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Abstract  27 

 28 

Background 29 

The identification of apparently conserved gene complements in the venom and salivary 30 

glands of a diverse set of reptiles led to the development of the Toxicofera hypothesis – the 31 

idea that there was a single, early evolution of the venom system in reptiles. However, this 32 

hypothesis is based largely on relatively small scale EST-based studies of only venom or 33 

salivary glands and toxic effects have been assigned to only some of these putative 34 

Toxcoferan toxins in some species. We set out to investigate the distribution of these putative 35 

venom toxin transcripts in order to investigate to what extent conservation of gene 36 

complements may reflect a bias in previous sampling efforts.   37 

Results 38 

We have carried out the first large-scale test of the Toxicofera hypothesis and found it 39 

lacking in a number of regards. Our quantitative transcriptomic analyses of venom and 40 

salivary glands and other body tissues in five species of reptile, together with the use of 41 

available RNA-Seq datasets for additional species shows that the majority of genes used to 42 

support the establishment and expansion of the Toxicofera are in fact expressed in multiple 43 

body tissues and most likely represent general maintenance or “housekeeping” genes. The 44 

apparent conservation of gene complements across the Toxicofera therefore reflects an 45 

artefact of incomplete tissue sampling. In other cases, the identification of a non-toxic 46 

paralog of a gene encoding a true venom toxin has led to confusion about the phylogenetic 47 

distribution of that venom component. 48 

Conclusions 49 

Venom has evolved multiple times in reptiles. In addition, the misunderstanding regarding 50 

what constitutes a toxic venom component, together with the misidentification of genes and 51 

the classification of identical or near-identical sequences as distinct genes has led to an 52 
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overestimation of the complexity of reptile venoms in general, and snake venom in particular, 53 

with implications for our understanding of (and development of treatments to counter) the 54 

molecules responsible for the physiological consequences of snakebite. 55 

 56 

Keywords 57 

Snake venom, Toxicofera, Transcriptomics,  58 

 59 

Background 60 

Snake venom is frequently cited as being highly complex or diverse [1-3] and a large number 61 

of venom toxin genes and gene families have been identified, predominantly from EST-based 62 

studies of gene expression during the re-synthesis of venom in the venom glands following 63 

manually-induced emptying (“milking”) [4-8] and some proteomic studies of extracted 64 

venom. It has been suggested that many of these gene families have originated via the 65 

duplication of a gene encoding a non-venom protein expressed elsewhere in the body 66 

followed by recruitment into the venom gland where natural selection can act to increase 67 

toxicity, with subsequent additional duplications leading to a diversification within gene 68 

families, often in a species-specific manner [9-11]. However, since whole genome 69 

duplication is a rare event in reptiles [12], the hypothesis that novelty in venom originates via 70 

the duplication of a “body” gene with subsequent recruitment into the venom gland requires 71 

both that gene duplication is a frequent event in the germline of venomous snakes and that the 72 

promoter and enhancer sequences that regulate venom gland-specific expression are 73 

relatively simple and easy to evolve. It also suggests a high incidence of neofunctionalisation 74 

rather than the more common process of subfunctionalisation [13-16]. 75 

The apparent widespread distribution of genes known to encode venom toxins in snakes in 76 

the salivary glands of a diverse set of reptiles, including both those that had previously been 77 

suggested to have secondarily lost venom in favour of constriction or other predation 78 
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techniques and those that had previously been considered to have never been venomous led to 79 

the development of the Toxicofera hypothesis – the single, early evolution of venom in 80 

reptiles [17-19] (Figure 1). Analysis of a wide range of reptiles, including charismatic 81 

megafauna such as the Komodo dragon, Varanus komodoensis [20], has shown that the basal 82 

Toxicoferan venom system comprises at least 16 genes, with additional gene families 83 

subsequently recruited in different lineages [18, 19, 21]. 84 

Although toxic effects have been putatively assigned to some Toxicoferan venom proteins in 85 

some species, the problem remains that their identification as venom components is based 86 

largely on their expression in the venom gland during venom synthesis and their apparent 87 

relatedness to other, known toxins in phylogenetic trees. It has long been known that all 88 

tissues express a basic set of “housekeeping” or maintenance genes [22] and it is therefore 89 

not surprising that similar genes might be found to be expressed in similar tissues in different 90 

species of reptiles and that these genes might group together in phylogenetic trees. However, 91 

the identification of transcripts encoding putative venom toxins in other body tissues would 92 

cast doubt on the classification of these Toxicoferan toxins as venom components, as it is 93 

unlikely that the same gene could fulfil toxic and non-toxic roles without evidence for 94 

alternative splicing to produce a toxic variant (as has been suggested for acetylcholinesterase 95 

in the banded krait, Bungarus fasciatus [11, 23]) or increased expression levels in the venom 96 

gland (where toxicity might be dosage dependent). In order to address some of these issues 97 

and to test the robustness of the Toxicofera hypothesis we have carried out a comparative 98 

transcriptomic survey of the venom or salivary glands, skin and cloacal scent glands of five 99 

species of reptile. Unlike the pancreas and other parts of the digestive system [24, 25], these 100 

latter tissues (which include a secretory glandular tissue (the scent gland) and a relatively 101 

inert, non-secretory tissue (skin)) have not previously been suggested to be the source of 102 

duplicated venom toxin genes and we would therefore only expect to find ubiquitous 103 

maintenance or “housekeeping” genes to be commonly expressed across these tissues. Study 104 
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species included the venomous painted saw-scaled viper (Echis coloratus); the non-105 

venomous corn snake (Pantherophis guttatus) and rough green snake (Opheodrys aestivus) 106 

and a member of one of the more basal extant snake lineages, the royal python (Python 107 

regius). As members of the Toxicofera sensu Fry et al. [21] we would expect to find the basic 108 

Toxicoferan venom genes expressed in the venom or salivary glands of all of these species. In 109 

addition we generated corresponding data for the leopard gecko (Eublepharis macularius), a 110 

member of one of the most basal lineages of squamate reptiles that lies outside of the 111 

proposed Toxicofera clade (Figure 1). We have also taken advantage of available 112 

transcriptomes or RNA-Seq data for corn snake vomeronasal organ [26] and brain [27], garter 113 

snake (Thamnophis elegans) liver [28] and pooled tissues (brain, gonads, heart, kidney, liver, 114 

spleen and blood of males and females [29]), eastern diamondback rattlesnake (Crotalus 115 

adamanteus) and eastern coral snake (Micrurus fulvius) venom glands [7, 8, 30], king cobra 116 

(Ophiophagus hannah) venom gland, accessory gland and pooled tissues (heart, lung, spleen, 117 

brain, testes, gall bladder, pancreas, small intestine, kidney, liver, eye, tongue and stomach) 118 

[31], Burmese python (Python molurus) pooled liver and heart [32], green anole (Anolis 119 

carolinensis) pooled tissue (liver, tongue, gallbladder, spleen, heart, kidney and lung), testis 120 

and ovary [33] and bearded dragon (Pogona vitticeps), Nile crocodile (Crocodylus niloticus) 121 

and chicken (Gallus gallus) brains [27], as well as whole genome sequences for the Burmese 122 

python and king cobra [31, 34]. 123 

Assembled transcriptomes were searched for genes previously suggested to be venom toxins 124 

in Echis coloratus and related species [5, 35, 36] as well as those that have been used to 125 

support the Toxicofera hypothesis, namely acetylcholinesterase, AVIT peptide [9, 11, 18, 19, 126 

23], complement c3/cobra venom factor, epididymal secretory protein [19, 37], c-type lectins 127 

[38, 39], cysteine-rich secretory protein (crisp) [40, 41], crotamine [42, 43], cystatin [44, 45], 128 

dipeptidylpeptidase, lysosomal acid lipase, renin aspartate protease [5, 19, 35, 46], 129 

hyaluronidase [47, 48], kallikrein [49, 50], kunitz [51], l-amino-acid oxidase [52, 53], nerve 130 
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growth factor [54, 55], phospholipase A2 [15], phospholipase b [7, 56, 57], ribonuclease [58], 131 

serine protease [59, 60], snake venom metalloproteinase [61, 62], vascular endothelial 132 

growth factor (vegf) [9, 17, 63, 64], veficolin [65], vespryn, waprin [19, 66-68] and 3-finger 133 

toxins [69].  134 

We find that many genes previously claimed to be venom toxins are in fact expressed in 135 

multiple tissues (Figure 2) and that transcripts encoding these genes show no evidence of 136 

consistently elevated expression level in venom or salivary glands compared to other tissues 137 

(Supplemental tables S5-S9). Only two putative venom toxin genes (l-amino acid oxidase b2 138 

and PLA2 IIA-c) showed evidence of a venom gland-specific splice variant across our 139 

multiple tissue data sets. We have also identified several cases of mistaken identity, where 140 

non-orthologous genes have been used to claim conserved, ancestral expression and instances 141 

of identical sequences being annotated as two distinct genes (see later sections). We propose 142 

that the putative ancestral Toxicoferan venom toxin genes do not encode toxic venom 143 

components in the majority of species and that the apparent venom gland-specificity of these 144 

genes is a side-effect of incomplete tissue sampling. Our analyses show that neither increased 145 

expression in the venom gland nor the production of venom-specific splice variants can be 146 

used to support continued claims for the toxicity of these genes.  147 

 148 

Results 149 

Based on our quantitative analysis of their expression pattern across multiple species, we 150 

identify the following genes as unlikely to represent toxic venom components in the 151 

Toxicofera. The identification of these genes as non-venom is more parsimonious than 152 

alternative explanations such as the reverse recruitment of a “venom” gene back to a “body” 153 

gene [70], which requires a far greater number of steps (duplication, recruitment, selection for 154 

increased toxicity, reverse recruitment) to have occurred in each species, whereas a “body” 155 

protein remaining a “body” protein is a zero-step process regardless of the number of species 156 
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involved. The process of reverse recruitment must also be considered doubtful given the 157 

rarity of gene duplication in vertebrates (estimated to be between 1 gene per 100 to 1 gene 158 

per 1000 per million years [71-73]. 159 

Acetylcholinesterase 160 

We find identical acetylcholinesterase (ache) transcripts in the E. coloratus venom gland and 161 

scent gland (which we call transcript 1) and an additional splice variant expressed in skin and 162 

scent gland (transcript 2). Whilst the previously known splice variants in banded krait 163 

(Bungarus fasciatus) are differentiated by the inclusion of an alternative exon, analysis of the 164 

E. coloratus ache genomic sequence (accession number KF114031) reveals that the shorter 165 

transcript 2 instead comprises only the first exon of the ache gene, with a TAA stop codon 166 

that overlaps the 5’ GT dinucleotide splice site in intron 1.  ache transcript 1 is expressed at a 167 

low level in the venom gland (6.60 FPKM) and is found in multiple tissues in all study 168 

species (Figure 2), as well as corn snake vomeronasal organ and garter snake liver. The 169 

shorter transcript 2 is found most often in skin and scent glands (Figure 2, Supplementary 170 

figure S1). The low expression level and diverse tissue distribution of transcripts of this gene 171 

suggest that acetylcholinesterase does not represent a Toxicoferan venom toxin. It should 172 

also be noted that the most frequently cited sources for the generation of a toxic version of 173 

ache in banded krait via alternative splicing include statements that ache “does not appear to 174 

contribute to the toxicity of the venom” [74], is “not toxic to mice, even at very high doses” 175 

[75] and is “neither toxic by itself nor acting in a synergistic manner with the toxic 176 

components of venom” [76]. 177 

AVIT   178 

We find only a single transcript encoding an AVIT peptide in our dataset, in the scent gland 179 

of the rough green snake (data not shown). The absence of this gene in all of our venom and 180 

salivary gland datasets, as well as the venom glands of the king cobra, eastern coral snake and 181 

Eastern diamondback rattlesnake and the limited number of sequences available on Genbank 182 
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(one species of snake, Dendroaspis polylepis (accession number P25687) and two species of 183 

lizard, Varanus varius and Varanus komodoensis (accession numbers AAZ75583 and 184 

ABY89668 respectively)) despite extensive sampling, would suggest that it is unlikely to 185 

represent a conserved Toxicoferan venom toxin. 186 

Complement C3 (“cobra venom factor”) 187 

We find identical transcripts encoding complement c3 in all tissues in all species, with the 188 

exception of royal python skin (Figures 2 and 3) and we find only a single complement c3 189 

gene in the E. coloratus genome (data not shown). These findings, together with the 190 

identification of transcripts encoding this gene in the liver, brain, vomeronasal organ and 191 

tissue pools of various other reptile species (Figure 3) demonstrate that this gene does not 192 

represent a Toxicoferan venom toxin. However, the grouping of additional complement c3 193 

genes in the king cobra (Ophiophagus hannah) and monocled cobra (Naja kaouthia) in our 194 

phylogenetic tree does support a duplication of this gene somewhere in the Elapid lineage. 195 

One of these paralogs may therefore represent a venom toxin in at least some of these more 196 

derived species and the slightly elevated expression level of this gene in the venom or 197 

salivary gland of some of our study species suggests that complement c3 has been exapted 198 

[77] to become a venom toxin in the Elapids. It seems likely that the identification of the non-199 

toxic paralogue in other species (including veiled chameleon (Chamaeleo calyptratus), spiny-200 

tailed lizard (Uromastyx aegyptia) and Mitchell's water monitor (Varanus mitchelli)) has 201 

contributed to confusion about the distribution of this “Cobra venom factor” (which should 202 

more rightly be called complement c3b), to the point where genes in alligator (Alligator 203 

sinensis), turtles (Pelodiscus sinensis) and birds (Columba livia) are now being annotated as 204 

venom factors (accession numbers XP 006023407-8, XP 006114685, XP 005513793, Figure 205 

3). 206 

Cystatin  207 
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We find two transcripts encoding cystatins expressed in the venom gland of E. coloratus 208 

corresponding to cystatin-e/m and f (Supplementary figures S2 and S3). cystatin-e/m was 209 

found to be expressed in all tissues from all species used in this study (Figure 2), as well as 210 

corn snake vomeronasal organ and brain and garter snake liver and pooled tissues. The 211 

transcript encoding cystatin-f (which has not previously been reported to be expressed in a 212 

snake venom gland) is also expressed in the scent gland of E. coloratus and in the majority of 213 

other tissues of our study species. We find no evidence for a monophyletic clade of 214 

Toxicoferan cystatin-derived venom toxins and would agree with Richards et al. [45] that low 215 

expression level and absence of in vitro toxicity represents a “strong case for snake venom 216 

cystatins as essential housekeeping or regulatory proteins, rather than specific prey-targeted 217 

toxins…” Indeed, it is unclear why cystatins should be considered to be conserved venom 218 

toxins, since even from its earliest discovery in the venom of the puff adder (Bitis arietans) 219 

there has been “…no evidence that it is connected to the toxicity of the venom” [44]. 220 

Dipeptidyl peptidases 221 

We find identical transcripts encoding dipeptidyl peptidase 3 and 4 in all tissues in all species 222 

except the leopard gecko (Figures 2, 4a and 4b), and both of these have a low transcript 223 

abundance in the venom gland of E. coloratus. dpp4 is expressed in garter snake liver and 224 

Anole testis and ovary and dpp3 is also expressed in garter snake liver, king cobra pooled 225 

tissues and Bearded dragon brain (Figures 4a and b). It is therefore unlikely the either dpp3 or 226 

dpp4 represent venom toxins. 227 

Epididymal secretory protein 228 

We find one transcript encoding epididymal secretory protein (ESP) expressed in the venom 229 

gland of Echis coloratus corresponding to type E1. This transcript is also found to be 230 

expressed at similar levels in the scent gland and skin of this species and orthologous 231 

transcripts are expressed in all three tissues of all other species used in this study (Figure 2 232 

and Supplementary figure S4a), suggesting that this is a ubiquitously expressed gene and not 233 
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a venom component. Previously described epididymal secretory protein sequences from 234 

varanids [78] and the colubrid Cylindrophis ruffus [21] do not represent esp-e1 and their true 235 

orthology is currently unclear. However, our analysis of these and related sequences suggests 236 

that they are likely part of a reptile-specific expansion of esp-like genes and that the Varanus 237 

and Cylindrophis sequences do not encode the same gene (Supplementary figure S4b). 238 

Therefore there is not, nor was there ever, any evidence that epididymal secretory protein 239 

sequences represent venom components in the Toxicofera. 240 

Ficolin (“veficolin”) 241 

We find one transcript encoding ficolin in the E. coloratus venom gland and identical 242 

transcripts in both scent gland and skin (Figure 2, Supplementary figure S5) and orthologus 243 

transcripts in all corn snake and leopard gecko tissues, as well as rough green snake salivary 244 

and scent glands and royal python salivary gland. Paralogous genes expressed in multiple 245 

tissues were also found in corn snake and rough green snake (Supplementary figure S5). 246 

These findings, together with additional data from available transcriptomes of pooled garter 247 

snake body tissues and bearded dragon and chicken brains show that Ficolin does not 248 

represent a Toxicoferan venom component. 249 

Hyaluronidase  250 

Hyaluronidase has been suggested to be a “venom spreading factor” to aid the dispersion of 251 

venom toxins throughout the body of envenomed prey, and as such it does not represent a 252 

venom toxin itself [79]. We do however find two hyaluronidase genes expressed in the 253 

venom gland of E. coloratus. The first appears to be venom gland specific (based on 254 

available data) and has two splice variants including a truncated variant similar to sequences 255 

previously characterised from Echis carinatus sochureki (accession number DQ840262) and 256 

Echis pyramidum leakeyi (accession number DQ840255) venom glands [48]. Although we 257 

cannot rule out hyaluronidase in playing an active (but non-toxic) role in Echis venom, it is 258 

worth commenting that hyaluronan has been suggested to have a role in wound healing and 259 
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the protection of the oral mucosa in human saliva [80]. The expression of hyaluronidases 260 

involved in hyaluronan metabolism in venom and/or salivary glands is therefore perhaps 261 

unsurprising. 262 

Kallikrein 263 

We find two Kallikrein-like sequences in E. coloratus, one of which is expressed in all three 264 

tissues in this species (at a low level in the venom gland) and a variety of other tissues in the 265 

other study species, and one of which is found only in scent gland and skin (Figure 2, 266 

Supplementary figure S6). These genes do not represent venom toxins in E. coloratus and 267 

appear to be most closely-related to a group of mammalian Kallikrein (KLK) genes 268 

containing KLK1, 11, 14 and 15 and probably represent the outgroup to a mammalian-269 

specific expansion of this gene family. The orthology of previously published Toxicoferan 270 

Kallikrein genes is currently unclear and the majority of these sequences can be found in our 271 

serine protease tree (see later section and Supplementary figure S19). 272 

Kunitz 273 

We find a number of transcripts encoding Kunitz-type protease inhibitors in our tissue data, 274 

with the majority of these encoding kunitz1 and kunitz2 genes (Figure 2 and Supplementary 275 

figure S7). The tissue distribution of these transcripts, together with the phylogenetic position 276 

of lizard and venomous snake sequences does not support a monophyletic clade of venom 277 

gland-specific Kunitz-type genes in the Toxicofera. The presence of protease inhibitors in 278 

reptile venom and salivary glands should perhaps not be too surprising and it again seems 279 

likely that the involvement of Kunitz-type inhibitors in venom toxicity in some advanced 280 

snake lineages (in this case mamba (Dendroaspis sp.) dendrotoxins and krait (Bungarus 281 

multicinctus) bungarotoxins [81, 82]) has led to confusion when non-toxic orthologs have 282 

been identified in other species. 283 

Lysosomal acid lipase  284 
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We find two transcripts encoding Lysosomal acid lipase genes in the E. coloratus venom 285 

gland transcriptome, one of which (lipa-a) is also expressed in skin and scent gland in this 286 

species and all three tissues in our other study species. lipa-a, despite not being venom gland 287 

specific, is more highly expressed in the venom gland (3,337.33 FPKM) than in the scent 288 

gland (484.49 FPKM) and skin (22.79 FPKM) of E. coloratus, although there is no evidence 289 

of elevated expression in the salivary glands of our other study species. As this protein is 290 

involved in lysosomal lipid hydrolysis [83] and the venom gland is a highly active tissue, we 291 

suggest that this elevated expression is likely related to high cell turnover. Transcripts of lipa-292 

b are found at a low level in the venom and scent glands of E. coloratus and the scent gland 293 

of royal python (Figure 2, Supplementary figure S8). Neither lipa-a or lipa-b therefore 294 

encode venom toxins.  295 

Natriuretic peptide 296 

We find only a single natriuretic peptide-like sequence in our dataset, in the skin of the royal 297 

python. The absence of this gene from the rest of our study species suggests that it is not a 298 

highly conserved Toxicoferan toxin. 299 

Nerve growth factor 300 

We find identical transcripts encoding nerve growth factor (ngf) in all three E. coloratus 301 

tissues. Transcripts encoding the orthologous  gene are also found in the corn snake salivary 302 

gland and scent gland; rough green snake scent gland and skin; royal python skin and leopard 303 

gecko salivary gland, scent gland and skin (Figure 2 and Supplementary figure S9). ngf is 304 

expressed at a higher level in the venom gland (525.82 FPKM) than in the scent gland (0.18 305 

FPKM) and skin (0.58 FPKM) of E. coloratus, but not at an elevated level in the salivary 306 

gland of other species, again hinting at the potential for exaptation of this gene. Based on 307 

these findings, together with the expression of this gene in garter snake pooled tissues, we 308 

suggest that ngf does not encode a Toxicoferan toxin. However, we do find evidence for the 309 

duplication of ngf in cobras (Supplementary figure S9) suggesting that it may represent a 310 
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venom toxin in at least some advanced snakes [84]. As with complement c3, it seems likely 311 

that the identification of non-toxic orthologs in distantly-related species has led to the 312 

conclusion that ngf is a widely-distributed venom toxin and confused its true evolutionary 313 

history. 314 

Phospholipase A2 (PLA2 Group IIE) 315 

We find transcripts encoding Group IIE PLA2 genes in the venom gland of E. coloratus and 316 

the salivary glands of all other species (Figure 2, Supplementary figure S10). Although this 317 

gene appears to be venom and salivary-gland-specific (based on available data), its presence 318 

in all species (including the non-Toxicoferan leopard gecko) suggests that it does not 319 

represent a toxic venom component. 320 

Phospholipase B 321 

We find a single transcript encoding phospholipase b expressed in all three E. coloratus 322 

tissues (Figures 2 and 5) and transcripts encoding the orthologous gene are found in all other 323 

tissues from all study species with the exception of rough green snake salivary gland. We also 324 

find plb transcripts in corn snake vomeronasal organ, garter snake liver, Burmese python 325 

pooled tissues (liver and heart) and bearded dragon brain (Figure 5). The two transcripts in 326 

each of rough green snake and corn snake are likely alleles or the result of individual 327 

variation, and actually represent a single phospholipase b gene from each of these species. 328 

Transcript abundance analysis shows this gene to be expressed at a low level in all tissues 329 

from all study species. Based on the phylogenetic and tissue distribution of this gene it is 330 

unlikely to represent a Toxicoferan venom toxin. 331 

Renin (“renin aspartate protease”)  332 

We find a number of transcripts encoding renin-like genes in the E. coloratus venom gland 333 

(Figures 2 and 6), one of which (encoding the canonical renin) is also expressed in the scent 334 

gland and is orthologous to a previously described sequence from the venom gland of the 335 

ocellated carpet viper (Echis ocellatus, accession number CAJ55260). We also find that the 336 
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recently-published Boa constrictor renin aspartate protease (rap) gene (accession number 337 

JX467165 [21]) is in fact a cathepsin d gene, transcripts of which are found in all three 338 

tissues in all five of our study species. We suggest that this misidentification may be due to a 339 

reliance on BLAST-based classification, most likely using a database restricted to squamate 340 

or serpent sequences. It is highly unlikely that either renin or cathepsin d (or indeed any 341 

renin-like aspartate proteases) constitute venom toxins in E. coloratus or E. ocellatus, nor do 342 

they represent basal Toxicoferan toxins. 343 

Ribonuclease 344 

Ribonucleases have been suggested to have a role in the generation of free purines in snake 345 

venoms [58] and the presence of these genes in the salivary glands of two species of lizard 346 

(Gerrhonotus infernalis and Celestus warreni) and two colubrid snakes (Liophis peocilogyrus 347 

and Psammophis mossambicus) has been used to support the Toxicofera [78, 85]. We did not 348 

identify orthologous ribonuclease genes in any of our salivary or venom gland data, nor do 349 

we find them in venom gland transcriptomes from the Eastern diamondback rattlesnake, king 350 

cobra and eastern coral snake (although we have identified a wide variety of other 351 

ribonuclease genes). The absence of these genes in seven Toxicoferans, coupled with the fact 352 

that they were initially described from only 2 out of 11 species of snake [85] and 3 out of 18 353 

species of lizard [78] would cast doubt on their status as conserved Toxicoferan toxins.  354 

Three finger toxins (3ftx) 355 

We find 2 transcripts encoding three finger toxin (3ftx)-like genes expressed in the E. 356 

coloratus venom gland, one of which is expressed in all 3 tissues (3ftx-a) whilst the other is 357 

expressed in the venom and scent glands (3ftx-b). Orthologous transcripts of 3ftx-a are found 358 

to be expressed in all three tissues of corn snake, rough green snake salivary gland and skin, 359 

and royal python salivary gland. An ortholog of 3ftx-b is expressed in rough green snake 360 

scent gland. We also find a number of different putative 3ftx genes in our other study species, 361 

often expressed in multiple tissues (Figure 2, Supplementary figure S11). Based on the 362 
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phylogenetic and tissue distribution of both of these genes we suggest that they do not 363 

represent venom toxins in E. coloratus. As with other proposed Toxicoferan genes such as 364 

complement c3 and nerve growth factor, it seems likely that 3ftx genes are indeed venom 365 

components in some species, especially cobras and other elapids [31, 69], and that the 366 

identification of their non-venom orthologs in other species has led to much confusion 367 

regarding the phylogenetic distribution of these toxic variants.  368 

Vespryn 369 

We do not find vespryn transcripts in any E. coloratus tissues, although this gene is present in 370 

the genome of this species (accession number KF114032). We do however find transcripts 371 

encoding this gene in the salivary and scent glands of the corn snake, and skin and scent 372 

glands of the rough green snake, royal python and leopard gecko (Figure 2, Supplementary 373 

figure S12). We suggest that the tissue distribution of this gene in these species casts doubt 374 

on its role as a venom component in the Toxicofera.  375 

Waprin  376 

We find a number of “waprin”-like genes in our dataset, expressed in a diverse array of body 377 

tissues. Our phylogenetic analyses (Supplementary figure S13) show that previously 378 

characterised “waprin” genes [8, 66, 68, 86, 87] most likely represent WAP four-disulfide 379 

core domain 2 (wfdc2) genes which have undergone a squamate-specific expansion and that 380 

there is no evidence for a venom gland-specific paralog. It is unlikely therefore that these 381 

genes represent a Toxicoferan venom toxin. Indeed, the inland taipan (Oxyuranus 382 

microlepidotus) “Omwaprin” has been shown to be “…non-toxic to Swiss albino mice at 383 

doses of up to 10 mg/kg when administered intraperitoneally” [68] and is more likely to have 384 

an antimicrobial function in the venom or salivary gland. 385 

Implications for venom composition and complexity in Echis coloratus 386 
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The following genes show either a venom gland-specific expression or an elevated expression 387 

level in this tissue, but not both and as such we suggest that whilst they may represent venom 388 

toxins in E. coloratus, further analysis is needed in order to confirm this. 389 

Vascular endothelial growth factor  390 

We find four transcripts encoding vascular endothelial growth factor (VEGF) expressed in 391 

the venom gland of E. coloratus. These correspond to vegf-a, vegf-b, vegf-c and vegf-f and of 392 

these vegf-a, b and c are also expressed in the skin and scent gland of this species (Figure 2). 393 

Transcripts encoding orthologs of these genes are expressed in all three tissues of all other 394 

species used in this study (with the exception of the absence of vegf-a in corn snake skin). In 395 

accordance with previous studies [7] we find evidence of alternative splicing of vegf-a 396 

transcripts in all species although no variant appears to be tissue-specific. It is likely that a 397 

failure to properly recognise and classify alternatively spliced vegf-a transcripts (Aird et al. 398 

2013) may have contributed to an overestimation of snake venom complexity. vegf-d was 399 

only found to be expressed in royal python salivary gland and scent gland and all three tissues 400 

from leopard gecko (Figure 2, Supplementary figure S14). The transcript encoding VEGF-F 401 

is found only in the venom gland of E. coloratus and, given the absence of any Elapid vegf-f 402 

sequences in public databases as well as absence of this transcript in the two species of 403 

colubrid in our study, we suggest that vegf-f is specific to vipers. Whilst vegf-f has a higher 404 

transcript abundance in E. coloratus venom gland (186.73 FPKM) than vegf-a (3.24 FPKM), 405 

vegf-b (1.28 FPKM) and vegf-c (1.54 FPKM), compared to other venom genes in this species 406 

(see next section) it has a considerably lower transcript abundance suggesting it represents at 407 

most a minor venom component in E. coloratus. 408 

L-amino acid oxidase  409 

We find transcripts encoding two l-amino acid oxidase (laao) genes in E. coloratus, one of 410 

which (laao-b) has two splice variants (Figure 2, Supplementary figure S15). laao-a 411 

transcripts are found in all three E. coloratus and leopard gecko tissues. laao-b is venom 412 
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gland-specific in E. coloratus (based on the available data) and transcripts of the orthologous 413 

gene are found in the scent glands of corn snake, rough green snake and royal python. The 414 

splice variant laao-b2 may represent a venom toxin in E. coloratus based on its specific 415 

expression in the venom gland of this species and elevated expression level (628.84 FPKM). 416 

Crotamine 417 

We find a single crotamine-like transcript in E. coloratus, in the venom gland (Figure 2). 418 

Related genes are found in a variety of tissues in other study species (including the scent 419 

gland of the rough green snake, the salivary gland and skin of the leopard gecko, and in all 420 

three corn snake tissues), although the short length of these sequences precludes a definitive 421 

statement of orthology. This gene may represent a toxic venom component in E. coloratus 422 

based on its tissue distribution, but due to its low transcript abundance (10.95 FPKM) it is 423 

likely to play a minor role, if any. 424 

 425 

The following genes are found only in the venom gland of E. coloratus and clearly show an 426 

elevated expression level (Figure 7). Whilst we classify these genes as encoding venom 427 

toxins in this species (Table 1) it should be noted that none of these genes support the 428 

monophyly of Toxicoferan venom toxins. 429 

Cysteine-rich secretory proteins (CRISPs) 430 

We find transcripts encoding two distinct CRISPs expressed in the E. coloratus venom gland, 431 

one of which is also found in skin and scent gland (Figure 2). Phylogenetic analysis of these 432 

genes (which we call crisp-a and crisp-b) reveals that they appear to have been created as a 433 

result of a gene duplication event earlier in the evolution of advanced snakes (Supplementary 434 

Figure S16). crisp-a transcripts are also found in all three corn snake tissues, as well as rough 435 

green snake skin and scent gland and royal python scent gland. crisp-b is also found in corn 436 

snake salivary gland (Figure 2 and Supplementary figure S16) and the phylogenetic and 437 

tissue distribution of this gene suggest that it does indeed represent a venom toxin, produced 438 
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via duplication of an ancestral crisp gene that was expressed in multiple tissues, including the 439 

salivary gland. The elevated transcript abundance of crisp-b (3,520.07 FPKM) in the venom 440 

gland of E. coloratus further supports its role as a venom toxin in this species (Figure 7). The 441 

phylogenetic and tissue distribution and low transcript abundance of crisp-a (0.61 FPKM in 442 

E. coloratus venom gland) shows that it is unlikely to be a venom toxin. We also find no 443 

evidence of a monophyletic clade of reptile venom toxins and therefore suggest that, contrary 444 

to earlier reports [20, 78], the CRISP genes of varanid and helodermatid lizards do not 445 

represent shared Toxicoferan venom toxins and, if they are indeed toxic venom components, 446 

have been recruited independently from those of the advanced snakes. Regardless of their 447 

status as venom toxins, it appears likely that the diversity of CRISP genes in varanid lizards 448 

in particular [17] has been overestimated as a result of the use of negligible levels of 449 

sequence variation to classify transcripts as representing distinct gene products 450 

(Supplementary figures S23 and S24). 451 

C-type lectins 452 

We find transcripts encoding 11 distinct C-type lectin genes in the E. coloratus venom gland, 453 

one of which (ctl-a) is also expressed in the scent gland of this species. The remaining 10 454 

genes (ctl-b to k) are found only in the venom gland and form a clade with other viper C-type 455 

lectin genes (Figure 2, Supplementary figure S17). Of these, 6 are highly expressed in the 456 

venom gland (ctl-b to d, ctl-f to g and ctl-j) with a transcript abundance range of 3,706.21-457 

24,122.41 FPKM (Figure 7). The remainder of these genes (ctl-e, ctl-h to i and ctl-k) show 458 

lower transcript abundance (0.80-1,475.88 FPKM), with two (ctl-i and k) being more lowly 459 

expressed than ctl-a (230.06 FPKM). A number of different C-type lectin genes are found in 460 

our other study species, often expressed in multiple tissues (Supplementary figure S17). We 461 

suggest therefore that the 6 venom-gland specific C-type lectin genes which are highly 462 

expressed are indeed venom toxins in E. coloratus and that these genes diversified via the 463 

duplication of an ancestral gene with a wide expression pattern, including in salivary/venom 464 
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glands. Based on their selective expression in the venom gland (from available data) the 465 

remaining four C-type lectin genes cannot be ruled out as putative toxins, although their 466 

lower transcript abundance suggests that they are likely to be minor components in E. 467 

coloratus venom. It should also be noted that a recent analysis of king cobra (Ophiohagus 468 

hannah) venom gland transcriptome and proteome suggested that “…lectins do not contribute 469 

to king cobra envenoming” [31].  470 

Phospholipase A2 (PLA2 Group IIA) 471 

We find five transcripts encoding Group IIA PLA2 genes in E. coloratus, three of which are 472 

found only in the venom gland and two of which are found only in the scent gland (these 473 

latter two likely represent intra-individual variation in the same transcript) (Figure 2, 474 

Supplementary figure S18). The venom gland-specific transcript PLA2 IIA-c is highly 475 

expressed (22,520.41 FPKM) and likely represents a venom toxin, and may also be a putative 476 

splice variant although further analysis is needed to confirm this. PLA2 IIA-d and IIA-e show 477 

an elevated, but lower, expression level (1,677.15 FPKM and 434.67 FPKM respectively, 478 

Figure 7). Based on tissue and phylogenetic distribution we would propose that these three 479 

genes may represent putative venom toxins (Table 1).   480 

Serine proteases 481 

We find 6 transcripts encoding Serine proteases in E. coloratus (Figure 2, Supplementary 482 

figure S19) which (based on available data) are all venom gland specific. Four of these 483 

transcripts are highly expressed in the venom gland (serine proteases a-c and e; 3,076.01-484 

7,687.03 FPKM) whilst two are expressed at a lower level (serine proteases d and f; 1,098.45 485 

FPKM and 102.34 FPKM respectively, Figure 7). Based on these results we suggest serine 486 

proteases a, b, c and e represent venom toxins whilst serine proteases d and f may represent 487 

putative venom toxins (Table 1). 488 

Snake venom metalloproteinases 489 
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We find 21 transcripts encoding snake venom metalloproteinases in E. coloratus and of these 490 

14 are venom gland-specific, whilst another (svmp-n) is expressed in the venom gland and 491 

scent gland. Five remaining genes are expressed in the scent gland only whilst another is 492 

expressed in the skin (Figure 2, Supplementary figure S20). Of the 14 venom gland-specific 493 

SVMPs we find 4 to be highly expressed (5,552.84-15,118.41 FPKM, Figure 7). In the 494 

absence of additional data, we classify the 13 venom gland-specific svmp genes as venom 495 

toxins in this species (Table 1). 496 

 497 

Discussion 498 

Our transcriptomic analyses have revealed that all 16 of the basal venom toxin genes used to 499 

support the hypothesis of a single, early evolution of venom in reptiles (the Toxicofera 500 

hypothesis [17-21, 78]), as well as a number of other genes that have been proposed to 501 

encode venom toxins in multiple species are in fact expressed in multiple tissues, with no 502 

evidence for consistently higher expression in venom or salivary glands. Additionally, only 503 

two genes in our entire dataset of 74 genes in five species were found to encode possible 504 

venom gland-specific splice variants (l-amino acid oxidase b2 and PLA2 IIA-c). We therefore 505 

suggest that many of the proposed basal Toxicoferan genes most likely represent 506 

housekeeping or maintenance genes and that the identification of these genes as conserved 507 

venom toxins is a side-effect of incomplete tissue sampling. This lack of support for the 508 

Toxicofera hypothesis therefore prompts a return to the previously held view [88] that venom 509 

in different lineages of reptiles has evolved independently, once at the base of the advanced 510 

snakes, once in the helodermatid (gila monster and beaded lizard) lineage and, possibly, one 511 

other time in monitor lizards, although evidence for a venom system in this latter group [20, 512 

78, 89] may need to be reinvestigated in light of our findings. The process of reverse 513 

recruitment [70], where a venom gene undergoes additional gene duplication events and is 514 

subsequently recruited from the venom gland back into a body tissue (which was proposed on 515 
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the basis of the placement of garter snake and Burmese python “physiological” genes within 516 

clades of “venom” genes) must also be re-evaluated in light of our findings.  517 

Bites by venomous snakes are thought to be responsible for as many as 1,841,000 518 

envenomings and 94,000 deaths annually, predominantly in the developing world [90, 91] 519 

and medical treatment of snakebite is reliant on the production of antivenoms containing 520 

antibodies, typically from sheep or horses, that will bind and neutralise toxic venom proteins 521 

[92]. Since these antivenoms are derived from the injection of crude venom into the host 522 

animal they are not targeted to the most pathogenic venom components and therefore also 523 

include antibodies to weakly- or non-pathogenic proteins, requiring the administration of 524 

large or multiple doses [11], increasing the risks of adverse reactions. A comprehensive 525 

understanding of snake venom composition is therefore vital for the development of the next 526 

generation of antivenoms [2, 11, 93] as it is important that research effort is not spread too 527 

thinly through the inclusion of non-toxic venom gland transcripts. Our results suggest that 528 

erroneous assumptions about the single origination and functional conservation of venom 529 

toxins across the Toxicofera has led to the  complexity of snake venom being overestimated 530 

by previous authors, with the venom of the painted saw-scaled viper, Echis coloratus likely 531 

consisting of just 34 genes in 8 gene families (Table 1, based on venom gland-specific 532 

expression and a ‘high’ expression, as defined by presence in the top 25% of transcripts [94] 533 

in at least two of four venom gland samples), fewer than has been suggested for this and 534 

related species in previous EST or transcriptomic studies [5, 35]. However, it is noteworthy 535 

that the results of our analyses accord well with proteomic analyses of venom composition in 536 

snakes, which range from an almost identical complement of 35 toxins in 8 gene families for 537 

the related ocellated carpet viper, Echis ocellatus [36] to between 24-61 toxins in 6-14 538 

families in a range of other species (Table 2). Far from being a “complex cocktail” [10, 11, 539 

95, 96], snake venom may in fact represent a relatively simple mixture of toxic proteins 540 
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honed by natural selection for rapid prey immobilisation, with limited lineage-specific 541 

expansion in one or a few particular gene families.  542 

In order to avoid continued overestimation of venom complexity, we propose that future 543 

transcriptome-based analyses of venom composition must include quantitative comparisons 544 

of multiple body tissues from multiple individuals and robust phylogenetic analysis that 545 

includes known paralogous members of gene families. We would also encourage the use of 546 

clearly explained, justifiable criteria for classifying highly similar sequences as new paralogs 547 

rather than alleles or the result of PCR or sequencing errors, as it seems likely that some 548 

available sequences from previous studies have been presented as distinct genes on the basis 549 

of extremely minor (or even non-existent) sequence variation (see Supplementary figures 550 

S21-S24 for examples of identical or nearly identical ribonuclease and CRISP sequences and 551 

Supplementary figures S25 and S26 for examples of the same sequence being annotated as 552 

two different genes). As a result, the diversity of “venom” composition in these species may 553 

have been inadvertently inflated.  554 

Additionally, we would encourage the adoption of a standard nomenclature for reptile genes, 555 

as the overly-complicated and confusing nomenclature used currently (Table 3) may also 556 

contribute to the perceived complexity of snake venom. We propose that such a nomenclature 557 

system should be based on the comprehensive standards developed for Anole lizards [97], for 558 

example: 559 

 “Gene symbols for all…species should be written in lower case only and in italics, 560 

e.g., gene2.”  561 

 “Whenever criteria for orthology have been met… the gene symbol should be 562 

comparable to the human gene symbol, e.g., if the human gene symbol is GENE2, 563 

then the gene symbol would be gene2.” 564 
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 “Duplication of the ortholog of a mammalian gene will be indicated by an “a” or “b” 565 

suffix, e.g., gene2a and gene2b. If the mammalian gene symbol already contains a 566 

suffix letter, then there would be a second letter added, e.g., gene4aa and gene4ab.” 567 

It seems likely that the application of our approach to other species (together with proteomic 568 

studies of extracted venom) will lead to a commensurate reduction in claimed venom 569 

diversity, with clear implications for the development of next generation antivenoms: since 570 

most true venom genes are members of a relatively small number of gene families, it is likely 571 

that a similarly small number of antibodies may be able to bind to and neutralise the toxic 572 

venom components, especially with  the application of “string of beads” techniques [98] 573 

utilising fusions of short oligopeptide epitopes designed to maximise the cross-reactivity of 574 

the resulting antibodies [2]. 575 

 576 

Conclusions 577 

We suggest that identification of the apparently conserved Toxicofera venom toxins in 578 

previous studies is most likely a side effect of incomplete tissue sampling, compounded by 579 

incorrect interpretation of phylogenetic trees and the use of BLAST-based gene identification 580 

methods. It should perhaps not be too surprising that homologous tissues in related species 581 

would show similar gene complements and the restriction of most previous studies to only the 582 

“venom” glands means that monophyletic clades of reptile sequences in phylogenetic trees 583 

have been taken to represent monophyletic clades of venom toxin genes. Whilst it is true that 584 

some of these genes do encode toxic proteins in some species (indeed, this was often the 585 

basis for their initial discovery) the discovery of orthologous genes in other species does not 586 

necessarily demonstrate shared toxicity. In short, toxicity in one does not equal toxicity in all.  587 

 588 

Methods 589 
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Experimental methods involving animals followed institutional and national guidelines and 590 

were approved by the Bangor Universty Ethical Review Committee.  591 

RNA-Seq 592 

Total RNA was extracted from four venom glands taken from four individual specimens of 593 

adult Saw-scaled vipers (Echis coloratus) at different time points following venom extraction 594 

in order to capture the full diversity of venom genes (16, 24 and 48 hours post-milking).  595 

Additionally, total RNA from two scent glands and two skin samples of this species and the 596 

salivary, scent glands and skin of two adult corn snakes (Pantherophis guttatus), rough green 597 

snakes (Opheodrys aestivus), royal pythons (Python regius) and leopard geckos (Eublepharis 598 

macularius) was also extracted using the RNeasy mini kit (Qiagen) with on-column DNase 599 

digestion. Only a single corn snake skin sample provided RNA of high enough quality for 600 

sequencing. mRNA was prepared for sequencing using the TruSeq RNA sample preparation 601 

kit (Illumina) with a selected fragment size of 200-500bp and sequenced using 100bp paired-602 

end reads on the Illumina HiSeq2000 or HiSeq2500 platform.  603 

Quality control, assembly and analysis 604 

The quality of all raw sequence data was assessed using FastQC [99] and reads for each 605 

tissue and species were pooled and assembled using Trinity [100] (sequence and assembly 606 

metrics are provided in Supplemental tables S1-S3). Putative venom toxin amino acid 607 

sequences were aligned using ClustalW [101] and maximum likelihood trees constructed 608 

using the Jones-Taylor-Thornton (JTT) model with 500 Bootstrap replicates. Transcript 609 

abundance estimation was carried out using RSEM [102] as a downstream analysis of Trinity 610 

(version trinityrnaseq_r2012-04-27). Sets of reads were mapped to species-specific reference 611 

transcriptome assemblies (Supplementary table S4) to allow comparison between tissues on a 612 

per-species basis and all results values shown are in FPKM (Fragments Per Kilobase of exon 613 

per Million fragments mapped). Individual and mean FPKM values for each gene per tissue 614 

per species are given in Supplementary tables S5-S9. All transcript abundance values given 615 
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within the text are based on the average transcript abundance per tissue per species to account 616 

for variation between individual samples. 617 

Transcriptome reads were deposited in the European Nucleotide Archive (ENA) database 618 

under accession #ERP001222 and GenBank under accession numbers XXX and XXX and 619 

genes used to reconstruct phylogenies are deposited in GenBank under accession numbers 620 

XXXX-XXXX 621 
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Tables 1077 

 1078 

Table 1. Predicted venom composition of the painted saw-scaled viper, Echis coloratus 1079 

 1080 

Gene family Number of genes 

SVMP 13 

C-type lectin 8 

Serine protease 6 

PLA2 3 

CRISP 1 

L-amino acid oxidase 1 

VEGF 1 

Crotamine 1 

           Total         8 34 

 1081 

 1082 

 1083 

 1084 

 1085 

 1086 

 1087 

 1088 

 1089 

 1090 

 1091 

 1092 

 1093 

 1094 

 1095 

 1096 
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Table 2. Predicted numbers of venom toxins and venom toxin families from proteomic 1098 

studies of snake venom accord well with our transcriptome results. 1099 

 1100 

Species Number of 

toxins 

Number of toxin 

families 

Bitis caudalis [103] 30 8 

Bitis gabonica gabonica [104] 35 12 

Bitis gabonica rhinoceros [103] 33 11 

Bitis nasicornis [103] 28 9 

Bothriechis schlegelii [105] ? 7 

Cerastes cerastes [106] 25-30 6 

Crotalus atrox [107] ~24 ~9 

Echis ocellatus [36]  35 8 

Lachesis muta [108] 24-26 8 

Naja kaouthia [109] 61 12 

Ophiophagus hannah [31] ? 14 

Vipera ammodytes [110] 38 9 

 1101 

 1102 

 1103 

 1104 

 1105 

 1106 

 1107 

 1108 

 1109 

 1110 

 1111 

 1112 

 1113 

 1114 

 1115 

 1116 

 1117 
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Table 3. Venom gene nomenclature. Lack of a formal set of nomenclatural rules for venom 1118 

toxins has led to an explosion of different gene names and may have contributed to the 1119 

overestimation of reptile venom diversity. 1120 

Gene/gene family Alternative name and accession number 

3 Finger toxin (3Ftx) Denmotoxin [Q06ZW0] 

Candoxin [AY142323] 

CRISP Piscivorin [AAO62994] 

Catrin [AAO62995] 

Ablomin [AAM45664] 

Tigrin [Q8JGT9] 

Kaouthin [ACH73167, ACH73168] 

Natrin-1 [Q7T1K6] 

CRVP [Q8UW25, Q8UW11] 

Pseudechetoxin [Q8AVA4] 

Pseudechin [Q8AVA3] 

Serotriflin [P0CB15] 

Latisemin [Q8JI38] 

Ophanin [AAO62996] 

Opharin [ACN93671] 

Bc-CRP [ACE73577, ACE73578] 

Ficolin Veficolin [ADK46899] 

Ryncolin [D8VNS7-9, D8VNT0] 

Serine proteases Acubin [CAB46431] 

Gyroxin [B0FXM3] 

Ussurase [AAL48222] 

Serpentokallikrein [AAG27254] 

Salmobin [AAC61838] 

Batroxobin [AAA48553] 

Nikobin [CBW30778] 

Gloshedobin [POC5B4] 

Gussurobin [Q8UVX1] 

Pallabin [CAA04612] 

Pallase [AAC34898] 

Snake venom metalloproteinase 

(SVMP) 

Stejnihagin-B [ABA40759] 

Bothropasin [AAC61986] 

Atrase B [ADG02948] 

Mocarhagin 1 [AAM51550] 

Scutatease-1 [ABQ01138] 

Austrelease-1 [ABQ01134] 

Vascular endothelial growth factor 

(VEGF) 

Barietin [ACN22038] 

Cratrin [ACN22040] 

Apiscin [ACN22039] 

Vammin [ACN22045] 

Vespryn Ohanin [AAR07992] 

Thaicobrin [P82885] 

Waprin Nawaprin [P60589] 

Porwaprin [B5L5N2] 

Stewaprin [B5G6H3] 

Veswaprin [B5L5P5] 

Notewaprin [B5G6H5] 

Carwaprin [B5L5P0] 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 6, 2014. ; https://doi.org/10.1101/006031doi: bioRxiv preprint 

https://doi.org/10.1101/006031
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 
 

Figure legends 1121 

 1122 

Figure 1. Relationships of key vertebrate lineages and the placement of species 1123 

discussed in this paper. A monophyletic clade of reptiles (which includes birds) is 1124 

shaded green and the Toxicofera [21] are shaded red. Modified taxon names  1125 

have been used for simplicity. 1126 

 1127 

Figure 2. Tissue distribution of proposed venom toxin transcripts. The majority of 1128 

transcripts proposed to encode Toxicoferan venom proteins are expressed in multiple body 1129 

tissues. Transcripts found in the assembled transcriptomes but which are assigned transcript 1130 

abundance of <1 FPKM are shaded orange. Eco, painted saw-scaled viper (Echis coloratus); 1131 

Pgu, corn snake (Pantherophis guttatus); Oae, rough green snake (Opheodrys aestivus); Pre, 1132 

royal python (Python regius); Ema, leopard gecko (Eublepharis macularius). VG, venom 1133 

gland; SAL, salivary gland; SCG, scent gland; SK, skin. 1134 

 1135 

Figure 3. Maximum likelihood tree of complement c3 (“cobra venom factor”) sequences. 1136 

Whilst most sequences likely represent housekeeping or maintenance genes, a gene 1137 

duplication event in the elapid lineage (marked with *) may have produced a venom-specific 1138 

paralog. An additional duplication (marked with +) may have taken place in Austrelaps 1139 

superbus, although both paralogs appear to be expressed in both liver and venom gland. 1140 

Geographic separation in king cobras (Ophiophagus hannah) from Indonesia and China is 1141 

reflected in observed sequence variation. Numbers above branches are Bootstrap values for 1142 

500 replicates. Tissue distribution of transcripts is indicated using the following 1143 

abbreviations: VG, venom gland; SK, skin; SCG, scent gland, AG, accessory gland; VMNO, 1144 

vomeronasal organ and those genes found to be expressed in one or more body tissues are 1145 

shaded blue. 1146 
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 1147 

Figure 4. Maximum likelihood tree of dipeptidylpeptidase 3 (dpp3) and 1148 

dipeptidylpeptidase 4 (dpp4) sequences. Transcripts encoding dpp3 and dpp4 are found in a 1149 

wide variety of body tissues, and likely represent housekeeping genes. Numbers above 1150 

branches are Bootstrap values for 500 replicates. Tissue distribution of transcripts is indicated 1151 

using the following abbreviations: VG, venom gland; SK, skin; SCG, scent gland, AG, 1152 

accessory gland; VMNO, vomeronasal organ and those genes found to be expressed in one or 1153 

more body tissues are shaded blue. 1154 

 1155 

Figure 5. Maximum likelihood tree of phospholipase b (plb) sequences. Transcripts 1156 

encoding plb are found in a wide variety of body tissues, and likely represent housekeeping 1157 

genes. Numbers above branches are Bootstrap values for 500 replicates. Tissue distribution of 1158 

transcripts is indicated using the following abbreviations: VG, venom gland; SK, skin; SCG, 1159 

scent gland, AG, accessory gland; VMNO, vomeronasal organ and those genes found to be 1160 

expressed in one or more body tissues are shaded blue. 1161 

 1162 

Figure 6. Maximum likelihood tree of renin-like sequences. Renin-like genes are 1163 

expressed in a diversity of body tissues. The recently published Boa constrictor “RAP-Boa-1164 

1” sequence is clearly a cathepsin d gene and is therefore not orthologous to the Echis 1165 

ocellatus renin sequence as has been claimed [21]. Numbers above branches are Bootstrap 1166 

values for 500 replicates. Tissue distribution of transcripts is indicated using the following 1167 

abbreviations: VG, venom gland; SK, skin; SCG, scent gland and those genes found to be 1168 

expressed in one or more body tissues are shaded blue. 1169 

 1170 

Figure 7. Graph of transcript abundance values of proposed venom transcripts in the 1171 

Echis coloratus venom gland. The majority of Toxicoferan transcripts are expressed at 1172 
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extremely low level, with the most highly expressed genes falling into only four gene 1173 

families (C-type lectins, Group IIA phospholipase A2, serine proteases and snake venom 1174 

metalloproteinases). FPKM = Fragments Per Kilobase of exon per Million fragments 1175 

mapped. 1176 
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