Methods) was done using five properties of mutations: the change in amino-acid sequences (non-

synonymous or silent variants), the predicted impact on protein function and structure (damaging 

variants), the level of conservation at the mutated coding site (constrained variants), the allele 

frequency (rare variants with minor allele frequency lower than 0.01) and the specificity of the 

variant within populations (private variants). For each category, we quantified the differential 

mutational burden between CS and HRR using odds ratios (ORs) to assess whether the fractions 

of polymorphic sites in the given category are significantly different between CS and HRR 

(Material and Methods). 

For all populations, coldspots in the human genome show a higher proportion of rare and non-

synonymous variants relative to regions of high recombination (Figure 2, Figure S2-S3). Rare 

and non-synonymous variants are enriched for mutations of functional importance, with 

potentially deleterious effects. The site frequency spectrum differs between CS and HRR and 

minor allele frequencies (MAF) correlate positively with recombination rates (Table S2) 11. 

However, the excess of non-synonymous and damaging variants remains after correcting for 

MAF (Figure S3). In turn, common synonymous variants at unconstrained (neutral) sites are 

consistently enriched in HRR compared to CS in all populations.  These findings suggest that 

purifying selection is more efficiently removing harmful variants in high recombining regions, 

whereas deleterious mutations survive in greater proportion when recombination frequencies are 

low. We verified that GC/CpG content does not explain the significant enrichment of putatively 

deleterious mutations in CS in the human exome (Online Supporting Note 2). Furthermore, the 

results hold even after correcting for average gene expression, substitution rates, types of 

mutations, exon size and total SNP density per exon (Table S2-S4). Importantly, the results are 

robust to a wide array of recombination rate thresholds used to define CS and HRR (Table S5). 

The effect does not appear to be chromosome specific, and no significant difference is observed 

for genes closer to telomeres (Table S10). We also find that CS have larger introns than HRR 

(Online Supporting Note 4), consistent with the efficiency of selection being reduced in low 

recombining regions 6,20.  
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Next, we performed a series of analyses to test whether the genomic spatial distribution of 

deleterious variants is being modulated through variable Hill-Robertson interference effects in 

different recombination environments.  First, we expect the extent of selective interference to 

increase with the number of negatively selected sites 14, since this would lead to a higher number 

of interacting alleles. Therefore, we distributed exons into four uniform subgroups based on 

among-species conservation levels (Material and Methods), which allow for the comparison of 

exons with similar putative strength of selection in CS and HRR. On average, CS are more 

conserved than HRR (Figure S5), and binning by conservation levels also ensures that our 

findings are not influenced by the heterogeneity of conservation across CS and HRR. 

Conservation levels are determined using the conservation score GERP 21 that quantifies 

position-specific constraint based on the null hypothesis of neutral evolution. The enrichment of 

rare and putatively deleterious mutations is seen in all conservation classes, showing that even 

when conservation is normalised across cold and hot regions, exons in coldspots are 

accumulating more deleterious variants. Moreover, the effect is significantly reduced in classes of 

exons with lower conservation scores (Figure 3A, Figure S6), as these exons likely have reduced 

numbers of negatively selected variants interacting with each other. These observations strongly 

support that selective interference between deleterious variants underlies the observed enrichment 

of rare and non-synonymous variants in CS compared to HRR, with the results being robust to 

heterogeneity of selection pressures across the genome. 

We then evaluated whether haplotypes within human exons have a higher mutational burden in 

CS compared to HRR using phased data from the 1000 Genomes Project. According to theory 

and simulations 1,22,23, deleterious variants will accumulate faster in low recombination regions in 

haploid systems, leading to an increased mutational load along individual haplotypes. We 
computed distributions of non-synonymous variants on haplotypes (Material and Methods), 

taking the exons as the basic unit, separating them into conservation categories such that 

compared exons exhibit similar levels of purifying selection. As expected, highly conserved 

exons tolerate a smaller number of non-synonymous mutations than exons with low conservation. 

Although within HRR a larger proportion of haplotypes carry at least one mutation compared to 

CS, because variants are more common and exons are larger (Online Supporting Note 4), 

haplotypes with two and more non-synonymous mutations are found in significantly higher 

proportions in CS (Figure 3B, Figure S7). This effect is not seen for the least conserved exons, 
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which are unlikely to be subject to high levels of selective interference. Conversely, we observe a 

~2-fold significant enrichment of the haplotype class with two non-synonymous variants in CS 

relative to HRR for the most conserved exons, where interference is likely stronger. Although 

statistical phasing remains technically challenging for rare variants, we see that phasing errors 

tend to even out rare variants across haplotypes and are unlikely to drive the effect seen here, as 

the observed bias is similar between CS and HRR (Figure S12, Online Supporting Note 3). This 

differential haplotype burden is in line with a Muller’s ratchet process where the least-loaded 

haplotype class, eroded by drift or mutation, is not replenished as fast when there is a lack of 

recombination, causing haplotypes with more than one deleterious variant to be slightly more 

frequent.  

We also performed extensive computer simulations (Online Supporting Note 3, Table S6) using 

forward-in-time simulators 24,25 to determine whether the above observations are consistent with 

interference between negatively selected mutations in diploid genomes with variable 

recombination rates. Simulated coldspots show a higher proportion of rare and negatively 

selected mutations on haplotypes compared to HRR under a number of different demographic 

models (Table S7). The differences between recombination environments increase with the 

proportion of selected sites simulated and we find that a small proportion of strongly selected 

mutations are less impactful than many mutations with small effects. The effects of background 

selection are also predicted to be stronger under similar conditions 26. However, models of 

background selection without interference between deleterious sites do not show an enrichment 

of rare neutral mutations in CS compared to HRR (Figure 4). These simulation results strongly 

support that linkage between mildly deleterious sites is required to generate the patterns of 

diversity we have observed. Thus, the effects on neutral diversity attributed to background 

selection from independent deleterious mutations are likely reinforced by selective interference 

between these weakly selected mutations. Fixed mutations under negative selection show no 

significant enrichment in simulated coldspots, indicating that selective interference within 

populations does not necessarily result in higher rates of fixation of deleterious mutations in 

diploid organisms 27, thereby causing inter-species divergence measures to be insensitive to these 

effects 28. Altogether, these analyses present clear evidence that selective interference is a 

determining factor shaping patterns of diversity along human autosomes, although other 
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processes, such as heterogeneous mutation rates and variable selection pressures within exons, 

may contribute, at least in part, to the observed pattern. 

If selection is driving this process, we may expect to see variable effects in populations with 

different histories and effective population sizes. To compare effects across populations, we 

considered variants in highly covered exons across all datasets (Table S1). We found a relative 

enrichment for non-synonymous variants in CS compared to HRR in all populations (Figure 2A, 

Figure S2), but the effect is reduced in African populations compared to others. Furthermore, 

damaging variants are enriched in CS for French-Canadian, European and Asian populations but 

not for Africans, making this effect potentially modulated by demographic history. Enrichment of 

variants private to Africans and Europeans in CS is significantly stronger in Europeans (Figure 

2B) even after correcting for MAF (Figure S3C-D), whereas shared variants are more equally 

under-represented in CS, suggesting that population history impacts the distribution of novel 

deleterious mutations. Population-specific variants in the five relatively recently diverged 

populations of European ancestry are also enriched in CS compared to HRR. Interestingly, this 

effect is also observed for variants that are private to the recently founded French-Canadian 

population, even after adjusting for GC-content and total SNP density (Table S2). These 

mutations were either very rare in the source population, or they originated de novo since the 

founding of Quebec four hundreds years ago 29. The potential reduction in the efficiency of 

purifying selection in coldspots is thus detectable over brief evolutionary time scales and suggests 

that selection may have been affecting the distribution of variants differentially along the genome 

in the recent past.  

Finally, for each individual we computed the relative proportion of rare and non-synonymous 

variants in CS and HRR and the resulting odds ratios (ORs)(Figure 5, Figure S8). The 

distribution of per-individual ORs reveals extensive differences between individuals and 

populations. Although at the population level, rare and non-synonymous variants are enriched in 

CS compared to HRR (Figure 2A), these effects are not observed at the individual level in 

Africans. For rare variants, Europeans and Asians all have significant ORs (Figure S8), but the 

mean individual OR is larger in Europeans. Strikingly, the FCQ population shows an increased 

variance relative to other populations and exhibits more extreme OR values. For non-

synonymous variants, few individuals among AFR, ASN and EUR exhibit significant ORs, 
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whereas again, the FCQ distribution is remarkably different and shows a shift in mean towards 

larger and significant individual effects (Figure 4B). For private variants, French-Canadians are 

the most extreme of European populations, followed by Finns and Italians from Tuscany (Figure 

S9). To confirm these results, we sequenced the exomes of 96 of the FCQ individuals, which 

fully support the differences seen in this population (Figure S10). We also verified that these 

differences are not due to discrepancies in SNP annotations and ascertainment between cohorts 

(Online Supporting Note 4, Figure S11). Average recombination rates within CS and HRR differ 

between Africans and Europeans (Online Supporting Note 1), however, our simulations show 

that this heterogeneity in recombination rate is unlikely to be sufficient to explain the observed 

patterns (Figure S12, Online Supporting Note 3). Differences in population sizes and 

demographic histories could impact selective interference and variation in CS more than in HRR 

as selection is less efficient in smaller populations 29. The population-specific increase in the 

differential burden observed here may be due to complex recent demographic events and depart 

from Wright-Fisher’s expectations (Online Supplementary Note 3), such as serial founder effects 

or range expansions 30. Therefore, complex demographic processes in humans may have impacted 

genetic variation and the effective strength of selection differentially along the genome through 

the history of the human peopling. Although studies suggest that recent population history has 

little impact on the burden of deleterious mutations 31, our study questions the generality of these 

findings and documents another way in which population history can influence patterns of 

deleterious genetic variation across populations.  

The irreversible accumulation of mildly deleterious mutations along haplotypes in low 

recombining regions can have damaging phenotypic effects in individuals carrying them, since 

genomic regions with high linkage disequilibrium show an excess of genes primordial for 

response to DNA repair and cell cycle progression 32. Furthermore, CS are enriched for genes 

involved in protein metabolic processes, mRNA processing, organelle organisation, microtubule-

based processes and genes highly mutated in cancer (Table S8-S9, Online Supplementary Note 

4). Selective interference between deleterious mutations may thus impact the genetic aetiology of 

human diseases. By examining sequence variants that have a demonstrated effect on health 

reported in the ClinVar database 33, we found that for variants with MAF lower than 0.01 in 

humans, disease-related mutations reported in ClinVar are enriched in CS relative to HRR (Table 

S9). The effect is driven mainly by the coldest recombination regions in the human genome 
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(mean rate lower than 0.1 cM/Mb) and decreases with the increasing recombination rate (Figure 

S6), which is expected under selective interference and cannot be explained by ascertainment 

bias within ClinVar (Online Supplementary Note 4). Ultra-sensitive regions of the genome, 

where a 400-fold enrichment of disease-causing mutations has previously been reported 34, are 

greatly enriched in CS (Figure 6, Table S9). Altogether, these results indicate that rare variants 

identified as medically relevant are more likely to be found in human coldspots, as new disease-

causing mutations occurring in regions with higher recombination rates will be more efficiently 

eliminated by natural selection. 

Until now, selective interference had been empirically studied through inter-species divergence 

among primates, and no effect of recombination on such measures had been detected 28. In 

contrast, our population genetic analyses reveal that the efficiency of selection depends on local 

recombination rates modulating selective interference, explaining the spectrum of rare functional 

variation. Furthermore, recent population demography likely impacts the differential mutational 

burden, with selective interference potentially modulating the accumulation of new deleterious 

mutations more strongly in small bottlenecked populations. The spatial distribution of deleterious 

mutations along the genome would therefore vary according to recent population history. Finally, 

features such as recombination rates, driving genetic variation heterogeneity across the genomic 

landscape, have a potential impact on disease mutation accumulation and disease mapping 

strategies. Our deeper understanding of how the processes of recombination, selection and 

mutation work together to shape the landscape of deleterious diversity in the genome will thus 

improve our ability to map disease-causing mutations in humans.   
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Material and Methods 

Genetic maps and recombination  

We used three LD-based genetic maps 35, one pedigree map 36 and one admixture-based map 37 to 

identify ‘cold’ or ‘hot’ regions in the human genome that were shared across all human 

populations (Figure 1). The three LD-based maps were built from genotyping data from French-

Canadians from Quebec (FCQ), CEU and YRI from HapMap3 (see Online Supporting Note 1). 

We used these maps to locate coldspots and hotspots of recombination. We define coldspots (CS) 

as regions of more than 50Kb with recombination rates between adjacent SNPs below 0.5 cM/Mb 

in FCQ, CEU and YRI populations. A hotspot is defined as a short segment (<15Kb) with 

recombination rates falling in the 90th percentile (> 5 cM/Mb). We define high recombination 

regions (HRR) as regions with a high density of hotspots, such that the distance separating 

neighbouring hotspots is smaller than 50 Kb. For each CS and HRR identified, we computed the 

mean recombination rate (cM/Mb) using deCODE pedigree-based map and the admixture-based 

African American map, and excluded all regions with inconsistent recombination rates in one of 

these maps. We obtained a list of 7,381 autosomal coldspots, spanning about a third of the human 

genome, for a total of 1.049 Gb (Table S1A). We identified 12,500 HRRs genome wide shared 

between FCQ, CEU and YRI populations, covering a total of 634.2 Mb. We verified that our 

results are robust to the choice in recombination parameters used to define regions (Table S5) and 

to differences between LD-based and pedigree maps (Online Supporting Note 4). 

Genomic data 

Genomic data from the 1000 Genome Project and the CARTaGENE project were used in this 

study. SNP calls for 911 individuals from 11 non-admixed populations from the 1000 Genomes 

Project Phase 1 high coverage exon-targeted data (50-100✕) were downloaded from the 1000 

genomes ftp site. Only SNPs called within targeted exons were extracted from vcf files. Details 

on 1000 Genomes populations, sequencing protocol, SNP calling, and validation can be found in 

the 1000 Genomes phase 1 publication 19. Populations were then grouped by continental ancestry, 

with a total of 142,296 SNPs in 379 Europeans (EUR), 128,697 SNPs in 286 Asians (ASN) and 

186,549 SNPs in 246 Africans (AFR) within 124,015 different exons (AFR populations: ASW, 

YRI, LWK; EUR populations: FIN, TSI, IBS, GBR, CEU; ASN populations: CHB, CHS, JPT). 
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Admixed American populations (MXL, CLM and PUR) were excluded from analyses. For the 

French-Canadian population, SNPs were called from RNA sequencing data (RNAseq), with a 

total of 178,394 SNPs in 521 individuals within expressed exons. RNAseq 100bp pair-ends 

indexed libraries were constructed using the TruSeq RNASeq library kit (Illumina). Sequencing 

was done on HiSeq machines (Illumina), multiplexing three samples per lane. More details on the 

samples, the sequencing protocol and downstream analyses are described in supporting online 

note 2 and in 18. Analyses comparing populations were done on a subset of exons that are highly 

covered (> 20✕, HC exons) across all datasets. A total of 89,390 exons passed this filter, 

containing a total of 73,627 SNPs in FCQ, 69,672 in EUR, 63,726 in ASN and 89,789 in AFR 

(Table S1B). Additionally, all FCQ individuals were genotyped on the Illumina Omni2.5M array, 

and a subset of them (96 individuals) was exome sequenced on HiSeq machines (Illumina) with a 

total of 60,251 SNPs called (online supporting note 2). 

Variant and exon annotations 

We annotated SNPs either as synonymous or non-synonymous and those reported as intronic, in 

untranslated regions (UTR) or in non-coding RNA were labeled as ‘other’. Details on annotation 

pipelines are given in Online Supporting Note 4.1. Functional annotations for non-synonymous 

mutations were obtained with PolyPhen2 and SIFT 38,39 and a variant was annotated as damaging 

when both methods predict the mutation to be damaging. Because there is a bias in these methods 

towards seeing a reference allele as benign, we excluded variants where the major allele was not 

the reference allele. Nonsense variants were annotated as damaging. We retrieved GERP 

conservation scores for all positions within the human exome 

(mendel.stanford.edu/SidowLab/downloads/gerp/index.html) and PhyloP conservation scores 

from UCSC Genome website (hgdownload.cse.ucsc.edu/goldenpath/hg19/phyloP46way). We 

annotated a mutation as constrained if GERP > 3 and PhyloP > 1. Minor allele frequencies 

(MAF) were computed for each population independently and rare variants herein have a MAF < 

0.01 within a population. SNPs with MAF > 0.01 are annotated as ‘neutral’ if they are 

synonymous and have both GERP < 3 and PhyloP < 1. For European populations, including 

FCQ, we annotated SNPs as private when they were unique to a population (not in other 

European populations nor in ASN and AFR) whereas shared variants are SNPs in common 

between all European populations. We also annotated exons by tabulating exon size, GC-content, 
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average recombination rates in FCQ, CEU and YRI population genetic maps, average gene 

expression (computed from the FCQ RNAseq data, online supplementary note 2), average GERP 

score, number of sites with GERP > 3, rate of synonymous substitutions per site (dS) between 

homologous gene sequences from human and chimp. dS values were retrieved from Ensembl as 

of November 2013, for 15,075 orthologous genes out of the 21,986 RefSeq genes and have been 

calculated by codeml in the PAML package 40. Exons were ranked based on GC-content, GERP 

annotations, dS values and expression level, and stratified in four categories of equal sizes: low 

(25% lowest values), medium low (ranked between 25 and 50%), medium high (ranked between 

50 and 75%) and high (25% highest values). For each exon and each population, we computed 

the number of SNPs, average MAF per population and the density (SNP/Kb) of non-synonymous, 

constrained and damaging variants.  

Differential mutational burden 

Odds Ratios (OR) are used to compare proportion of mutations between CS and HRR, for 

different types of mutations, and we call this measure of enrichment the differential mutational 

burden. The variant types analysed are rare, non-synonymous, damaging, constrained, neutral, 

private, non-synonymous private and shared. The OR for a variant type T is computed as:  

ORT = (NCS,T × XHRR,T) / (NHRR,T × XCS,T)  

with NCS,T and NHRR,T the number of variants annotated of type T and XCS,T and XHRR,T the 

number of other annotated variants in CS and HRR, respectively. Variants with missing 

annotations for a given type were excluded of the OR calculation for that type. Confidence 

intervals were calculated following the procedure described in 41. Using alleles carried by each 

individual at all annotated variants, the differential mutational burden is also evaluated per 

individual. We consider zygosity per site, such that for a heterozygote at a non-synonymous site 

for example, both the non-synonymous allele and the reference allele are counted, and for a non-

reference homozygote, the non-synonymous site is counted twice. We note that ignoring zygosity 

(counting each site once as either mutated or reference) does not change the distributions of 

individual ORs. Sites for which the reference allele is the derived allele (as inferred from chimp 

and rhesus macaque) were ignored in the per-individual OR calculation. We evaluated 

correlations between recombination rates and variant density in exons using linear regression 
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models, adjusting for expression level (online supporting note 2), GC-content, exon size and SNP 

density. 

Haplotype load  

Haplotypes from the 1000 Genomes populations were phased using ShapeIT2 using SNP array 

and sequence data (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/) as of November 

2013 42. For each phased haplotype in an exon, we counted the number of non-synonymous 

mutations, and we computed haplotypes allelic classes 43, ie. the number of haplotypes with 0, 1, 

2, …, nmax non-synonymous mutations. We identified 9 genes with exons that have an extremely 

high haplotype load: HRNR, FLG, MKI67, OR51B6, AHNAK2, PLIN4, CMYA5, MUC17, 

RP1L1. These genes were excluded from the analyses. After excluding these outlier exons, the 

maximum number nmax of non-synonymous mutations on a haplotype never exceeds 10. CS and 

HRR haplotype distribution were compared for exons in each conservation category. 

Conservation categories are based on a conservative ranking of exons according to both their 

average GERP scores and their number of sites with GERP > 3 (Figure S5). Confidence intervals 

for the proportions of haplotypes in each haplotype class are computed by resampling the same 

number of exons in CS and HRR in each conservation category. 

Simulations 

We perform forward simulations using SLiM and sfs_code 24,25. For 250 diploid individuals (500 

haplotypes), we simulated exon-like sequences with non-synonymous mutations, with the 

mutation rate µ = 2×10-7 per base and Ne = 1000, and tested models with the overall 

recombination rate being r = µ or r = µ/2. We simulated human-like recombination environments, 

according to the average recombination rate and size of CS and HRR in the human exome: CS 

are 95 Kb long in average and contain 4.1% of recombination, HRR are 28 Kb long in average 

with 58.6% of recombination, according to values in the deCODE map. We also considered CS 

and HRR with different recombination rates, to match the African recombination rates (Online 

Supporting Note 3). Each simulated exome consists of 75 fragments of 200 Kb, with CS- and 

HRR-like sequences separated by 77Kb. Different demographic and selection models are studied 

(Online Supporting Note 3) with parameters inferred in previous studies 44,45. The fitness effects 

for non-synonymous mutations are gamma distributed with mean s, with dominance coefficient h 
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= 0.5. We ignored positive selection in our models. We also performed simulations under null 

models, with constant r or without negative selection (s = 0), to evaluate expectations without 

variation in recombination rates or under selective neutrality. For each simulation, mutations that 

have a derived allele frequency below 0.01 were annotated as rare. Non-synonymous mutations 

are site attributed a negative selection coefficient and were divided in 3 categories: non-

synonymous with a selection coefficient larger than -1/Ne (ns, effectively neutral), smaller than -

1/Ne (nsneg, negatively selected) and smaller than -0.01 (nsdam, damaging). The threshold for 

damaging variants is set to match the number of non-synonymous damaging variants in the 

empirical data. We used odds ratios to estimate the differential mutational burden between CS 

and HRR for rare and non-synonymous mutations in simulations. 

Disease mutations and genes 

Clinical variants with potential and validated pathogenicity were retrieved from the curated 

ClinVar database 33 (https://www.ncbi.nlm.nih.gov/clinvar). Variants that are not segregating 

1000 Genomes populations (which represent the vast majority of ClinVar variants), or that are 

found at a MAF lower than 0.01 in these populations, were classified as rare. ORs were 

computed by comparing number of rare variants to non-disease variants with MAF in 1000 

Genomes populations lower than 0.01 between CS and HRR. Sensitive and ultra-sensitive 

regions coordinates were retrieved from 34, that have been examined for the presence of inherited 

disease-causing mutations from the Human Gene Mutation Database (HGMD). We used 

PANTHER 46 and WebGestalt 47 resources to perform gene set enrichment analyses (Online 

Supporting Note 4).  
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Figures 

 

Figure 1. Coldspots (CS). Hotspots (HS) and High Recombination Regions (HRR).  

CS are defined as regions of more than 50 Kb with recombination rates between adjacent SNPs below 0.5 cM/Mb. 

HS are defined as a short segment (<15Kb) with recombination rates above 5 cM/Mb. HRR are regions with a high 

density of hotspots, such that the distance separating neighbouring hotspots (>5 cM/Mb) is smaller than 50 Kb. CS 

and HRR have to be conserved across FCQ, CEU and YRI genetic maps and to have consistent recombination rates 

in admixture-based and pedigree genetic maps to be kept in our study (online supporting note 1). 
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Figure 2. Differential mutational burden in Coldspots (CS) compared to Highly 

Recombining Regions (HRR) in human populations. 

Differential burden is computed using odds ratios (OR), representing the relative enrichment of a category of variants 

compared to all variants in CS versus HRR (OR > 1 means enrichment in CS and OR < 1 means enrichment in 

HRR). Error bars represent 95% confidence intervals. Variants are categorized as rare (MAF<0.01 in a population), 

non-synonymous (missense and nonsense), damaging (predicted by both SIFT and Polyphen2), neutral (common and 

synonymous), private (specific to a population) and shared (present across populations). (A) Comparison of 

worldwide populations. ORs are computed based on variants called in exons from 521 French-Canadians of Quebec 

(FCQ), 379 Europeans (EUR), 286 Asians (ASN) and 246 Africans (AFR). (B) Effects for private and shared 

variants between populations. Top panel: comparison of closely related populations of West European ancestry. ORs 

are computed based on private and shared variants called in 96 French-Canadians of Quebec (FCQ), 89 British 

individuals (GBR), 93 Finns (FIN), 98 Italians from Tuscany (TSI) and 85 European Americans (CEU). Bottom 

panel: comparison of AFR and EUR populations. Shared variants are present in all populations analysed. Results for 

different subsets of genomic data are presented in Figure S2 and S3. Results for African sub-populations are shown 

in Figure S4. 
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C  Conservation  
 Classes 

 

Average GERP  
per bp  

Number of constrained  
sites per bp (GERP>3) 

Number of Exons Number of SNPs (EUR) 

Total HRR CS Total HRR CS 

Low [-5.179; 1.103] [0; 0.34] 47362 4554 13970 32166 9256 8323 

Medium Low [1.103; 2.613] [0.34; 0.63] 39869 3215 13397 40115 10321 11910 

Medium High [2.613; 3.548] [0.63; 0.75] 36089 2197 15191 24589 5250 9276 

High [3.548; 6.170] [0.75; 1] 43416 1228 25602 17384 2661 9031 

 

Figure 3: Differential mutational and haplotype burden as a function of conservation. 

(A) Differential mutational burden between Coldspots (CS) and highly recombining regions (HRR) in Europeans 

(EUR) measured by Odds ratios for rare (MAF<0.01), non-synonymous (nonsyn), constrained (GERP < 3 and 

PhyloP < 1) and damaging variants, for exons binned in four conservation categories (Figure S5). Error bars 

represent 95% confidence intervals. (B) Haplotype load of non-synonymous variants in CS and HRR. For each 

conservation category, the proportion of mutated haplotypes with 2, 3, 4, etc. non-synonymous variants in Europeans 

(EUR) is plotted. The remaining proportion of mutated haplotypes with 1 variant (not plotted) is always larger in 

HRR than in CS. Confidence intervals are computed by resampling (Material and Methods). The proportion of 

mutated haplotypes in haplotype class 2 (haplotypes carrying two non-synonymous mutations) is significantly 

different between CS and HRR, except for the least conserved exons (C) Characteristics of exons in the four 

conservation categories in terms of average GERP score per base pair (bp) and number of constrained sites per bp 
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(GERP>3). The number of exons and SNPs considered in plots presented in A and B are reported. Other populations 

show similar results (Figure S6, S7). 

 

Figure 4. Simulations under different background selection models, with and without 

interference 

Differential mutational burden is computed using odds ratios (OR), representing the relative enrichment of a 

category of variants compared to all variants in simulated CS vs. HRR. Error bars represent 95% confidence 

intervals. Non-synonymous (ns) mutations are site attributed a negative selection coefficient and were divided in 3 

categories: non-synonymous with a selection coefficient larger than -1/Ne (ns, effectively neutral), smaller than -1/Ne 

(nsneg, negatively selected) and smaller than -0.01 (nsdam, damaging). The models with a single locus under 

negative selection (10bp deleterious motif, green) are background selection models without linkage between 

negatively selected sites. The other models have the same parameters as the EW model with µ=r (parameters in 

Table S6) and include linkage between different proportion p of sites under negative selection. Online Supporting 

Note 3.3 includes further description of background selection models. 
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Figure 5. Per individual differential mutational burden across populations 

Distribution of odds ratios (OR) per individual in French-Canadians, Europeans, Asians and Africans, comparing 

proportions of (A) rare and (B) non-synonymous variants between coldspots (CS) and high recombining regions 

(HRR). The frequencies of individual OR in each population are shown. Distributions are significantly different 

between populations for all comparisons (Kruskal-Wallis test, p<5e-9) except for AFR versus ASN non-synonymous 

OR distributions (Kruskal-Wallis test, p=0.051). The relative proportions of rare or non-synonymous mutations in 

CS and HRR are shown in Figure S8. Distributions for private variants in European sub-populations are shown in 

Figure S9. French-Canadian data used is the RNAseq dataset (Online Supporting Note 2), replication with exome 

data of 96 French-Canadians is presented Figure S10. These results are robust to annotation pipeline and exclusion of 

fixed polymorphisms (Figure S12). 
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Figure 6. Differential mutational burden for rare disease mutations and sensitive regions. 

Relative enrichment of rare disease mutations listed in the ClinVar database and in Khurana et al. 2013 34 for ultra-

sensitive motifs in CS relative to HRR, in coding regions only. Error bars represent 95% confidence intervals. CS 

regions are binned into 3 categories such that each group roughly contains the same number of regions: coldest 

(recombination rate r <0.1 cM/Mb), medium (0.1≤ r <0.15 cM/Mb) and hottest (0.15≤ r <0.5 cM/Mb). Rare disease 

mutations have MAF<0.01 or are not segregating in the 1000 Genomes populations. In each category of CS, 

enrichment of rare disease mutations is evaluated by comparison to the number of rare variants in the 1000 Genomes 

populations. Enrichment for ultra-sensitive motifs is evaluated by correcting for sequence length in each category of 

CS.   
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Online Supporting Information 
 

 

Online supporting note 1– Recombination analyses 
 

1. Overview 

 

Accurate population recombination maps are necessary to identify regions that are in different 

recombination environments. We used five population genetic maps (1-3), to identify ‘cold’ or 

‘hot’ regions. We first identified these regions using LD-based population maps, and in a second 

step, we excluded regions for which recombination rates in pedigree and admixture maps were 

inconsistent with the definitions of the cold and hot regions. The reason to first consider LD-

based methods is that, we wanted to identify regions that have been low recombining (or high 

recombining) for a considerable amount of time during human evolution, as selective interference 

is a phenomenon that would occur over many generations. Pedigree map give infomation on the 

recombination rates in the current generations, which does not guarantee that a given region was 

not recombining in the evolutionary past of humans. LD-based methods, although potentially 

biaised by SNP density, by using polymorphism data from population samples, look at ancestral 

recombination rates and provide us with the opportunity to identify regions with no evidence of 

recombination over hundred of thousands of years. 

 

2. Population genetic map of French-Canadians 

 

We build the genetic map of the French-Canadians of Quebec (FCQ) population using LDhat (4). 

The 521 FCQ individuals were genotyped on the Illumina Omni2.5M array. A total of 1,554,440 

autosomal SNPs were obtained after filtering (Quality control HWE p<0.001, Missingness < 

0.05, MAF>0). We ran the interval program from the LDhat package on FCQ genotyping data. 

Because the likelihood tables for the interval program are pre-computed for a maximum number 

of 192 haplotypes, we randomly selected 96 unrelated individuals from the 521 FCQ individuals. 

The largest chromosomes (1 to 12) were broken into two segments (p and q arms) and all 

genomic segments were phased with ShapeIT2 (5). We ran the interval program on each genomic 

segment for 30,300,000 iterations with a burn-in of 300,000 iterations and sampled the 
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population recombination rates ρ every 10,000 iterations. The estimate of the recombination rate 

ρ between each pair of adjacent SNPs, in units of 4Ner per Kb, was computed by taking the 

average rate across iterations of the rjMCMC procedure implemented in interval. We sampled the 

population recombination rates ρ every 10,000 iterations. To convert the population 

recombination rate estimates in 4Ner per Kb into centiMorgan per Megabase (cM/Mb), we 

inferred the effective population size Ne for the FC population using the estimates of r computed 

for the 2010 deCODE map in cM units (2). Specifically, we identified chromosomal segments 

where both FCQ data and deCODE SNP positions allowed estimates of rates and we summed 

rates across these genomic regions to obtain the total estimated distance (4NeR) and the total 

genetic distance (R in cM units) from the deCODE map.  

 

3. Population genetic maps from HapMap3 data 

 

Population genetic maps from the HapMap2 data have been built by the HapMap consortium in 

2007 (3), using the 2002 deCODE pedigree map (6) and hg18 positions. It was subsequently 

‘lifted over’ to hg19 using the UCSC liftOver tool and regions where the order of markers had 

changed were removed from the final maps. We re-computed the HapMap maps for CEU and 

YRI with the methodology used to compute the FCQ map described above to allow direct 

comparison. Specifically, we performed a lift over on the HapMap3 SNPs positions prior to 

estimating recombination rates with interval using 96 unrelated individuals from the CEU and 

YRI populations. We then converted the recombination rates in cM/Mb using the 2010 deCODE 

pedigree map (2), and obtained new HapMap genetic maps for these populations. These maps are 

available here: www.well.ox.ac.uk/~julieh/mshussin2014 

 

4. Coldspots and High Recombining Regions 

 

We used these genetic maps to locate coldspots and hotspots of recombination. We define 

coldspots (CS) as regions of more than 50Kb with recombination rates between adjacent SNPs 

below 0.5 cM/Mb in FCQ, CEU and YRI populations, such that they are shared between all 

human populations studied. We excluded centromeric regions and required that at least 5 SNPs 

support the coldspot, to avoid regions with dramatically reduced diversity, where power to 
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estimate recombination rates is decreased. For each region identified, we computed the mean 

recombination rate (cM/Mb) using the deCODE pedigree map (2) and the admixture-based 

African American map (1), and we excluded all regions that have a recombination rate larger 

than 0.5 cM/Mb in one of these maps. We obtained a list of 7,381 autosomal CS, spanning about 

a third of the human genome, for a total of 1.049 Gb (Table S1). A hotspot is defined as a short 

segment (<15Kb) with recombination rates falling in the 90th percentile (> 5 cM/Mb). We define 

high recombination regions (HRR) as regions with a high density of hotspots, such that the 

distance separating neighbouring hotspots is smaller than 50 Kb. We identified 12,500 HRRs 

genome wide shared between FC, CEU and YRI populations, covering a total of 634.2 Mb (Table 

S1). The definition of coldspot, hotspot and HRR are illustrated in Figure 1. A complete list of 

these regions can be found at www.well.ox.ac.uk/~julieh/mshussin2014. The recombination rate 

thresholds used to define coldspots and hotspot were chosen to maximize the overall number of 

SNPs included in the analyses while minimizing the difference between the number of SNPs in 

coldpots and in HRRs. The effects are robust to different recombination thresholds (Table S5). 

 

Although these regions are inferred in both YRI and CEU LD maps, they may have different 

recombination rates. We compared the mean rates per CS and HRR between these two LD-based 

maps. The mean recombination rate in CS is 0.129 cM/Mb for CEU and 0.181 cM/Mb for YRI, 

with this difference being highly significant (p<10-5, permutation test). In HRR, the mean 

recombination rate in CS is 5.70 cM/Mb for CEU and 4.62 cM/Mb for YRI (p<10-5, permutation 

test). The distributions of rates within these regions are highly different between YRI and CEU 

(Kruskal-Wallis chi-squared = 943.0448, df = 1, p-value < 2.2e-16). These differences could be 

due to differences in LD-based maps caused by varying demography and population specific 

selection; however, it is more likely that it reflects differences in local recombination rates due to 

the presence of different alleles of PRDM9, the protein responsible for recombination clustering 

in hotspots along the genome (1, 7). The impact of these differences in mean rates in CS and 

HRR between African and non-African populations is explored in Online Supporting Note 3.5 

and Figure S11 and is unlikely to cause the large differences we observe between populations in 

Figure 5. 

 

5. Comparison of CS and HRR with the deCODE map 
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Only 481 coldspots were excluded because recombination rates were larger than 0.5 cM/Mb in 

the deCODE map. The deCODE recombination rate for each CS is reported in the supplementary 

data available online at www.well.ox.ac.uk/~julieh/mshussin2014 

 

To ensure our result are robust to the choice of map, we computed CS and HRR using the 

deCODE pedigree map alone and compared this set of regions to the set of regions used in our 

study. There are 8165 CS inferred from the deCODE map, and 1824 CS supported by more than 

5 SNPs that do not overlap a CS in our final list of coldspots: 

- 94 had been removed because of a lack of SNPs in the region in HapMap or FCQ data 

(less than 5 SNPs); 

- 1324 have a recombination rate > 0.5cM/Mb in all LD-based maps; 

- For the remaining 406 CS : 

o 121 have recombination rate > 0.5cM/Mb in FCQ LD map; 

o 125 have recombination rate > 0.5cM/Mb in CEU LD map; 

o 142 have recombination rate > 0.5cM/Mb in ASN LD map; 

o 332 have recombination rate > 0.5cM/Mb in YRI LD map. 

 

For HRR, a smaller number of regions are found with the deCODE map (9071). Discordances in 

HRR lists are mainly due to differences in the computed intensity of recombination hotspots by 

the two methods, that are not directly comparable.  

We recomputed the enrichment statistics for rare, non-synonymous, damaging and neutral 

variants for the FCQ dataset with the deCODE regions alone. Rare (1.11[1.06;1.16]), non-

synonymous (1.10 [1.06;1.15]) and damaging (1.08 [1.01,1.16])  variants remain significantly 

enriched in CS and neutral variants are significantly underrepresented (0.85 [0.81;0.91]). 

However, the effects are somewhat weaker, which is explained by the fact that we include CS 

with evidence of recombination in LD-maps. If we only take the overlap  (ie. variants in CS in 

both deCODE and LD-maps), the effects become comparable to the ones observed in the final list 

of CS obtained: rare (1.27[1.22;1.33]), non-synonymous (1.17 [1.12;1.22]) ,damaging (1.05 

[1.01,1.11]) neutral (0.68 [0.65;0.73]). Our results are therefore robust to the choice of map. 
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Online Supporting Note 2 – French-Canadian Genomic Data  
 

1. Overview 

 

The main analyses for the French-Canadian (FCQ) population rely on SNPs called from RNA 

sequencing (RNAseq) data. SNPs from other populations come from the 1000 Genomes phase I 

high coverage exome dataset and were grouped according to their ancestry (African, European, 

Asian ancestry). Admixed populations from the Americas were excluded. We performed 

extensive analyses to ensure that calling SNPs from transcriptomes do not create biases 

influencing our population genetic analyses and cannot explain the difference seen in the FCQ 

population. We also performed exome sequencing for a subset of FCQ individuals for which we 

had RNAseq data and further validated SNP calls and the overall results found with the RNAseq 

SNPs. 

 

2. French Canadians 

 

The CARTaGENE project (CaG) collected biologicals and data from 20,000 participants 

recruited throughout the province of Quebec (8), and high-density genotyping and RNA 

sequencing data was generated for 521 French-Canadians participants (Material and Methods). 

Sampling includes individuals from three distinct metropolitan regions of Quebec: the Montreal 

area (MTL), Quebec City (QCC) and the Saguenay Lac-St-Jean region (SAG) (Figure S13). 

Regional origins of the individuals were validated with a principal component analysis (PCA) of 

genetic diversity using genotypic data and including individuals from the Reference Panel of 

Quebec (RPQ) (9). Population structure is complex and made of regionally differentiated 

populations (Figure S13), resulting from the very recent regional founder effect that occurred in 

Saguenay. This territory was colonized during the 19th century by a reduced number of settlers, 

who contributed massively to the genetic pool of individuals living in this region today (10). 

 

 

3. Processing of the raw RNAseq Data and SNP calling 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2014. ; https://doi.org/10.1101/006064doi: bioRxiv preprint 

https://doi.org/10.1101/006064
http://creativecommons.org/licenses/by-nc-nd/4.0/


!29 

Approximately 3 mL of blood was collected for RNA work in Tempus Blood RNA Tubes (Life 

Technologies). Total RNA was extracted using a Tempus Spin RNA Isolation kit followed by 

globin mRNA depletion by using a GLOBINclear-Human kit (Life Technologies). RNAseq 

100bp pair-ends indexed libraries were constructed using the TruSeq RNASeq library kit 

(Illumina). Sequencing was done on HiSeq machines (Illumina), multiplexing three samples per 

lane. After initial filtering based on sequencing read quality, paired-end reads were aligned using 

TopHat (V1.4.0) (11) to the hg19 European Major Allele Reference Genome (12). PCR removal 

was performed using Picard (picard_tools/1.56, http://picard.sourceforge.net). Raw gene-level 

counts data were generated using htseq 0.5.3p3 (13). These counts were then normalized using 

EDASeq v1.4.0 and a procedure that adjust for GC-content as well as for distributional 

differences between and within sequencing lanes (14, 15). Average normalized gene expression 

levels per gene were determined by averaging expression levels of each gene across all 

individuals (Idaghdour et al. 2014. In preparation). Every exon of a gene was attributed the gene-

level value. 

 

SNP were called from RNAseq data using a procedure similar to SNP calling in exome 

sequencing data. However, prior to SNP calling, bowtie2 (0.12.7)(16) was used to removed 

abundant sequences (polyA, polyT, tRNA). Only reads that were properly paired and uniquely 

mapped were kept. Mapping quality score were recalibrated using GATK (17) and SNP calling 

was performed with samtools (0.1.18) (18). Filtering of SNPs was done using vcftools v0.1.7 

(19). We kept SNPs with variant quality of 30 and genotype quality of 20 (Phred scores). Minor 

allele frequencies (MAF), the proportion of individuals with non-missing genotypes and Hardy-

Weinberg equilibrium (HWE) p-values were computed using plink v1.07. SNPs showing 

departures from HWE at p < 0.001 were excluded. We obtained a total of 178,394 polymorphic 

SNPs (MAF > 0) in the 521 French-Canadians individuals (Table S1B).  

 

4. Selection of Highly Covered Exons 

 

To insure that sequencing SNPs are called throughout the length of exons and to reduce the 

possible biases due to read depth, we selected highly covered exons (hereafter termed HC exons) 

with all positions of their sequence covered at a minimum of 20✕ in more than 50% of the 
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sequenced individuals (i.e. at least 261 FCQ individuals). We used BAMStats-1.25 to obtain the 

minimum coverage per exon per individual for 208,226 autosomal exons. A total of 89,390 exons 

passed this stringent filter containing a total of 73,627 SNPs. For subsequent analyses, we also 

excluded 9 genes for which the mutational profiles were abnormal (Material and Methods). 

 

5. FCQ Exome Sequencing Data and Genotyping 

 

All individuals were also genotyped on the Illumina Omni2.5M array. A total of 1,554,440 

autosomal SNPs were obtained after filtering (Quality control HWE p<0.001, MAF>0). We took 

all positions in common between the Omni2.5 chip and the RNAseq SNPs called. We filtered for 

missingness (<50% for RNAseq, <95% Omni) and filtered out positions for which the alleles did 

not match between the chip and RNAseq after flipping, ending up with 26,615 positions to 

compare. We compared genotypes for which there was a call in both datasets, and the 

concordance rates were above 98.8% in all individuals, with mean across individuals of 99.3%.  

 

Exome sequencing was also performed for 96 FCQ individuals. DNA from each sample was 

extracted from peripheral blood cells and paired-end exome sequencing was performed on HiSeq 

machines (Illumina), multiplexing six samples per lane. We first performed trimming of 

sequencing read data using Trim Galore prior alignment to trim adaptors (with parameter –q 0, 

www.bioinformatics.babraham.ac.uk/projects/trim_galore). Alignment was performed using 

BWA version 0.5.9-r16. After recalibration with GATK (17), reads were trimmed for quality 

using bamUtil version 1.0.2 (genome.sph.umich.edu/wiki/BamUtil). SNP calling was performed 

with samtools (0.1.18) (18) using only properly paired and uniquely mapped reads. We kept 

SNPs with variant quality of 30 and genotype quality of 20 and minimum coverage of 10✕, for a 

total of 60,251 SNPs. Using the concordance procedure described above, we computed 

concordance rates between the exome dataset and the RNAseq dataset for 30,850 SNPs called in 

both datasets. The mean concordance rate across individuals is 99.01%. There is one outlier 

individual with concordance rate of 94.8% (although its concordance rate between RNAseq and 

genotyping is 99.27%), all other individuals have concordance rate above 98%. 

 

6. Checks in the FCQ dataset 
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Many additional analyses were performed on the FCQ data to insure the robustness of the results: 

- We evaluated differences in diversity between CS and HRR in FCQ (Figure S1), 

replicating the documented observation of decreased diversity in CS.  

- To ensure that the differences in the effects observed in FCQ are not due to biases in the 

RNAseq data, all results were derived with both RNAseq SNPs, and re-sequencing data of 

exomes in 96 individuals (Figure S2A, Figure S10). Furthermore, as no significant 

differences were found with these two samples of different size, the measure of 

enrichment used to assess the differential mutational burden, is robust to sample size. To 

evaluate the effect of private variants (Figure 2B, Figure S9), we used the exome 

sequencing dataset of 96 individuals. 

- We evaluated the effect of confounding factors (Table S2-S5). The results are robust to 

GC content, expression levels and between-species neutral substitution rates (Table S3). 

Furthermore, we regressed the number of mutations of different types per exon on the 

recombination rate per exon, controlling for GC content, expression levels, exon size and 

total SNP density (Table S2). The effect is seen for all mutation types, with no marked 

differences between transitions and transversions or for mutations towards GC (Table S4), 

excluding the possibility that GC-biased gene conversion is responsible for the differences 

seen between recombination environments. More details for controlling for GC content 

are given below. Finally, we tested the effect using a wide array of recombination rate 

thresholds used to define CS and HRRs (Table S5). 

- We computed OR for non-synonymous and damaging mutations for different frequency 

classes, to verify that the enrichment of potentially deleterious mutation is not only due to 

an enrichment of rare variants, that include more non-synonymous variants (Figure S3). 

 

Similar checks were performed in the 1000 Genomes populations. In particular, we performed 

analyses using the highly covered exons from the RNAseq datasets as well as using all exons 

where SNPs were called in the 1000 Genomes populations (Figure S2). For other checks 

(confounding factors, frequency classes) the results obtained are generally the same as in the 

FCQ, therefore only the FCQ results are shown. 
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7. Controlling for GC bias 

 

We controlled for variation in GC content in the genome in different ways to verify that this 

variable is not confounding our analyses. When comparing exons with the same GC content 

between CS and HRR, the effects remain significant, with the exception of the High GC content 

class, for non-synonymous (1.07 [0.99;1.15]) and damaging (1.04 [0.92;1.18]). These non-

significant results are likely due to the small number of exons in CS with high GC content, and 

hence the small number of mutations in this class, leading to a lack of power to detect a 

significant effect. 

To make sure that our effects are not influenced by GC-biased gene conversion, a recombination-

associated process that favors the fixation of G/C alleles over A/T alleles, we computed the 

effects independently for all mutations types, and found that the mutations towards G or C 

showed the same effect as the mutations towards A or T (Table S4). 

We further studied the impact of CpG sites. We identified CpG sites by retrieving 3-nucleotide 

sequences with the central nucleotide being the position of every variant in the FCQ dataset for 

which the reference allele is a C or a G. Out of 179,005 potential variants, 100,012 were found to 

be CpG sites. Overall, we see a significant deficit of CpG mutations in CS (OR=0.62 [0.59;0.64]) 

reflecting the lower GC content in CS. When excluding all CpG sites from the analyses, the 

enrichment of putatively deleterious mutations remains significant (Table S4). Similarly, when 

excluding mutations within CpG islands, the results remain unchanged (Table S4). These 

additional analyses confirm that GC/CpG content is not responsible for the significant enrichment 

of putatively deleterious mutations in CS in the human genome. 
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Online Supporting Note 3 – Simulations 
 

1. Overview 

  

In the past, selective interference leading to Muller’s ratchet has been mainly investigated 

through simulation studies. These studies demonstrated the impact of no recombination on the 

accumulation of deleterious mutations within genomes (20-24). However, most results were 

produced for haploid genomes (but see (25)) and were set up to compared regions of free 

recombination with regions that entirely lack recombination. Here, we performed additional 

computer simulations (with SLiM (26) and sfs_code (27)) to describe the expectations under a 

model of selective interference between negatively selected mutations in diploid genomes, with 

recombination environments comparable to the ones observed in human autosomes. Both 

forward-in-time simulation programs gave similar results for all analyses. 

 

2. Recombination environments 

 

We simulated diploid genomes with a distribution of recombination rates similar to the one 

observed in the empirical data. For 250 individuals (500 haplotypes), we simulated exon-like 

sequences with non-synonymous mutations, with the mutation rate µ = 2×10-7 per base and Ne = 

1000, chosen to minimize computing time while getting diversity data comparable to human data. 

We tested models with the overall recombination rate being r = µ or r = µ/2, to evaluate whether 

the relationship between r and µ had an impact. We defined three recombination environments: 

coldspots (CS), high recombining regions (HRR) and regions in between. In the human exome, 

CS and HRR contain 4.1% and 58.6% of recombination events, respectively, according to values 

in the deCODE map. These values were used in the simulations to match the human genetic map. 

For each genome, we simulated 75 fragments of 200Kb, with CS and HRR of 95 Kb and 28 Kb, 

respectively, and 77Kb of regions in between HRR and CS. We also simulated a null model with 

constant r, to insure that the effects seen do not reflect the difference in region length between CS 

and HRR. Finally, we also simulated modified CS and HRR, such that their recombination rate 

matches the African recombination rates within CS and HRR better (Online Supporting Note 1, 

Figure S11).  
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3. Models of selection and demography 

 

Our simplest model is a constant population size model with the distribution of fitness effects 

estimated by Eyre-Walker and colleagues (28), using their model without correction for 

demography (EW model). Simulations were performed with the same distributions of selection 

coefficients across CS and HRR, with proportion p = 75% of variants attributed a selection 

coefficient from a gamma distribution of mean s = -0.0294. We also used other scenarios to 

model European and African human data, with parameters taken from the EA and AA models 

from (29), a study that inferred both selection and demographic parameters simultaneously. 

Finally, we simulate data under a model without selection (NTR), a control under selective 

neutrality but with the human-specific recombination map. The description of these models is 

shown in Table S6. For each model, we generated 100 replicates. Each replicate took between 15 

and 55 hours to run, depending on the model and on the simulation program. 

Odds ratios are used to estimate the differential mutational burden between CS and HRR for rare 

and non-synonymous mutations (Material and Methods). Mutations with derived allele frequency 

(DAF) below 0.01 are labelled as rare. Mutations with s larger than -1/2Ne (ns) are effectively 

neutral, and others are negatively selected (nsneg). To model damaging mutations, we chose the 

threshold of below s = -0.01 (nsdam), to match the number of non-synonymous damaging 

variants in the empirical data. Simulated CS have a higher proportion of rare and nsneg 

mutations than simulated HRR for all models of selective interference with r = µ. Results for r = 

µ/2 are highly similar, although the effect is somewhat reduced (Table S7A). The neutral model 

with varying recombination rates does not show an enrichment of rare neutral variants in CS, 

indicating that the reduction of Ne in low recombination region alone does not account for the 

excess of rare variants. 

 

4. Models of background selection with and without interference 

 

We simulated various models of background selection, by changing the proportion p of non-

synonymous variants and the mean selection coefficient s from a gamma distribution. We make p 

take value from 0.1 to 0.75 and s takes values from -0.0294 to -0.3. We find that the effects on 
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both rare and deleterious diversity increases with p (Figure 4). We simulated a scenario with p = 

0.1 and s = -0.3, such that the overall selective pressure acting on the loci is approximately the 

same as for p = 0.75 and s = -0.0425 (28). Interestingly, this model did not performed better than 

the scenario with p = 0.1 and s = -0.0425, suggesting that small proportion of strongly selected 

mutations is unlikely to cause the difference in mutational burden observed in the data.  

Scenarios modelling background selection with no interference further confirm this result: we 

simulated a single motif of 10bp in the centre of each region, where all sites have fixed s = 0.05, 

0.1 or 0.15. These models are designed not to contain linkage between negatively selected sites 

because the size of the region is too short for many deleterious mutations to occur and interfere 

with each other. These scenarios do not predict differences in the proportion of rare neutral 

mutations between CS and HRR (Figure 4), indicating that background selection acting at one 

independent locus does not lead to an enrichment of rare variants in regions with reduced 

recombination rate. Therefore, these results show that many mutations with small effects are 

required to cause the patterns observed, which likely result from reduced efficiency of selection 

in CS due to interference between these mutations.  

 

5. Simulation of various scenarios to explain population differences 

 

In analyses of the genomic data, differences in the empirical distribution of odds ratios (OR) per 

individual are observed (Figure 4, Figure S9). They may be related to changes in Ne, such that 

smaller populations are even less efficiently purging variants from coldspots than large 

populations. However, none of the simulated scenarios described above showed significant 

differences in the distributions of individual OR computed for rare variants. In particular, no 

significant shift in the OR distribution for rare variants was seen between EA and AA scenarios 

(Table S6). We also simulated scenarios with population splits, with and without migration 

between populations and with the dominance coefficient h = 0.1. These models also failed to 

show significant differences between individual OR distributions. To try to understand the 

observed differences between FCQ and other populations for distributions of individual OR for 

rare and non-synonymous variants (Figure 4, S9 and S10), several more complex demographic 

scenarios, with severe bottlenecks and/or with rapid expansions were tested with both SLiM and 

sfs_code, but none recapitulated the significant difference between distributions seen between the 
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FCQ population and the others (Figure 4). The only scenarios that caused significant differences 

are when changing the recombination rates within CS and HRR, by increasing the rate in CS and 

decreasing the rate in HRR (Figure S11). However, the shift in the distribution is very weak and 

hardly comparable to the differences observed in the empirical data, making it unlikely that the 

differences in recombination rates alone cause the effect seen between populations. Furthermore, 

this would be a potential explanation for differences between Africans and non-African 

populations, but not between Asian, European and French-Canadian populations for which 

recombination rates are highly similar, therefore differences in recent demographic history is 

more likely to underlie the differences observed. 

 

One possible explanation for the fact that the simulations do not seem to recapitulate the patterns 

observed is that the simulation tools fail to adequately model recent population demography of 

human populations. Although changes in population size can be modelled with these tools, 

modelling spatial expansion may be essential to get more realistic simulation results. 

Unfortunately, although spatially explicit simulation tools allowing for complex demography and 

variation in recombination have been developed (30), selection models are not yet included. 

Furthermore, most simulation tools assume Poisson variance in reproductive success, an 

assumption often violated in populations with high fertility rates, as it was the case during 

French-Canadian expansion (31, 32). When only few parents contribute to the next generation 

(33), the larger than Poisson variance in family sizes introduces additional stochasticity, causing 

strong intergenerational genetic drift. Therefore, extensions of simulation methods in the future, 

to include these additional demographic parameters in flexible simulation frameworks with 

recombination and selection, will hopefully be informative to understand the impact of complex 

demography on selective interference. In any case, these results suggest that complex 

demographic processes, not generally accounted for in population genetics models of human 

peopling (34), may need to be considered to understand the differences in the genomic 

distribution of deleterious genetic variation. 

 

6. Effect of sample size 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2014. ; https://doi.org/10.1101/006064doi: bioRxiv preprint 

https://doi.org/10.1101/006064
http://creativecommons.org/licenses/by-nc-nd/4.0/


!37 

We computed our statistics with subsets of individuals simulated to test the effect of sample size 

on the enrichment statistics. We resampled 125 individuals (half of the number simulated) in 100 

replicates and did not find any significant difference in the results obtained (Table S7A). 

 

7. Haplotype load and effect of phasing 

 

We estimated the haplotype load by evaluating the proportion of variants of a given type per 

haplotype. We counted the number of replicates where the haplotype load is smaller in CS than 

HRR, to obtain a one-tailed p-value (Table S7B). Models with interference are predicted to result 

in a higher haplotype load in CS for rare, nsneg and nsdam mutations after correcting for SNP 

density. However, background selection without interference does not lead to differential 

haplotype load between recombination environments. We also tested the expectation of the 

haplotype load under neutrality, to ensure that the differential linkage between CS and HRR is 

not biasing the expected distribution of haplotypes. These results strongly suggest that the effect 

observed in the genomic human data is caused by reduced selection efficiency due to interference 

between mildly deleterious variants. 

Because LD-based phasing of rare variants remains technically challenging, we verified that the 

phasing procedure used in the 1000 Genome data does not influence our results in the haplotype 

analyses. In particular, the impact of phasing in HRR and CS can be different. We thus verified 

by simulation that the difference in haplotype load between CS and HRR observed here is not 

due to potential phasing biases due to low power to phase rare variants. For our 100 NTR 

simulation replicates, we rephrased the haplotypes using ShapeIt2. We took chunks of same 

length (25Kb) in simulated CS and HRR and looked at the number of haplotypes with 2 rare 

mutations and more (MAF<0.01) in the real haplotypes and the phased haplotypes, N2r and N2p, 

respectively. There is a phasing bias for both CS and HRR, with the number of haplotypes with 2 

mutations and more being reduced by phasing (ie. N2r > N2p), showing that phasing does even 

out rare mutations across haplotypes (Figure S11B) but no significant difference between CS 

versus HRR was found in this phasing bias (Figure S11C). These results mean that the effect seen 

on more loaded haplotypes in CS is not dues to phasing errors, and even suggest that the phasing 

is probably leading to an underestimation of the increased haplotype load in CS. 
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Online Supporting Note 4 – Additional Analyses 
 

1. Variant Functional Annotations 

 

Annotations of synonymous and non-synonymous varinats for the FCQ dataset were obtained 

from three different sources (as of february 2013): Seattleseq (snp.gs.washington.edu/ 

SeattleSeqAnnotation134), dbSNP (dbSNP135), and wAnnovar (wannovar.usc.edu) (35). As 

these tools consider different databases of transcripts, a SNP is annotated as ‘nonsense’ if at least 

one annotation tool annotated it as ‘stop gain’ or ‘stop loss’. Similarly, a SNP is annotated as 

‘missense’ if at least one annotation tool characterized it as ‘missense’. We note that discordance 

between these 3 tools is 0.43%. The 1000 Genomes variants were annotated by the Variant 

Annotation Tool (VAT) and these annotations are used for all results reported. However, the 

1000 Genomes variants were also re-annotated using the pipeline used for FCQ variants to ensure 

results are robust to both annotation pipelines. We find that 2.43% of annotations differ between 

VAT and the new annotation pipeline, with the vast majority (65.05%) of these discordant 

variants being annotated as synonymous/intronic with VAT and non-synonymous with the 

Seattleseq/adSNP/wAnnovar pipeline. We verified that this small fraction of discordant annotated 

variants is not driving the differences seen between populations for non-synonymous mutations 

(Figure S12).  

The functional impact of non-synonymous mutations was obtained with widely used prediction 

tools: PolyPhen (36) and SIFT(37), which both have high sensitivity but low specificity (38). We 

thus used a combination of the two methods to reduce the number of false positives. To estimate 

the level of constraint at nucleotides, we retrieved GERP conservation scores for all positions 

within the human exome. GERP scores were obtained from the Sidow lab website 

(http://mendel.stanford.edu/SidowLab/downloads/gerp/index.html). To reduce false positives, we 

further obtained PhyloP scores from UCSC Genome Bioinformatics website 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phyloP46way/). We annotated a mutation as 

constrained if GERP > 3 and PhyloP > 1. Sites with PhyloP > 1 are the top 10% of conserved 

sites in the human genome. The GERP threshold was chosen to be comparable to the PhyloP 

threshold, such that the overall proportion of SNPs and missense SNPs inferred as constrained is 

the same for both methods. We compared GERP and PhyloP conservations scores with Polyphen 
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and SIFT predictions in the FCQ dataset. Overall, more than half non-synonymous mutations and 

a large proportion of damaging mutations (78.2%) are conserved according to both conservation 

scores, although GERP predictions concord slightly better with functional annotations than 

PhyloP predictions. We thus decided to use GERP predictions to classify exons in conservation 

categories. 

 

2. Recombination and expression 

 

Expression level of a gene is one of the best predictors of its evolutionary rate (39) with the 

efficiency of selection being weaker in lowly expressed genes. Therefore, we controlled for 

expression levels in our analyses (Table S2 and S3) and showed that our results are robust to 

variation in expression levels. However, we note that when analysing highly covered exons, the 

analyses are biased towards constitutively highly expressed genes. Interestingly, the effects are 

generally larger for this set of exons relative to all exons in the 1000 Genomes dataset (Figure 

S2), suggesting that relationship between mutational load, recombination and expression may be 

of importance. Furthermore, it has been reported that within-gene recombination rates appear to 

correlate with transcription patterns, such as expression breadth and allelic expression (40). We 

observed a weak but significant negative correlation between recombination rates and mean gene 

expression in the FCQ data (Table S2), providing further support for a negative association 

between recombination and transcription in humans. 

 

3. Effect of fixed polymorphism 

 

Variants fixed in a population are excluded from that population, but are kept in the others if they 

are segregating, and could contribute to the per-individual counts. To verify whether these 

variants can have an influence in our analyses and could explain population specific differences, 

we excluded variants where the derived allele is fixed in one population, but is still segregating in 

the other population from our analyses. This led to 2140 variants from CS and HRR being 

excluded from the 1000G dataset (0.52%), and 651 from the FCQ dataset (0.24%). We re-

computed the per-individual analyses, and found these changes to make no difference in the per-
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individual distributions (Figure S12). Thus, derived alleles fixed in a population but not in 

another thus have little impact on the OR distribution per individual. 

 

4. Introns and exon sizes 

 

We computed the distribution of exon and intron lengths in high recombining regions (HRR) and 

in coldspots (CS). Exons are larger in HRR than in CS and the length distribution are 

significantly different (Kruskal-Wallis chi-squared = 2089.667, df = 1, p-value < 2. ×10-16). The 

mean length of exons in HRR and CS are 534 bp and 284 bp, respectively. Conversely, introns 

are larger in CS than in HRR (Kruskal-Wallis chi-squared = 57.495, p = 3.388×10-14). Excluding 

introns longer than 10Kb, the mean length of introns in CS and HRR are 2.313 Kb and 2.260 Kb, 

respectively (p=8.303×10-12). This confirms the overall negative relationship between intron 

length and recombination in humans, previously observed on a small set of introns using large-

scale recombination rates (41). It has been suggested that strong selection favours deletion bias 

and intron contraction in humans and Drosophila (42-45), therefore these results are consistent 

with the efficiency of selection being reduced in human CS, leading to larger intron sizes in these 

genomic regions.  

We note that exons within a gene can have quite different genomic properties, and variation in 

recombination rates, conservation levels, GC content and divergence levels between exons is 

observed. Therefore, conservation and haplotype analyses are done at the exon level in this study. 

 

5. Pseudogenes, Gene Ontology and Disease Analyses 

 

Pseudogenes. We retrieved coordinates of the 17,216 regions annotated as pseudogenes from 

UCSC Tables (http://genome.ucsc.edu/cgi-bin/hgTables), covering 26,222 Kb of sequence. In 

total, 36% of these regions are in CS and 14% are in HRR. Pseudogenes overlap 9,411 Kb 

(0.89%) of CS and 3,610Kb of HRR (0.57%). These differences are significant (OR = 1.58 

[1.52;1.64]). This result raises the possibility that more genes have lost their protein-coding 

ability in low recombining regions of the human genome, although an alternative explanation is 

that more gene duplication were retained within CS throughout evolution, making gene function 

redundant and not required for survival.  
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Gene Ontology. To further characterize the potential impact on phenotypes, we performed a 

gene set enrichment analysis, using human gene annotations from the Gene Ontology database 

(46) and used PANTHER (47) and WebGestalt (48) resources. For WebGestalt, the reference list 

is the list of 21,987 genes included in the gtf file used to annotate exons 

(ftp://ftp.ensembl.org/pub/release71/gtf/homo_sapiens/Homo_sapiens.GRCh37.71.gtf.gz). 

PANTHER does not accept a reference list larger than 20,000 genes; the default Homo sapiens 

gene set was therefore used. The submitted gene list contains all annotate CS genes. 

Classification terms for “Biological Process” and “Molecular function” hierarchy were selected 

from the Gene Ontology (GO) vocabulary (46) if they were found significantly enriched with 

both tools, with bonferroni correction applied in both. Highly significant GO terms found with 

WebGestalt but missing from PANTHER GO term list are also reported. CS are enriched for 

genes involved in essential biological processes such as cell cycle, mitosis, protein metabolic 

processes, mRNA processing, organelle organisation and microtubule-based processes. Most 

proteins coded by CS genes are binding proteins (nucleotide, RNA and ATP binding), ligase or 

transferase (Table S8).  

 

Cancer mutations. Somatic mutations from cancer genomes in coding regions were retrieved 

from the COSMIC database (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic). These 

mutations where divided into segregating and non-segregating mutations, depending on whether 

they are found in the 1000 Genomes dataset. Non-segregating cancer mutations from COSMIC 

are found to be enriched within low recombining regions (Table S9). It should be noted that an 

important fraction of reported somatic mutations in cancer genomes are ‘passenger’ mutations, 

and only a subset will contribute to tumour progression. Furthermore, there is substantial 

ascertainment bias in COSMIC, potentially confounding analyses. For many samples, mutations 

are reported in candidate genes only, and the result might reflect that candidate genes tend to be 

enriched in coldspots. This supports results from the Gene Ontology analyses, suggesting that 

coldspots are likely to be enriched for fundamentally important genes in mitosis, necessary for 

genomic integrity and stability!at the cellular level. 
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Clinically relevant mutations. Clinical variants with potential and validated pathogenicity were 

retrieved from the curated ClinVar database (49) (https://www.ncbi.nlm.nih.gov/clinvar). 

Variants that are not segregating 1000 Genomes populations (which represent the vast majority of 

ClinVar variants), or that are found at a MAF lower than 0.01 in these populations, were 

classified as rare. ClinVar variants with MAF>0.01 were classified as segregating variants. ORs 

were computed by comparing these rare variants to non-disease variants with MAF in 1000 

Genomes populations lower than 0.01 between CS and HRR (Figure 6). We find that rare clinvar 

variants are in excess in CS after correcting for MAF, suggesting that decreased efficiency of 

selection gives rise to an excess of disease causing mutations in low recombining regions. 

Conversely, a lack of variants with MAF>0.01 implicated in human disease is notable in CS. 

These common variants were likely identified by genome-wide association studies (GWAS). This 

result may reflect a bias in GWAS towards higher power of discovery of common variants in 

HRR. The result for rare variants were replicated using the Humsavar database 

(http://www.uniprot.org/docs/humsavar), which are disease mutations identified from the 

Universal Protein Resource (Table S9). However, the result for variants with MAF>0.01 is not 

seen in Humsavar. Furthermore, sensitive and ultra-sensitive motifs (50) are enriched in CS 

compared to HRR. These motifs have been previously examined for the presence of inherited 

disease-causing mutations from HGMD (Human Gene Mutation Database) and a ~40- and ~400-

fold enrichment of disease-causing mutations in sensitive and ultrasensitive regions was found, 

respectively. 

 

GWAS hits and genotyping chips. The catalog of published GWAS hits was retrieved from 

NHGRI (http://www.genome.gov/gwastudies/). We compared the number of hits found in CS 

and HRR, correcting by total diversity (from the 1000 Genome whole genome SNP data) and 

found that GWAS hits are highly under-represented. Although CS are regions of extended LD 

where tagging should be more efficient, the tagging SNPs yielding high power in association 

studies are in general common SNPs that are in strong LD with the causal SNP. Therefore, in low 

recombination regions, most variants at lower frequencies are likely to be poorly tagged by 

common markers on genotyping chips used for performing GWAS. To test this hypothesis, we 

retrieved the list of markers from three genotyping SNPs, highly used for GWAS: Affymetrix 

SNP Array 6.0, Illumina Omni 1M and Illumina Omni 2.5M. All chips are enriched for tagged 
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markers in HRR, even when looking at common variants (>10%) only. After controlling for this 

bias towards HRR in genotyping chips, there is no significant difference in the distribution of 

GWAS hits between HRR and CS is seen (OR=1.05 [0.99;1.11]). Therefore, it is likely that the 

bias in GWAS hits is partially caused by the bias in distribution of markers in genotyping chips, 

although it is expected that the effectiveness of tagging is higher in CS, explaining why the 

design of genotyping chips is biased towards high recombining regions. Furthermore, it has been 

showed that ascertainment bias will likely erode the power of tests of association between SNPs 

and complex disorders, and that this will affect the power to detect associations when the variants 

that cause the inflated risk are rare (51). These results thus suggest altogether that the common 

variant model on which GWAS using commonly used genotyping chips has been based is not 

appropriate to find most potential disease variants in CS and that a substantial proportion of 

undiscovered mutations associated with disease phenotype may be segregating in conserved low 

recombining regions. This is a topic that goes beyond the scope of this article, but this is an 

important problem worthy of additional study.  

 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2014. ; https://doi.org/10.1101/006064doi: bioRxiv preprint 

https://doi.org/10.1101/006064
http://creativecommons.org/licenses/by-nc-nd/4.0/


!44 

Supplementary Figures 
 
 
 

!

 

Figure S1. Comparison of levels of diversity between Coldspots (CS) and High 

Recombining Regions (HRR) for SNPs in the FCQ dataset.  

Odds ratios (OR) are computed to compare SNP density between CS and HRRs for all SNPs 

(red) and SNPs divided in different allele frequencies classes (black). OR < 1 means that 

diversity is greater in HRR than in CS. We confirm the lack of diversity in CS relative to HRR, in 

line with previous evidence that diversity is reduced in low recombining regions due to 

background selection. The effect is seen for all frequency classes and does not differ significantly 

between classes of SNPs with MAF > 0.05. The class of variants with MAF < 0.05 shows a 

slightly smaller effect than the other frequency classes. 
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Figure S2. Differential mutational burden in genomic subset of the data. 

Differential burden is computed using odds ratios (OR), representing the relative enrichment of a 

category of variants compared to all variants in CS vs. HRR for (A) RNA and exome sequencing 

of French-Canadians and for exome sequencing of (B) Europeans, (C) Asians and (D) Africans, 

from the 1000 Genome Project. Variants are categorized as rare (MAF<0.01 in a population), 

non-synonymous (missense and nonsense) and damaging (predicted by both SIFT and 

Polyphen2). Highly covered exons (HC exons) have coverage above 20X for each position within 

the exons in all datasets. The set of exons analysed does not affect the results and the exome 

dataset in French-Canadians replicates the results found in RNAseq. 
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Figure S3. Minor allele frequencies (MAF) impact on odds ratios between CS and HRR  

 
Impact of MAF on the effects for functional mutations in the FCQ RNAseq dataset  (A,B) and for 

private and shared variants in EUR (C) and AFR (D). (A) The enrichment of non-synonymous 

and damaging mutations in CS remains significant for MAF<0.05, indicating that the excess of 

rare variants in CS does not drive the effect for non-synonymous and damaging variants. (B) 

Neutral variants with MAF<0.05 are enriched in CS compared to more frequent variants, 

indicating that neutral diversity contributes to the excess of rare variants in CS. (C,D) The 

enrichment of private mutations in CS and of shared mutations in HRR remains significant for 

MAF<0.1 in both EUR and AFR, indicating that these effects are not driven only by differences 

of allele frequencies between shared and private variants.  
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Figure S4. Effects for private and shared variants between African sub-populations.  
Comparison of closely related populations of African ancestry. ORs are computed based on 

private and shared variants called in 88 Yoruba in Ibadan from Nigeria (YRI), 97 Luhya in 

Webuye from Kenya (LWK), and 61 Americans of African Ancestry (ASW). 
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Figure S5. Distribution of conservation across exons measured by GERP scores.  

(A) Mean GERP score per exon (B) Proportion of constrained positions (GERP>3) per exon (C) 

Scatter plot of mean GERP by the proportion of constrained positions for all exons (D) For each 

measure of conservation per exon, exons were grouped into 4 categories of equal sizes. Only 

exons that were concordant between the two classifications were kept in analyses within 

conservation categories, to minimize the effect of outliers with one of the two measures. 

Characteristics of exons in these four conservation categories in terms of average GERP score per 

base pair (bp) and number of constrained sites per bp (GERP>3) are reported in Figure 3C. 
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Figure S6. Differential Mutational Burden in Conservation categories  

Differential mutational burden between coldspots (CS) and highly recombining regions (HRR) 

for rare (MAF<0.01), non-synonymous (nonsyn), damaging and constrained variants in (A) 

French-Canadians and (B) Europeans for Highly Covered (HC) exons, and in (C) Asians and (D) 

African for the whole exome. Results for Europeans in the whole exome are presented in Figure 

3A. Results for Asians and Africans in HC exons (not shown), are similar to European results. 

For all populations and exon datasets, the Medium High and High conservation categories always 

show a significant enrichment for potentially deleterious mutations in CS. 
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Figure S7. Haplotype load of non-synonymous variants in CS and HRR in Asians and 

Africans in the different conservation categories. 

Haplotype load is computed as described in Material and Methods. Haplotype load in Europeans 

in presented in Figure 3B, with characteristics of conservation categories shown in Figure 3C. 
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Figure S8. Per individual differential mutational burden across populations 

Comparison of proportions of (A) rare and (B) non-synonymous mutations between coldspots 

(CS) and high recombining regions (HRR). For each individual (ordered by their OR values), the 

relative proportions of rare or non-synonymous mutations in CS and HRR is shown, computed by 

dividing CS and HRR proportions by genome-wide proportions of rare or non-synonymous 

variants within each individual, to adjust for differences across individuals. The larger symbols 

represent individuals with the minimum and maximum OR values in each population. Ticks at 

the bottom of the plots show individual OR values significantly different from 1 (two-tailed 

p<0.05). French-Canadian data used is the RNAseq dataset (Online Supporting note 2), 

replication with exome data of 96 French-Canadians is presented Figure S10. 
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Figure S9. Per individual differential mutational burden across European populations for 

private variants 

Distribution of odds ratios (OR) per individual comparing proportions of private variants between 

CS and HRR in closely related populations of West European ancestry. OR are computed based 

on private variants called in the exome sequencing dataset of 96 French-Canadians (FCX), 89 

British individuals (GBR), 93 Finns (FIN), 98 Italians from Tuscany (TSI) and 85 European 

Americans (CEU). The left panel shows the frequencies of individual OR in each population. The 

right panel shows, for each individual (ordered by their OR values), the relative proportions of 

private mutations in CS and HRR, computed by dividing CS and HRR proportions by genome-

wide proportions of private variants within each individual, to adjust for differences across 

individuals. 
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Figure S10. Per individual differential mutational burden across populations with FCQ 

exome sequencing data. 
Distribution of odds ratios (OR) per individual comparing proportions of rare (A, B) and non-

synonymous (C, D) mutations between CS and HRR. For Europeans, Asians and Africans, the 

results are the same as shown in Figure 4, whereas French-Canadian results are computed using 

the exome sequencing dataset from 96 individuals. Further descriptions of the plots are found in 

Figure 4. 

 

Odds ratios (CS vs HRR)

Fr
eq

ue
nc

ie
s

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

● ●

● ● ●

●

● ●

● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

●

●

●

●

FCX
EUR
ASN
AFR

A

●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●
●●●●●
●●
●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●
●●●

●
●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●
●●●●

●

●

●

●●●
●●

●●●●
●●●●●●

●●●●
●●
●●●

●●
●
●●●
●●
●●●●●

● ●●●●●
●●●
●
●

●
●●●

●●
●●●●

●
●●
●

●●● ●
● ●

●●
●●●

●●●
●

●

●
●●●
●

●

●
●●

● ●

● ●
●

1.0 1.5 2.0 2.5 3.0

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Odds ratios (CS vs HRR)

● CS
HRR

FCX
EUR
ASN
AFR

Re
la

tiv
e 

Pr
op

or
tio

n 
of

 R
ar

e 
Va

ria
nt

s 
(to

 g
en

om
e−

wi
de

 a
ve

ra
ge

)
B

Odds ratios (CS vs HRR)

Fr
eq

ue
nc

ie
s

● ● ●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ● ● ● ● ●
●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ● ● ● ●

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

1.
35

0.0

0.1

0.2

0.3

0.4

0.5

●

●

●

●

FCX
EUR
ASN
AFR

C

●
●●●●●●

●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●●●

●
●●

●●

●

●
●●●
●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●
●●●●●●

●●●●
●●

●
●

●
●
●●

●

●●●●●●●●
●●

●●●
●●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●
●●●●●●●●

●
●●

●●
●●●

●●
●●

●●●
●●●●●

●●●●●
●●

● ●●
●●●●●●

●●●
●● ●●●

●
●
●●

●●●
●
●
●

●●
●●●●

●

●
●●

●

●
●
●
●●●

●● ●
●
●●
●
● ●●●

●
●

●
●

●

●●
●

●

●● ●
●

●

● ●●

0.9 1.0 1.1 1.2 1.3 1.4

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

Odds ratios (CS vs HRR)

● CS
HRR

FCX
EUR
ASN
AFR

Re
la

tiv
e 

Pr
op

or
tio

n 
of

 N
on
−s

yn
on

ym
ou

s 
Va

ria
nt

s 
(to

 g
en

om
e−

wi
de

 a
ve

ra
ge

)

D

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2014. ; https://doi.org/10.1101/006064doi: bioRxiv preprint 

https://doi.org/10.1101/006064
http://creativecommons.org/licenses/by-nc-nd/4.0/


!54 

 

 
Figure S11. Additional simulations testing the effect of recombination rates and phasing. 

(A) Distribution of initial and modified CS and HRR, with CS/HRR recombination rate matching 

the rates in the CEU and YRI maps, respectively (Online Supporting Note 1.4). The distributions 

are significantly different, but the shift in mean is very weak, and unlikely to cause the large 

differences we observe between populations in Figure 5. (B,C) Effect of phasing on the 

distribution of the number of haplotypes with 2 rare mutations and more (MAF<0.01) in the real 

haplotypes and the phased haplotypes on chunks of same length (25Kb) in simulated CS and 

HRR. (B) The number of haplotypes with 2 mutations is reduced by statistical phasing with 

ShapeIt2 but (C) no significant difference between CS versus HRR was found in this phasing 

bias.  
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Figure S12. Quality checks on per individual differential mutational burden across 

populations. 

Distribution of odds ratios (OR) per individual in French-Canadians, Europeans, Asians and 

Africans, comparing proportions of (A) non-synonymous variants after modifying annotations in 

the 1000 Genomes Populations (see Online Supporting Note 4.1) and (B) non-synonymous and 

(C) rare variants, after excluding mutations that are fixed in one population but still segregating 

in others, between coldspots (CS) and high recombining regions (HRR). The differences between 

populations observed in Figure 5 remain the same after correcting for these possible technical 

differences. 
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Figure S13. Population structure in regional populations of Quebec  

Sampling from the CARTaGENE Project includes individuals from the Montreal area (MTL). 

Quebec City (QCC) and the Saguenay region (SAG). Regional origin of individuals was 

confirmed by a principal component analysis of genetic diversity in FCQ individuals compared 

with genetic diversity within the Reference Panel of Quebec (RPQ) and in the CEU population 

from HapMap3. Other populations included in the RPQ are : GAS : Gaspesia Region. ACA : 

Acadians. LOY : Loyalists. CNO : North Shore Region (52).  
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Supplementary Tables 

 

Table S1. Distribution of sequence (A) and SNPs (B) in Coldspots (CS) and High 

Recombination Regions (HRR) genome-wide and in highly covered (HC) exons.  

A 

Regions CS (bp) HRR (bp) 

Whole genome 1.048.937.114 634.243.758 

Whole exome 25.302.008 17.768.017 

HC exons 6.906.137 2.036.963 
The reference genome hg19 contains 3.268.604.222 autosomal positions in total. The whole-exome includes 
66.617.267 bp of sequences and the HC exons include 15.333.786 bp of sequences. 
 

B 

POPa 
Number of 

individuals 

Number of SNPs  

Whole Datasets 

Number of SNPs  

HC exonsb 

TOTAL HRR CS TOTAL HRR CS 

FCQ 521 178,394 37,076 69,295 73,627 14,899 30,734 

EUR 379 142,296 34,248 48,665 69,672 12,489 29,827 

ASN 286 128,697 31,372 44,292 63,726 11,358 27,562 

AFR 246 186,549 45,816 62,944 89,789 16,464 38,157 
a French-Canadians (FCQ) Europeans (EUR). Asians (ASN) and Africans (AFR). 

C 

POPa 
Number of 

individuals 

Number of non-synonymous SNPs  

HC exons 

Number of rare SNPs  

HC exons 

TOTAL HRR CS TOTAL HRR CS 

FCQ 521 31,472 6,488 14,984 42,627 10,097 22,530 

EUR 379 37,712 6,536 16,614 48,045 8,111 21,447 

ASN 286 34,322 5,949 15,307   44,676 7,511 20,196 

AFR 246 44,040 8,065 19,117 51,863 8,871 23,111 
a French-Canadians (FCQ) Europeans (EUR). Asians (ASN) and Africans (AFR). 
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Table S2. Summary of linear regression models (FCQ dataset). 

Variable Rec ratesa GC content Expression Exon Size SNPs/Kb R2 

SNP/Kb + *** + *** + *** NS NA 0.038 

Average MAF + *** + *** + *** + *** NA 0.046 

Expressionb - *** + *** NA NS NA 0.016 

Density (SNP/Kb) for       

Constrained  - *** NS NS - *** + *** 0.267 

Non-synonymous -* - ** - *** - *** + *** 0.538 

Damaging NS NS - *** - *** + *** 0.151 

Private - *** + *** NS NS + *** 0.387 

*** p<0.001;  ** p<0.01;  * p<0.05;  NS : non-significant;  +/- = positive/negative correlation; NA : non-applicable.  
a Average recombination rates per exon in cM/Mb are computed based on the FCQ genetic map.  
b This correlation is evaluated considering all exons with minimum coverage of 20x in at 50% individuals. It is 
therefore biased against low expression genes. 
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Table S3. Robustness of the effect to GC-content. gene expression levels and divergence 

(FCQ dataset).  

Odds ratio (OR) values comparing proportions of variants between coldspots and HRR are reported.  

 
See Material and Methods for description of categories. NS: non-significant 
 
 
  

Feature Category OR Non-
synonymous OR Rare OR 

Damaging 
OR 

Neutral 

 Low 1.54 1.41 1.55 0.48 

GC-content 
(% GC per exon) 

Medium Low 1.51 1.58 1.37 0.50 

Medium High 1.27 1.41 1.23 0.59 

 High NS 1.23 NS 0.85 

 Low 1.23 1.32 1.41 0.72 

Average Expression 
(gene expression levels 
based on RNAseq FCQ 

dataset) 

Medium Low 1.18 1.26 1.10 0.68 

Medium High NS 1.27 NS 0.64 

 High 1.33 1.44 1.32 0.54 

 Low 1.22 1.18 NS 0.67 

Divergence to Chimpanzee 
(dS per exon 

 computed by PAML) 

Medium Low 1.18 1.25 1.06 0.62 

Medium High 1.28 1.42 1.22 0.59 

 High 1.18 1.34 1.15 0.61 

All categories 1.232 1.305 1.16 0.64 
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Table S4. Effects for different mutation types (FCQ dataset). 

 Mutation type 

OR Rare  

[CI 95%] 

OR Non-syn  

[CI 95%] 

OR damaging 

[CI 95%] 

OR neutral [CI 

95%] 

G!C/C!G 1.44 [1.24;1.67] 1.49 [1.3;1.71] 1.44 [1.14;1.80] 0.54 [0.44;0.67] 

A!G/ T!C  1.22 [1.16;1.30] 1.26 [1.19;1.33] 1.24 [1.13;1.37] 0.69 [0.64;0.75] 

A!C/ T!G  1.42 [1.21;1.69] 1.21 [1.04;1.41] 1.27 [0.99;1.63] 0.59 [0.46;0.76] 

G!A/ C!T 1.49 [1.36;1.64] 1.06 [0.97;1.16] 0.88 [0.74;1.05] 0.53 [0.48;0.60] 

G!T/ C!A  1.53 [1.23;1.89] 1.40 [1.15;1.71] 1.37 [0.95;1.95] 0.39 [0.30;0.53] 

A!T/T!A 1.25 [1.18;1.32] 1.25 [1.19;1.32] 1.25 [1.14;1.36] 0.68 [1.63;1.74] 

Exclusion of CpGs sites 1.47 [1,39;1.56] 1.28 [1.22;1.35] 1.20 [1.09;1.33] 0.56 [0.52;0.60] 

Exclusion of CpG islands 1.33 [1.27;1.39] 1.25 [1.20;1.30] 1.15 [1.07;1.24] 0.62 [0.58;0.66] 

!
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Table S5. Robustness of the effect to the choice of recombination parameters (FCQ dataset)  

Rec. rates 
(cM/Mb) Odds ratios CS vs HRRs Number of SNPs 

L H Non-synonymous Rare Private CS HRR In between 

0.1 

 1.24 1.27 1.21 9263 64367 - 

5 1.29 1.34 1.27 9263 15208 49159 

10 1.25 1.33 1.26 9263 10406 53961 

20 1.2 1.26 1.17 9263 7517 56850 
  1.19 1.25 1.2 20482 53148 - 

0.25 
5 1.24 1.32 1.25 20482 15054 38094 

10 1.21 1.31 1.24 20482 10210 42938 

20 1.16 1.24 1.21 20482 7272 45876 

0.5 

 1.18 1.25 1.18 30789 42841 - 

5 1.23 1.31 1.26 30789 14902 27939 

10 1.21 1.31 1.25 30789 9903 32938 

20 1.17 1.25 1.17 30789 6857 35984 

1 

 1.17 1.22 1.15 41034 32596 - 

5 1.19 1.27 1.22 41034 14770 17826 

10 1.17 1.27 1.23 41034 9620 22976 

20 1.13 1.2 1.13 41034 6352 26244 

2 

 1.14 1.22 1.14 49583 24047 - 

5 1.15 1.24 1.19 49583 14915 9132 

10 1.15 1.25 1.21 49583 9389 14658 

20 1.12 1.19 1.12 49583 5892 18155 

        
Coldspots Regions: SNPs within a 50Kb region with no recombination rate higher than L 
High Recombination Regions (HRRs): SNPs within 50Kb of at least two hotspots with ratehigher than H 
Parameters used in this study (red) were chosen to maximize the overall number of SNPs included in the analyses 
while minimizing the difference between the number of SNPs in coldspots and in HRRs.  
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Table S6. Demographic and selection models used in simulations 

!

Model 
Parameters 

µ r Genetic Map Demography Mean sa 

EW µ=r 2×10-7 2×10-7 CS/HRR constant size -0.0425 

EW µ=2r 2×10-7 10-7 CS/HRR constant size -0.0425 

AA µ=r 2×10-7 2×10-7 CS/HRR expansion -0.0294 

AA µ=2r 2×10-7 10-7 CS/HRR expansion -0.0294 

EA µ=r 2×10-7 2×10-7 CS/HRR bottleneck + expansion -0.03 

EA µ=2r 2×10-7 10-7 CS/HRR bottleneck + expansion -0.03 

EW constant r 2×10-7 2×10-7 constant rate constant size -0.0425 

NTR 2×10-7 2×10-7 CS/HRR constant size 0 
a Negative selection is modelled by a gamma distribution of mean s. with p=75% of mutations attributed a non-zero 
selective coefficients 
EW : DFE from Eyre-Walker et al. 2006  
EA : DFE and demographic model from Boyko et al. 2008 for European-Americans 
AA : DFE and demographic model from Boyko et al. 2008 for African-Americans 
NTR : No selection 
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Table S7. Differential Mutational and Haplotype Load in CS versus HRR in Simulations 
rare : derived allele frequency (DAF) <0.01; ns : non-synonymous with s > -1/N0 ; nsneg : non-synonymous with s < 
-1/N0 ; nsdam : non-synonymous with s < 1%.  
 

A!

Mut Type 

Odds Ratios for Different Models (Sample size n=500) 

EW µ=r [CI 95%] EW µ=2r [CI 95%] constant ρ [CI 95%] NTR [CI 95%] 

rare 1.22 [1.12;1.29] 1.14 [1.08;1.2] 0.97  [0.9;1.05] 0.99 [0.92;1.07] 

ns 1.05 [0.999;1.12] 1.04 [0.99;1.09] 0.99  [0.94;1.05] - - 

nsneg 1.1 [1.04;1.16] 1.06 [1.01;1.12] 0.99  [0.93;1.06] - - 

nsdam 1.12 [1.03;1.19] 1.08 [1.02;1.16] 0.98 [0.9;1.09] - - 

  AA µ=r [CI 95%] AA µ=2r [CI 95%] EA µ=r [CI 95%] EA µ=2r [CI 95%] 

rare 1.18 [1.14;1.23] 1.14 [1.09;1.19] 1.21 [1.14;1.27] 1.14 [1.09;1.22] 

ns 1.03 [0.998;1.07] 1.02 [0.98;1.06] 1.03 [0.99;1.07] 1.02 [0.98;1.05] 

nsneg 1.06 [1.02.1.1] 1.04 [1.002;1.09] 1.05 [1.01;1.09] 1.03 [0.99;1.08] 

nsdam 1.09 [1.01;1.17] 1.07 [0.99;1.14] 1.06 [0.998;1.14] 1.04 [0.99;1.11] 

 
(Sample size n=200) EW µ=r [CI 95%] AA µ=r [CI 95%] EA µ=r [CI 95%] 

rare 1.20 [1.06;1.26] 1.15 [1.07;1.25] 1.18 [1.1;1.32] 

ns 1.07 [0.95;1.15] 1.02 [0.95;1.08] 1.01 [0.97;1.09] 

nsneg 1.11 [1.05;1.2] 1.05 [1.01;1.09] 1.07 [1.01;1.011] 

nsdam 1.12 [1.02;1.25] 1.07 [0.98;1.16] 1.07 [1.004;1.13] 

Values in bold represent OR significantly different from 1. 
B 

Models Mutation Type 
rare ns nsneg nsdam 

EW µ=r, p=0.75 <0.01 0.13 <0.01 0.01 
AA µ=r <0.01 0.11 0.01 <0.01 
EA µ=r <0.01 0.05 0.01 <0.01 

EW µ=r, p=0.1 0.03 0.42 0.35 0.28 
EW µ=r, p=0.5 <0.01 0.09 <0.01 0.01 

10bp deleterious motif (s = 0.1) 0.55 - - - 
EW constant r 0.74 0.54 0.68 0.69 

NTR 0.56 - - - 
NTR rephrased with ShapeIt2 0.63 - - - 

Proportion of simulated replicates where haplotypes in HRR have a higher proportion of a given mutation type. 
Values in bold represent significant results (one-tailed p-value <0.05). 
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Table S8. Gene Ontology Analysis  

 

Terms 
Number of 

genesa 

WebGestalt  

p-value 

PANTHER  

p-value 

Biological processes       

cell cycle 750 1.93×10-15 2.18×10-11 

mitosis 420 1.93×10-7 1.13×10-8 

protein metabolic processes 1578 8.32×10-12 2.50×10-9 

mRNA processing 246 1.22×10-3 7.95×10-8 

organelle organisation 1065 3.56×10-14 term not included 

microtubule-based processes 246 3.08×10-9 term not included 

Molecular function 

   Binding 5154 8.64×10-8 5.87×10-13 

nucleotide binding 1192 3.00×10-13 1.96×10-14 

RNA binding 435 2.08×10-6 1.24×10-7 

ATP binding 772 2.77×10-13 term not included 

Catalytic Activity 2472 5.06×10-11 2.75×10-26 

ligase 279 1.54×10-9 1.38×10-11 

transferase 840 5.18×10-5 1.99×10-7 
aThe number of genes is the maximum number reported between WebGestalt and PANTHER  
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Table S9. Overrepresentation of clinically relevant mutations, cancer variants and sensitive 
genomic regions in coldspots 

!
  COUNTS OR for CS vs HRR 
  CS HRR 
Genome-wide SNPs (1000G) 

   rare (<0.01) 7,445,567 5,435,142 correcting for genome-wide diversity 
segregating (>0.01) 4,883,516 4,160,183  

clinvar mutations 18,103 11,961 1.18 [1.15;1.21] 
segregating  989 928 0.91 [0.83;0.99] 

non-segregating and rare  17,114 11,033 1.13 [1.10;1.16] 

    humsavar mutations 11,080 8,258 1.04 [1.01;1.07] 
segregating 7,763 6,119 1.08 [1.04;1.11] 

non-segregating and rare 3,317 2,139 1.13 [1.07; 1.20] 

    whole exome (pb) 25,302,008 17,768,017 correcting for sequence length 

cosmic mutations (point mut.) 574,072 316,080 1.275 [1.270;1.281] 
segregating 16,254 12,648 0.902 [0.881;0.923] 

non-segregating 557,818 303,432 1.290 [1.285;1.296] 
    motifs in Khurana et al. (pb) 

   sensitive 2,087,033 963,237 1.522 [1.518; 1.525] 
ultra-sensitive 165,453 17,859 6.506 [6.406; 6.607] 

    Genome-wide SNPs (1000G) 12,329,083 9,595,325 correcting for total number of SNPs 

GWAS hits 3,470 4,836 0.558 [0.535; 0.583] 
Affy 6.0 Chip 223,836 288,879 0.603 [0.599; 0.606] 
Illumina 1M 301,582 306,208 0.776 [0.771;0.780] 

Illumina 2.5M 573,726 815,220 0.548 [0.546; 0.550] 
all Chips 869,577 1,037,827 0.652 [0.650;0.654] 

   
 

Common SNPs (1000G, >10%) 1,653,476 1,566,782 correcting for number of common SNPs 

GWAS hits 2,367 3,315 0.6756 [0.641; 0.713] 
Affy 6.0 Chip 162,275 219,378 0.701 [0.696; 0.706] 
Illumina 1M 203,087 248,019 0.776 [0.771; 0.781] 

Illumina 2.5M 220,439 460,997 0.450 [0.447;0.453] 
all Chips 415,062 613,188 0.641 [0.639;0.644] 

    !
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Table S10. Effects by chromosome and by telomere bin for each population.  
A 

Chr Rare Non-synonymous Neutral 
FCQ EUR ASN AFR FCQ EUR ASN AFR FCQ EUR ASN AFR 

1 1.44 1.59 1.45 1.34 1.32 1.01 0.94 0.91 0.64 0.83 0.89 0.9 
2 1.07 1.24 1.36 1.19 1.2 1.07 0.94 0.96 0.67 0.75 0.91 0.85 
3 1.44 1.33 1.37 1.34 1.32 1.23 0.88 0.96 0.63 0.71 0.99 0.95 
4 1.22 1.22 1.43 1.29 0.93 1.04 1.09 0.97 0.91 0.88 0.88 0.87 
5 1.3 1.32 1.25 1.26 1.64 1.47 1.43 1.1 0.74 0.6 0.66 0.7 
6 1.78 1.35 1.19 1.25 1.35 1.09 1.18 1.16 0.67 0.88 0.77 0.88 
7 1.09 1.35 1.74 1.43 0.89 1.23 1.22 1.02 0.87 0.79 0.75 0.94 
8 1.33 1.37 1.32 1.29 1.38 1.18 1.01 1.04 0.56 0.75 0.88 0.84 
9 1.33 1.36 1.29 1.54 1.28 1.28 1.57 1.28 0.65 0.68 0.61 0.72 

10 1.2 1.18 1.22 1.33 1.42 1.66 1.27 1.47 0.6 0.61 0.67 0.61 
11 1.47 1.44 1.56 1.23 1.11 1.72 1.56 1.46 0.62 0.62 0.77 0.76 
12 1.31 1.35 1.35 1.42 0.94 1.03 0.94 0.98 0.81 0.89 0.87 0.91 
13 0.96 1.6 1.27 1.16 1.27 1.2 1.3 1.22 1.04 0.88 0.72 0.77 
14 1.34 1.28 1.54 1.18 1.23 0.9 1.08 0.87 0.66 0.96 0.85 1.06 
15 0.92 1.53 1.21 1.22 1.46 1.24 1.16 1.4 0.66 0.69 0.67 0.59 
16 1.19 1.35 1.84 1.32 1.25 1.01 1.16 0.9 0.69 0.85 0.78 0.94 
17 1.48 1.45 1.6 1.29 1.09 0.94 1.09 0.95 0.72 0.81 0.79 0.83 
18 1.32 1.03 1.34 0.99 2.01 1.15 1.17 1.02 0.44 0.8 0.75 1.02 
19 1.55 1.47 1.33 1.48 0.91 0.93 0.89 0.76 1.01 1.04 1.04 1.17 
20 1.74 2.19 1.53 1.53 1.4 1.17 1.07 1.07 0.53 0.65 0.71 0.86 
21 0.88 0.58 1.26 0.88 1.49 1.29 1.14 1.6 0.52 0.83 0.78 0.71 
22 1.08 1.14 1.06 1.33 1.13 0.95 1.32 0.93 0.87 0.98 0.76 0.99 

B!
Telomere 

bina 
Rare Non-synonymous Neutral 

FCQ EUR ASN AFR FCQ EUR ASN AFR FCQ EUR ASN AFR 
1 1.35 1.29 1.16 1.2 0.98 0.84 0.99 0.69 0.83 0.96 0.85 1.31 
2 1.24 1.37 1.41 1.26 1.06 1.54 1.47 1.27 0.94 0.73 0.79 0.86 
3 1.36 1.45 1.27 1.28 0.92 1.12 1.15 1.09 0.85 0.81 0.81 0.84 
4 1.45 1.6 1.51 1.45 1.39 1.21 1.2 1.03 0.56 0.74 0.73 0.88 
5 2.17 1.47 1.42 1.48 1.1 1.04 0.99 0.86 0.77 0.78 0.87 0.93 
6 1.29 1.24 1.29 1.18 1.49 1.24 1.11 1.09 0.62 0.78 0.78 0.87 
7 1.12 1.28 1.5 1.16 1.28 1.08 1.07 1.02 0.62 0.78 0.79 0.83 
8 1.18 1.26 1.38 1.4 1.16 1.12 1.03 1.05 0.74 0.76 0.86 0.8 
9 1.31 1.35 1.33 1.34 1.21 1.02 0.94 0.94 0.72 0.88 0.92 0.88 

10 1.15 1.22 1.44 1.2 1.33 1.09 1.19 1.08 0.72 0.83 0.79 0.88 
aEach chromosomal is divided in 10 bins of equal length, with bin 1 closer to centromere and 10 closer to telomere. 
Values in bold are significant OR. No significant differences were found, since permuting chromosome and telomere 
bin labels 1000 times lead to differences between chromosomes or telomere bins as extreme as seen in the data. 
However, the pattern on chromosome 19 is notable, as it shows a reverse effect compared to other 
chromosomes/genome-wide effects for non-synonymous and neutral variants in all populations. 
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