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Abstract 27 

The temperate-tropical division of early maize germplasm to different agricultural 28 

environments was arguably the greatest adaptation process associated with the success 29 

and near ubiquitous importance of global maize production. Deciphering this history is 30 

challenging, but new insight has been gained from the genomic, transcriptomic and 31 

phenotypic variation collected from 368 diverse temperate and tropical maize inbred 32 

lines in this study. This is the first attempt to systematically explore the mechanisms of 33 

the adaptation process. Our results indicated that divergence between tropical and 34 

temperate lines seem occur 3,400-6,700 years ago. A number of genomic selection 35 

signals and transcriptomic variants including differentially expressed individual genes 36 

and rewired co-expression networks of genes were identified. These candidate signals 37 

were found to be functionally related to stress response and most were associated with 38 

directionally selected traits, which may have been an advantage under widely varying 39 

environmental conditions faced by maize as it was migrated away from its 40 

domestication center. It’s also clear in our study that such stress adaptation could 41 

involve evolution of protein-coding sequences as well as transcriptome-level 42 

regulatory changes. This latter process may be a more flexible and dynamic way for 43 

maize to adapt to environmental changes over this dramatically short evolutionary time 44 

frame.  45 
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Introduction 46 

Maize (Zea mays ssp. mays) is essential to the global food supply, with current 47 

total maize grain production higher than any other crop (USDA FAS 2013). Maize is 48 

also used as a model to investigate crop evolution and improvement (Doebley et al. 49 

2006). It is thought to have been domesticated from teosinte (Zea mays ssp. 50 

parviglumis) about 9,000-10,000 years ago in southwestern Mexico, which is a mid- to 51 

lowland tropical growing environment (Matsuoka et al. 2002; Van Heerwaarden et al. 52 

2011). The remarkable conversion of a Mexican annual grass species into the top food, 53 

feed and industrial crop in the world resulted from the spread of temperate maize over 54 

several thousand years from its tropical geographic origin to the north and east across 55 

North America and to the south across most of Latin America, eventually creating a 56 

maize distribution from ~40°S in Chile to ~45°N in Canada (Matsuoka et al. 2002). 57 

Centuries ago, maize cultivation expanded further to East Asia, Europe, and Africa, 58 

and the temperate-tropical division remains in all crop-growing continents today. When 59 

faced with widely varying temperate conditions in temperature, day length, and disease 60 

susceptibility, maize adapted remarkably well. One major goal of adaptation studies is 61 

to identify specific genomic changes contributing to advantageous phenotypic 62 

performance in varying environmental conditions.  63 

 64 

In order to identify the genetic factors driving maize evolution, researchers have 65 

explored a number of methods to reveal footprints of selection within the genome 66 

(Chia et al. 2012; Hufford et al. 2012; Jiao et al. 2012). It is intriguing that these 67 

changes occurred within such a short evolutionary time frame. The importance of 68 

transcriptional regulation of rapid phenotypic evolution has been a central tenet of 69 

recent studies (Swanson-Wagner et al. 2012; Carroll 2008; Ecker et al. 2012; Koenig et 70 

al. 2013). Genes with differential expression and altered expression networks could 71 

provide evidence of the contribution of transcriptome regulational changes to the 72 

adaptation process. RNA-seq (Wang et al. 2009) allows cost-effective exploration of 73 

both sequence and transcriptional variation, particularly in large and repetitive 74 

sequence-rich genomes such as maize.  75 

 76 

Seed development, a critical process to both plant propagation and food supply, is a 77 

time in which DNA methylation and chromatin remodeling, and thus transcriptional 78 

patterns, are reshaped for the new generation (Ahmad et al. 2010; Wollmann et al. 79 

2012; Zanten et al. 2011). Transcriptional variation may thus heavily influence 80 
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seed-related traits via environmentally-sensitive epigenetic control (Zhang and Ogas 81 

2009), which will be expressed as selectable variation throughout the lifetime of the 82 

plant (Kapazoglou et al. 2013; Casas et al. 2012). Most maize genes are expressed in 83 

seed or embryos, many of which are not expressed again (Cho et al. 2012; Sekhon et al. 84 

2011). Thus, the seed offers the best window into visualizing differences that may 85 

account for adaptation.  86 

 87 

To study the nature of maize adaptation from tropical to temperate growing regions, a 88 

panel of 368 diverse maize inbred lines (Li et al. 2013) (Supplemental Table S1) was 89 

characterized. We combined RNA-seq of seeds (15 days after pollination; Fu et al. 90 

2013) with data from the MaizeSNP50 BeadChip, resulting in over one million 91 

high-quality SNPs and expression data from 28,769 genes, analyzed together with 662 92 

phenotypic traits. These included morphological, agronomic, physiological and 93 

metabolic traits, many of which are also known to be important in stress adaptation 94 

(Bohnert and Sheveleva 1998; Bhargava and Sawant 2013). This study is the first 95 

systematic exploration of the mechanisms of the maize adaptation process with the 96 

goal of answering several specific questions: What phenotypic changes in temperate 97 

lines convey an advantage in novel environments? Which genomic regions were 98 

selected during the adaptation process? What phenotypes do these regions likely affect? 99 

To what extent do regulatory changes contribute to evolution? What beneficial value 100 

do they provide in the relatively short evolutionary time frame suggested in this study? 101 

Although only one organ (the seed) was sequenced, such knowledge will position us 102 

with general understanding of the maize adaptation process, and provide resources for 103 

developing breeding strategies to help corn producers cope with an increasingly erratic 104 

climate. 105 

 106 

Results 107 

Population level differences between temperate and tropical lines 108 

The population-scaled recombination rates (ρ) in temperate and tropical lines were 109 

1.078/kb and 2.644/kb, respectively. This is a reflection of different rates of LD decay, 110 

which was much faster in the tropical lines at the whole genome level (Supplemental 111 

Fig. S1). Recombination rate differences in temperate vs. tropical lines was smaller 112 

than the decrease in ρ seen in a previous study by Hufford et al. (2012) in landraces 113 

compared to teosinte (59% vs. 75%). A cross population composite likelihood approach 114 

(Chen et al. 2010) (XP-CLR) was used to identify extreme allele frequency 115 
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differentiation over linked regions when comparing temperate to tropical 116 

subpopulations. We identified 701 regions containing 1660 selected genes at the 117 

highest 10% of XP-CLR values (Fig. 1, Supplemental Table S2,3), ranging in size from 118 

10kb to 2,320kb, with an average of 150.9kb; this is shorter than the 322kb average 119 

region associated with domestication (Hufford et al. 2012). The combined length of 120 

selected regions was 105.7Mb, covering 5.2% of the genome. The selection coefficient 121 

in the adaptation process was 0.090, which is higher than domestication (0.015) and 122 

improvement (0.003) (Hufford et al. 2012), indicating a stronger selection pressure 123 

during the adaptation process. However, the coefficient and size of the genomic region 124 

associated with selection may not be directly comparable with adaptation, since most 125 

polymorphisms in the current study are based on expressed genes, compared to random 126 

sequence polymorphisms measured by Hufford et al. (2012) 
127 

 128 

Nucleotide diversity (�) in the selected features identified by XP-CLR in temperate vs. 129 

tropical lines was 8.22E-04 and 8.42E-04, respectively, indicating a reduction of 2.4% 130 

in temperate lines. This decrease is less than the reduction of nucleotide diversity in 131 

selected features identified during domestication (17%) by Hufford et al. (2012). Fst of 132 

selected features was 0.027, compared to 0.11 between teosinte and landraces, possibly 133 

due to the shorter time for adaptation from tropical to temperate than for domestication. 134 

However, this result is similar to 0.02 reported between landraces and improved lines 135 

(Hufford et al. 2012). 136 

 137 

The divergence time between temperate and tropical subpopulations is of interest and 138 

can be associated with the development of agriculture and the spread of human 139 

civilization in the Americas; however, archeological information on this topic is 140 

incomplete and occasionally contradictory (Piperno and Pearsall 1998; Staller and 141 

Thompson 2002; Blake et al. 2006; Grobman et al. 2012). We proposed three models 142 

(detailed in the methods section, Fig. 2A-C) to estimate the time of divergence, 143 

resulting in the estimation of 3,400-6,700 years BP. This time frame is supported by 144 

recent archeological evidence (Haas et al. 2013) and implies that after domestication, 145 

maize cultivation rapidly expanded to temperate America (Fig. 2D). The molecular 146 

evidence thus suggests that improvement and adaptation here may not have been 147 

sequential and discrete processes, but overlapped in maize. Although gene flow 148 

between maize and its wild relatives has been shown to be of adaptive importance for 149 

maize evolution (Van Heerwaardena et al. 2011; Hufford et al. 2013), and has been 150 
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measured in tropical maize (Warburton et al. 2011), it has been difficult to measure the 151 

rate or effect of gene flow in temperate lines following divergence; thus, we do not 152 

factor it into our analysis. 153 

 154 

Genome-wide selection analysis and functional correspondence  155 

The 701 selected regions were compared to 466 and 573 regions identified in 156 

domestication and improvement previously, respectively (Hufford et al. 2012; 157 

Supplemental Fig. S2). Seven regions were identified in all three processes, and may 158 

play a similar role in domestication and post-domestication, contributing to the unique 159 

phenotypes of temperate maize. Most adaptation regions did not overlap with 160 

domestication and improvement at all, indicating different genomic factors 161 

contributing to the phenotype changes during adaptation. 162 

 163 

Gene Ontology (GO) annotation of the top 571 candidate genes (see Materials and 164 

Methods) within the 701 selected regions reflected genes responding to stress, 165 

development, and metabolic processes (Supplemental Table S4). MFT (Mother of FT 166 

and TFL1, GRMZM2G059358), was identified as a strong candidate gene in 167 

adaptation (Fig. 1). It encodes a maize MFT-like protein, which is involved in seed 168 

dormancy and germination, a complex adaptation process modulated through a 169 

negative feedback loop via ABA (Xi et al. 2010). MFT is also known to be involved in 170 

control of shoot meristem growth and flowering time (Yoo et al. 2004). Flowering time 171 

changes is critical that allow maize to adapt to different environmental conditions such 172 

as photoperiod and temperature. Another gene, GRMZM2G360455, an important locus 173 

affecting the photoperiod response based on the maize nested association mapping 174 

(NAM) population analysis (Buckler et al. 2009), and also containing the 175 

“CO/CO-Like/TOC1 conserved site” (CCT), which is always contributed in circadian 176 

clock and flowering time (Robson et al. 2001; Griffiths et al. 2003; Cockram et al. 177 

2012), was selected during maize adaptation (Fig. 3A). Metabolic processes 178 

influencing nutritionally important traits such as starch content and oil concentration 179 

could likely be targets of selection not only during domestication and improvement but 180 

also adaptation, as different soil and climate conditions will influence developmental 181 

stage of germinating maize. Some genes associated with nutritional traits were selected 182 

during the adaptation process in our study (Fig. 1), such as su2 (GRMZM2G348551), 183 

zpu1 (pullulanase-type starch debranching enzyme1, GRMZM2G158043), and sdp1 184 

(GRMZM2G087612); these have also been identified as selection targets during 185 
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domestication and improvement (Zhang et al. 2004; Beatty et al. 1999; Eastmond 186 

2006). 187 

 188 

Selected metabolic pathways responding to a changing environment are also involved 189 

in the adaptation process. Glutathione plays an important role in cellular processes 190 

under biotic stress (Dubreuil-Maurizi and Poinssot 2012) and is one such example. 191 

Accordingly, gst35 (Glutathione S-transferase 35, GRMZM2G161891), gst41 192 

(Glutathione S-transferase 41, GRMZM2G097989) and gsh1 193 

(gamma-glutamylcysteine synthetase1, GRMZM2G111579), which influence 194 

glutathione metabolism, were all within our selected regions (Fig. 1). Traits related to 195 

plant architecture and vegetative growth were also selected during adaptation, and their 196 

corresponding genes were found in our top XP-CLR hits, including rs2 (rough sheath2, 197 

GRMZM2G403620), essential for normal leaf morphology (Phelps-Durr et al. 2005); 198 

bk2 (brittle stalk2, GRMZM2G109326) affecting mechanical strength of maize by 199 

altering the composition and structure of secondary cell wall tissues(Ching et al. 2006), 200 

and apt1 (aberrant pollen transmission1, GRMZM2G448687), affecting the elongation 201 

of root cortex cells and pollen tubes during temperature stress (Xu and Dooner 2006) 
202 

(Fig. 1, Supplemental Table S3).  203 

 204 

Phenomic changes affecting adaptation and validation of selected regions. 205 

Adaptation involves selection of different ecotypes suited to different environments, 206 

leading to measurable phenotypic differences between environments. To test this 207 

assumption, we collected 662 phenotypic data points including agronomic, yield, seed 208 

quality, and seed metabolic traits (Supplemental Tables S5, 6, 7; Wen et al. 2014). The 209 

��� � ���  method (Leinonen et al. 2013), by comparing complex partitioning of 210 

variation of quantitative traits and neutral molecular markers (see methods for details), 211 

allowed us to distinguish whether the divergent traits are caused by directional 212 

selection (��� � ����, genetic drift (��� � ����, or stabilizing selection (���<���) 213 

(Leinonen et al. 2013). One hundred and thirty traits displayed both divergent patterns 214 

suggestive of directional selection across the populations and significant (p�5.1E-05) 215 

differences between the tropical and temperate subgroups (Supplemental Table S8), 216 

which were likely to contribute to improved phenotypic performance in temperate 217 

conditions. 218 

 219 

To test if selected regions contributed to these phenotypic changes, a genome wide 220 
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association study (GWAS) was performed on the 130 divergent traits with 24,595 221 

SNPs from the selected regions. In total, 345 regions (49.22% of the total) were 222 

associated with 100 of the 130 traits (P < 4.06E-05), including three agronomic (days 223 

to silking, cob color and kernel color), one amino acid (Ala), and 96 metabolic traits 224 

(Supplemental Table S9). The genes identified here undoubtedly represent only a 225 

fraction of the total genes selected during adaptation, since many target traits were not 226 

measured in this study.  227 

 228 

Resistance to new biotic stresses was essential to the adaptation process. Gene 229 

GRMZM2G095043 falls within a selected genomic region, and likely contributes to 230 

resistance to new pathogens faced by migrating maize. This gene contains a 231 

WD40-repeat domain potentially involved in the regulation of the flavonoid pathway 232 

(Koes et al. 2005), and showed a strong association with both cob color and Tricin 233 

O-pentosyl-O-hexoside (n1570) in temperate lines in this study (Fig. 3D, E, F; 234 

Supplemental Table S9). Tricin O-pentosyl-O-hexoside is a flavonoid, and flavonoids 235 

are colored compounds that increase insect resistance (McMullen et al. 2009; Falcone 236 

et al. 2012). 237 

 238 

Quantitative trait locus (QTL) mapping was used to confirm the phenotypic effect of 239 

the selected regions. As flowering time changes is representative that allow maize to 240 

adapt to temperate environmental conditions such as photoperiod and temperature. 241 

Three RIL populations generated by crossing temperate lines with tropical/subtropical 242 

lines were used to map flowering time (Supplemental Table S10). The identified QTL 243 

were reported in Supplemental Table 7, and many (113, or 62%) overlapped 244 

significantly (P < 2.2E-16) with the identified selected regions (Fig. 1). For example, 245 

gene GRMZM2G360455, encoding a CCT domain-containing protein was located in 246 

the QTL interval for days to silking under short day (tropical) but not under long day 247 

(temperate) conditions, and also a candidate response to flowering time of the maize 248 

NAM population (Buckler et al. 2009), was identified within a selected region (Fig. 3A, 249 

B, C). Further study of this gene may provide a better understanding of maize 250 

flowering time and adaptation.  251 

 252 

Significance of transcriptional regulation to adaptation 253 

Differential expression 254 

Changes in gene regulation, impacting gene expression level but not gene structure, are 255 
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fundamental to the evolution of morphological and developmental diversity 256 

(Swanson-Wagner et al. 2012; Carroll 2008). The present datasets provide an excellent 257 

resource for investigating the contribution of transcriptome regulation to the adaptation 258 

process. The coefficient of variation (COV) was similar between tropical and 259 

temperate germplasm when considering gene expression of all genes (Fig. 4A), 260 

suggesting that most inbreds were probably at the same developmental stage and that 261 

no transcriptome-wide changes occurred between tropical and temperate lines. This 262 

agrees with a previous study (Swanson-Wagner et al. 2012), indicating that overall 263 

changes in expression did not happen during domestication and post-domestication. To 264 

study specific transcriptome signal response of individual genes or groups of genes 265 

contributing to the adaptation process, QST-FST of differentially expressed genes were 266 

compared, including single genes differentially expressed under different conditions or 267 

in different samples (DE), and genes with altered expression conservation (AEC) 268 

(Swanson-Wagner et al. 2012), representing the rewired co-expression of a gene 269 

network.  270 

 271 

Among 28,769 expressed genes, 2,700 (9.4% of the total) showed significant 272 

differential expression (posterior prob. > 0.9999); all exceeded neutral expectation 273 

(Supplemental Table S11). Comparing between temperate and tropical lines in the 274 

public available database with the same quantitative measurement and DE analysis 275 

process, we found a major part of these DE genes were also expressed differently in 276 

other tissues , including the shoot apex (Li et al. 2012), (P =1.88E-38) and seeding L3 277 

leaf (Eichten et al. 2013), (P =1.44E-15; Supplemental Fig. S3). This is highly 278 

suggestive that most differentially expressed genes identified here were not caused by 279 

random environmental and developmental variation and that many of the candidate DE 280 

genes continued to be important to adaptive differences later in the development of the 281 

mature plant. With more relaxed posterior probability (> 0.999), 14.4% of the total 282 

genes showed expression differences, and most were still likely to have been caused by 283 

directional selection (Supplemental Fig. S4).  284 

 285 

There were 871 up- and 1,829 down-regulated genes in temperate vs. tropical lines 286 

(Fig. 4B, Supplemental Table S11). These DE candidates tend to be regulated by 287 

distant eQTLs (P=1.74E-4, eQTL data from Fu et al. 2013), and especially for 288 

up-regulated (P=9.67E-12) but not for down-regulated (P=0.83) genes in temperate 289 

maize. With local (cis-) regulation, expression differences are caused by one regulatory 290 
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region near each expressed gene, while more distant (trans-) regulation often sees the 291 

expression of whole groups of genes regulated by a single genetic factor, causing 292 

potential widespread pleiotropic effects. Thus, trans-regulatory mutations seem to be 293 

better suited to the changes of complex phenotypes which are governed by the 294 

coordinated expression patterns of multiple genes and a single regulator. While some 295 

previous studies have emphasized the key role for cis-regulatory evolution (Wray et al. 296 

2007; Stern et al. 2009), our results suggest that trans-regulatory variation could 297 

contribute more commonly to adaptive phenotypic divergence.  298 

 299 

Gene Ontology (GO) analysis (Fig. 4C, D) of DE genes showed an enrichment of 300 

up-regulated genes involving molecular function, especially in catalytic activity, 301 

oxidoreductase activity, endopeptidase inhibitor activity and transferase activity 302 

(Supplemental Fig. S5). Endopeptidase levels are influenced by stress in plants (Antão 303 

and Malcata 2005; Richen et al. 2003) and animals (Karlsson et al. 2006), but clear 304 

mechanisms are still unknown. The GO analyses of down-regulated genes in temperate 305 

lines revealed enrichment of genes involved in processes such as response to stimuli, 306 

metabolism, and regulation (Supplemental Fig. S5). The same GO analyses also 307 

uncovered genes involved in cellular components and molecular functions; one 308 

down-regulated protein serine/threonine phosphatase involved in both aspects was 309 

particularly significant and is associated with biotic and abiotic stress (Antão and 310 

Malcata 2005) (Supplemental Fig. S5).  311 

 312 

The MADS-box family of transcription factors is important in the evolution of plant 313 

architecture and angiosperm inflorescence development, and is frequently identified as 314 

targeted regions of selection during the domestication of maize (Zhao et al. 2011). 315 

Three MADS-box genes [zmm5 (GRMZM2G148693), zmm29 (GRMZM2G152862) 316 

and zap1 (GRMZM2G171365)] were all down-regulated in temperate lines 317 

(Supplemental Fig. S6). These genes belong to the MICKc class of the MADS-box gene 318 

family and the TM3, GLO and SQUA subfamilies, respectively, and are involved in 319 

growth and flower homeotic function (Münster et al. 2002). The circadian clock is vital 320 

in flowering time networks which consist of three negative feedback loops. Gene 321 

TOC1b (GRMZM2G148453) is located in the central loop (Kolmos et al. 2008), and 322 

showed down-regulation in temperate lines in the current study (Supplemental Fig. S6). 323 

Some domestication and improvement genes (James et al. 1995; Jackson and Hake 324 

1999; Gross and Olsen, 2010) were also identified in the DE analysis, such as tb1 325 
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(teosinte branched 1, AC233950.1_FG002), su1 (sugary 1, GRMZM2G138060), and 326 

abph1 (aberrant phyllotaxy1, GRMZM2G035688) (Supplemental Fig. S6). The 327 

presence of domestication or improvement genes in the adaptation process implies 328 

sustaining natural and artificial selection throughout the entire process of maize 329 

evolution.  330 

 331 

Only 129 genes were identified both in DE and genome selection analysis. Gene 332 

Ontology analysis of these genes further indicates a diverse range of biological 333 

functions, from response to stimulus to biological regulation and metabolic processes 334 

(Supplemental Fig. S7). Since the two data sets have few genes in common, no specific 335 

pathways were highlighted in the simultaneous analysis of the two data sets. Additional 336 

genes could be found in transcriptome analysis of RNA collected from other tissues 337 

and organs, and a more complete annotation of maize genes would increase the number 338 

of genes in known pathways, which are currently incomplete. 339 

 340 

To seek association between DE genes and the divergent traits, transformed expression 341 

values of DE genes were analyzed via DE-GWAS (see Materials and Methods) with 342 

the 130 traits that had been found to be significantly different between tropical and 343 

temperate lines. Two hundred and forty five DE genes (9.07% of the total) were 344 

associated (P<1E-3) with 101 traits, including 75 traits overlapping with those detected 345 

by trait-SNP GWAS (Table 1). The 101 DE associated traits included 6 agronomic (cob 346 

color, days to silking, days to tasseling, days to pollen shedding, leaf number and 347 

kernel color), 5 amino acid (Ala, Arg, Asp, Lys, Gly) and 90 metabolic traits 348 

(Supplemental Table S12). Seven of the genes identified as associated in the genomic 349 

sequence analysis overlapped with genes identified in the DE-GWAS analysis.  350 

 351 

A series of DE genes (c2, pr1, a1, bz1, whp1) were detected that influence cob color 352 

via the flavonoid biosynthetic pathway (Sharma et al. 2012) (Fig. 5). Cob color 353 

segregated only in the temperate group and is known to be affected by chalcone 354 

synthase (CHS) and maysin synthesis, which are thought to be major contributors to 355 

corn worm resistance (McMullen et al. 2009; Sharma et al. 2012). As can be seen in 356 

Fig. 5, c2 (colorless2, GRMZM2G422750) is one of the main genes of the CHS 357 

pathway and is located upstream of maysin synthesis (Sharma et al. 2012). pr1 (purple 358 

aleurone1 or red aleurone1, GRMZM2G025832) is located downstream of c2, encodes 359 

a CYP450-dependent flavonoid 3’-hydroxylase required for synthesis anthocyanin, and 360 
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is involved in naringenin chalcone catabolism (Sharma et al. 2012). a1 361 

(anthocyaninless1, GRMZM2G026930), located downstream of c2 and pr1, is 362 

involved in the production of anthocyanins (Sharma et al. 2012). c2 and a1 were 363 

significantly associated with flavonoid catabolism (Supplemental Table S12). Kernel 364 

color ranked from light to dark (Supplemental Fig. S8A) displayed different 365 

distributions between tropical and temperate subgroups (Supplemental Fig. S8B), and 366 

was slightly negatively correlated with cob color (Supplemental Fig. S8C, P = 367 

1.31E-05). Kernel color was also affected by DE genes within the CHS pathway and 368 

different association patterns were observed between tropical and temperate lines by 369 

DE-GWAS analysis (Supplemental Fig. S8D). 370 

 371 

Altered expression conservation 372 

While DE can identify individual differentially expressed genes, altered expression 373 

conservation (Swanson-Wagner et al. 2012) (AEC) reflects the relationship of genes 374 

with their co-expressed group. In total, 389 genes showed the strongest AEC patterns 375 

(expression conservation score >2.5SD; Supplemental Table S13). Further analysis 376 

indicated that the average number of genes significantly co-expressed with AEC 377 

candidates (as measured by an absolute Pearson correlation coefficient 
 0.3) in 378 

temperate lines was higher (259 genes) than in tropical lines (147 genes; Supplemental 379 

Fig. S9). This indicates that the changes faced in temperate environments may have 380 

enhanced interactions between genes in certain pathways. Among the stronger 381 

relationships, the number of genes with negative correlations (Pearson correlations 382 

coefficient � 0) was higher in temperate germplasm as well (24.4% in temperate lines 383 

vs. 3.2% in tropical lines). Few genes were co-expressed with the same candidate AEC 384 

gene in both temperate and tropical lines (Supplemental Fig. S9), which suggests a 385 

rewiring of the regulation networks in the temperate subgroup during adaptation. 386 

However, the rewiring appears to have been less dramatic during adaptation since 387 

fewer AEC genes were identified for adaptation than for domestication 388 

(Swanson-Wagner et al. 2012). In contrast, the number of differentially expressed 389 

individual genes found in the adaptation analysis was higher than for domestication 390 

(Swanson-Wagner et al. 2012).  391 

 392 

As sessile organisms, plants have evolved to integrate endogenous and external 393 

information and employ signal transduction processes to allow growth plasticity and 394 

survive and thrive in their environments. Essential to this plant-environment interaction 395 
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are plant hormones, including auxins, ethylene, abscisic acid, and brassinosteroids, 396 

which play a key role in plant growth, development, defenses and stress tolerance 397 

(Wolters and Jürgens 2009). Plant hormones modulate gene expression by controlling 398 

either the abundance of transcriptional factors or repressors, or their activities through 399 

post-translational modifications (Dharmasiri et al. 2013). Hormonal cross-talk and 400 

interaction with other plant compounds and environmental factors rely on complicated 401 

signaling networks. These networks generally intersect in central nodes. Six candidate 402 

genes related to plant hormones were observed in our AEC analysis and may act as 403 

central nodes in plant hormonal production. Three (GRMZM2G078480, 404 

GRMZM5G860241 and GRMZM2G086773) belong to brassinosteroid biosynthesis 405 

pathway, one (GRMZM5G864847) was an auxin-responsive Aux/IAA family member, 406 

and two (GRMZM2G026131, GRMZM2G390385) were in the pathway producing 407 

ethylene biosynthesis from methionine (Supplemental Fig. S10). These candidates, 408 

along with their co-expressed genes, showed very different networks in temperate vs. 409 

tropical germplasm (Supplemental Fig. S10). This could provide helpful clues to a 410 

deeper understanding of the complex relationship between hormones and their 411 

contributions to maize adaptation.  412 

 413 

Many studies have identified the function of F box receptors in hormone controlling 414 

and signaling (Dharmasiri et al. 2005; Kepinski and Leyser 2005; Koops et al. 2011; 415 

Shen et al. 2012). AEC analysis also identified an F-box protein (GRMZM2G031958; 416 

Jia et al. 2013) displaying different regulation patterns, with a series of 462 and 85 417 

highly co-expressed genes observed in temperate and tropical lines, respectively. 418 

Beyond the remarkable difference in network size, several co-expressed enzymes, 419 

including cytochrome-c reductases, NADH-ubiquinone oxidoreductases, peroxidases 420 

and amidase, and some genes functioned in abscisic acid and IAA biosynthesis and 421 

gluconeogenesis were only exists within temperate lines. These results are consistent 422 

with the earlier studies that F-box proteins could play a regulatory role in 423 

glucose-induced seed germination by targeting ABA synthesis (Song et al. 2012). 424 

F-box proteins also play critical roles in seed development, grain filling and response 425 

to abiotic stress(Jain et al. 2007) in crop plants, and co-expressed (with our F-box 426 

candidate) genes involved in cytokinins degradation, cellulose biosynthesis, and 427 

flavonoid and flavonol biosynthesis pathways were observed in the temperate 428 

subgroup but not in the tropical. This F-box gene was also highly co-expressed with an 429 

ethylene-responsive factor-like protein (GRMZM2G169382), an abscisic stress protein 430 
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homolog (GRMZM2G044132), a SAUR37-auxin-responsive family member 431 

(GRMZM2G045243), another two F-box domain-containing proteins 432 

(GRMZM2G116603 and GRMZM2G071705) and several transcriptional factors 433 

(zmm29, GRMZM2G152862; ethylene-responsive transcription factors, 434 

GRMZM2G474326 and GRMZM2G169382; WRKY1, GRMZM2G018487; 435 

WRKY25, GRMZM2G148561; WOX2B, GRMZM2G339751; and more with putative 436 

regulation of transcription functions). In addition, the teosinte glume architecture 1 437 

(tga1) protein and an Early Flowering 4 (EF4)-like protein simultaneously showed 438 

strong relationships with the target F-box gene. These two proteins have been 439 

hypothesized to contribute to maize adaptation to temperate climates in past studies 440 

(Khanna et al. 2003; Ducrocq et al. 2008). The identification of the genes encoding 441 

these proteins made the network more complex, and further studies are needed. Gene 442 

Ontology analysis of all the co-expressed genes in temperate lines revealed an 443 

abundance of genes that respond to temperature stimulus and abiotic and other stress 444 

(Supplemental Table S14), which were undoubtedly required during maize adaptation 445 

to temperate environments. 446 

 447 

Discussion 448 

The process of adaptation was as important a driving factor as domestication in the 449 

creation of a geographically diverse crop, allowing maize to spread into a wide range 450 

of environments around the world. The impacts of domestication and improvement on 451 

the genome and transcriptome have started to be studied (Hufford et al. 2012; 452 

Swanson-Wagner et al. 2012), but adaptation has not been as systematically analyzed. 453 

In this study, large sets of genomic, transcriptomic and phenomic data were used to 454 

analyze the mechanisms of morphological evolution leading to adaptation. Plant 455 

response to the environmental change especially stress may have been the key initial 456 

step towards adaptation to more extreme latitudes (Fig. 2D). A variety of mechanisms 457 

could have contributed to stress response during the maize life cycle, including 458 

changes in seed dormancy, germination, plant architecture, flowering time, and optimal 459 

utilization of resources (nitrogen, water, etc). In the face of new biotic stresses, a series 460 

of resistance mechanisms can also evolve at both the genomic and transcriptomic 461 

levels. Traits allowing the plant to successfully respond to stress are precisely those of 462 

interest to farmers and plant breeders who have achieved improvement of temperate 463 

lines by the selection of such stress tolerance (Tollenaar and Wu 1999). 464 

 465 
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It has been suggested that studies scanning for positive selection may incur high 466 

false-positive rates and can be misleading (Pavlidis et al. 2012). In this study, we use 467 

two additional and reliable methods, GWAS and QTL mapping, to provide stronger 468 

evidence for the selected regions and a link to the contributory traits. We also identified 469 

transcriptomic variants contributing to the adaptation process, including differentially 470 

expressed individual genes and evidence for rewiring of co-expression networks. These 471 

candidate genes and regions were found to be functionally related to stress response 472 

and most were associated with the directionally selected traits. While this study 473 

focused on seed transcriptome, the seed-expressed genes and phenotypes provide the 474 

first steps towards a systematic study of the adaptation process and inform our 475 

understanding of the extent to which transcriptome variation influences the 476 

environmental adaptation process.  477 

 478 

It has been recently reported that human adaptation is driven primarily by gene 479 

expression changes (Fraser 2013). The present study reveals that transcriptome 480 

regulation was also prevalent in maize adaptation. Plants live in a dynamic 481 

environment, but selection on genomic variation may be too slow to cause the changes 482 

that allow the plant to adapt to a rapidly changing environment (Chen 2007). Selection 483 

on protein coding sequence variation is risky, as most mutations are harmful or lethal 484 

to the organism, and even changes which are beneficial to some of cells or under some 485 

conditions may be harmful to other tissues or under other conditions (Ecker et al. 2012). 486 

Sufficient protein-coding sequence changes at the genomic level would be unlikely to 487 

respond to environmental changes experienced in one or a few generations; however, 488 

rapid changes in transcriptome regulation can occur quickly and lead to a rapid 489 

phenotypic differentiation (Chen 2007). Transcriptome changes are 490 

resource-economical and are frequently associated with temporally and spatially 491 

related gene-expression patterns, the effects of which can be limited to specific cells 492 

(Carroll 2008; Ecker et al. 2012). Our models, indicating a separation time between 493 

temperate and tropical maize of 3,400-6,700 years BP, suggest that a great number of 494 

changes took place during a few thousand years. The differences in transcription of 495 

individual genes and correlated suites of genes between temperate and tropical maize 496 

can be explained by this hypothesis. Some studies (Cortessis et al. 2012; Ptashne 2007) 497 

have suggested that epigenetic regulation was the main genetic driver causing 498 

regulatory evolution, and that epigenetic modification could also lead to increased 499 

mutation rate (Rideout et al. 1990; Schuster-Böckler et al. 2012). Further study and 500 
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more direct evidence will be needed to better understand the interplay between 501 

epigenetic and genetic processes under selection and provide new insights, and 502 

possibly new mechanisms, for practical plant improvement. 503 

 504 

Although our comprehensive study of genomic, transcriptomic and phenomic variation 505 

sheds new light on the process of adaptation in modern maize, much is left to be 506 

uncovered. In particular, changes due to adaptation of temperate maize are inferred in 507 

the current study by comparing temperate maize with tropical maize grown in northern 508 

temperate growing areas. Although similar divergence and changes may have 509 

happened as maize migrated to far southern temperate regions, no South American 510 

maize was studied here and thus this conclusion remains to be confirmed. In future 511 

studies, expression data from more tissues and genotypes need be included and studied 512 

under more environmental conditions to allow a finer dissection of genes and 513 

mechanisms involved in adaptation. It also should be kept in mind that all the 514 

genotypic variation was identified by comparison to the temperate maize reference 515 

genome (B73). If a bias was introduced by this method of polymorphism identification, 516 

it was not considered in this study. Novel assembly strategies taking into account the 517 

variation from more lines could reduce this bias (if present), and exploration of more 518 

variant types, such as presence/absence variation (PAV), should also be considered in 519 

future studies of the adaptation process. Detailed studies on changes in the 520 

transcriptome and in particular, the role of epigenetics, could lead to a clearer 521 

understanding of adaptation, possibly leading in turn to more innovative techniques to 522 

allow plant breeders to apply native trait variation to maize improvement.  523 
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Methods  524 

Maize inbred lines and collection of genotypic, phenotypic and gene expression 525 

data.  526 

The 368 maize inbred lines included in this study form a global collection including 527 

representative temperate and tropical/subtropical inbred lines listed in Supplemental 528 

Table S1, and additional information about the lines can be found in previous study 529 

(Yang et al. 2011). 530 

 531 

The poly(A) transcriptome collected from kernels at 15 days after pollination from all 532 

368 lines was sequenced using 90-bp paired-end Illumina sequencing with libraries of 533 

200-bp insert sizes, and 25.8 billion high-quality reads were obtained after filtering out 534 

reads with low sequencing quality. A total of 1.03 million high-quality single 535 

nucleotide polymorphisms (SNPs) with a missing data rate less than 60% were used for 536 

imputation of missing genotypes. Three pairs of biological replicates (SK, Han21, and 537 

Ye478) were used to evaluate the reproducibility of genotyping by RNA-seq. The 538 

concordance rates were greater than 99% between each pair of replicates (Fu et al. 539 

2013), indicating that the sequencing and SNP calling procedures were reproducible. In 540 

addition, all lines were genotyped via the Illumina MaizeSNP50 array. SNPs generated 541 

by RNA-seq also met high concordance rates with the genotypes determined by the 542 

MaizeSNP50 BeadChip (Fu et al. 2013). Both RNA-seq and MaizeSNP50 data sets 543 

were merged to obtain a total of more than 1.06 million SNPs; a final data set of 0.56 544 

million SNPs with a MAF of greater than 5% was produced and more detailed 545 

information can be found in a previous study (Fu et al. 2013).  546 

 547 

To quantify the expression of known genes with annotation in the B73 reference 548 

genome (filtered-gene set, version 2, release 5b), a total of 28,769 genes corresponding 549 

to mapped sequence reads in more than 50% of the inbred lines were compiled, and 550 

each gene averaged more than 1.5K reads. Read counts for each gene were calculated 551 

and scaled according to RPKM (reads per kilo base of exon model per million mapped 552 

reads). After RPKM normalization, all genes with a median expression level greater 553 

than zero for each sample were included, and the overall distribution of expression 554 

levels for each gene was normalized using a normal quantile transformation (Fu et al. 555 
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2013). The same three pairs of biological replicates were shown to share most 556 

compiled genes (average 95.71%) with high concordance (average person’s r=0.87, 557 

(Supplemental Fig. S12) in expression quantification between each pair of replicates. 558 

More details on library construction, sequencing, SNP detection, genotype imputation, 559 

positive control of SNP accuracy and quantile normalization of expression is described 560 

in Fu et al. (2013). 561 

 562 

To obtain agronomic traits (reported in Supplemental Table S5), all inbred lines were 563 

planted with randomized complete experimental design by single replication in 2010 in 564 

four locations (Honghe autonomous prefecture, Yunan province; Sanya, Hainan 565 

province; Wuhan, Hubei province; Ya’an, Sichuan province) and 2011 in three 566 

locations (Chongqing; Hebi, Henan province; Nanning, Guangxi province). The seven 567 

different locations ranged from 18 to 35 degrees north in latitude and from 102 to 114 568 

degrees east in longitude. Kernel color was measured in five additional trials over two 569 

years (Sanya, Hainan province in 2011; Honghe autonomous prefecture, Yunan 570 

province in 2012; Chongqing in 2012; Wuhan, Hubei province in 2012; Hebi, Henan 571 

province in 2012). All agronomic traits were measured and the Best Linear Unbiased 572 

Predictor (BLUP) values from different environments and years were used for final 573 

analysis (Supplemental Table 2). Maize kernels from each entry in the panel planted in 574 

Chongqing in 2011 were collected to quantify amino acid content (Supplemental Table 575 

S6), and samples from the panel planted in Yunnan (2011) and Hainan (2010) were 576 

harvested to measure metabolic traits. Only the metabolites measured in at least two of 577 

the three experiments and showing high correlation (P value<0.05) in the two 578 

experiments were retained to calculate BLUP values for the next analysis 579 

(Supplemental Table S7).   580 

 581 

Population structure of 368 inbred lines 582 

The STRUCTURE software package (Pritchard et al. 2000) was used to analyze the 583 

population structure and the EIGENSOFT analysis package (Patterson et al. 2006; 584 

Price et al. 2006) was used to run a Principal Component Analysis (PCA) of the panel 585 

used in the present study (Supplemental Fig. S13). Considering the computation time, a 586 

SNP marker subset was used for inferring population structure; the subset of 14,685 587 

SNPs was created by removing adjacent SNPs within 50Kbp intervals. All lines were 588 
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divided into three subpopulations corresponding to stiff stalk (SS), non-stiff stalk (NSS) 589 

and tropical and sub-tropical (TST) clusters by STRUCTURE, using a probability of 590 

inclusion into each cluster of greater than 0.65(Yan et al. 2009). In the final analysis, 591 

there were 133 temperate (103 NSS + 30 SS) lines, 149 tropical (TST) lines, and 86 592 

mixed lines (Supplemental Table S1, Supplemental Fig. S13). The mixed were 593 

excluded from further analyses to allow a clearer comparison between tropical and 594 

temperate features. The population structure was similar to the analysis of the same 595 

lines reported previously using 1536 SNPs (Yang et al. 2011). 596 

 597 

Measuring the genomic changes occurring during the maize adaptation process 598 

To evaluate changes in the maize genome due to adaption, population genetics 599 

statistics including π (Tajima 1983) and Fst (Nei 1977) were calculated within the 600 

differently adapted maize groups. Fst was estimated as follows: 601 

��� � ��� � ���/�� 

�� � 1 � ���� � ���������
� � ��������

� � � ���� � ���������
� � ��������

� � 

�� � 1 � ����� � �������� � ���� � ����������

� ����� � �������� �  ���� � ����������     

Where �� refers to heterozygosity within subpopulations, and  �� refers 602 

heterozygosity in the overall population. The variable �  refers to proportion of 603 

subpopulation based on size, and �����/����� is the frequency of allele A or allele 604 

B in each subpopulation. The Synbreed package (Wimmer et al. 2012) of the R-project 605 

statistical package (http://www.R-project.org) was used to compute the linkage 606 

disequilibrium (LD) coefficient, r2. The ggplot2 package of R (Wickham 2009) was 607 

used to plot LD decay, as well as all visualization in this study (except as noted, 608 

below). 609 

 610 

To identify regions of the maize genome that have undergone selection during the 611 

process of adaption from tropical to temperate climates, a cross-population composite 612 

likelihood approach (Chen et al. 2010) (XP-CLR) was used. The following parameters 613 

were applied to implement the XP-CLR test: the size of the window was 0.005 Morgan; 614 

the maximum number of controlled SNPs within a window was 100; the spacing 615 

between two grid points was 1000 bp; and a corrLevel value of 0.7 was used as a 616 
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down-weighted criterion in the weighted composite likelihood ratio test. Adjacent 617 

10kb-windows from the top 20% of the XP-CLR results were merged into larger 618 

regions, according to Hufford et al. (2012), and only one window lower than 20% was 619 

retained for each region. Regions in the highest 10% of the mean region-wise XP-CLR 620 

values were regarded as having undergone selection. Gene sequences closest to the 621 

maximum XP-CLR value were designated as the most likely candidate genes for 622 

selection, while others within each selected region were considered as possible selected 623 

genes. The linkage map used in the XP-CLR analysis was constructed using an RIL 624 

population generated from the cross of B73×BY804 with 197 individuals described 625 

previously (Chander et al. 2008) and the maize SNP50 chip (Ganal et al. 2011) was 626 

used to re-genotype the RIL population with 15,285 polymorphic SNPs. The distance 627 

between unmapped SNPs was estimated based on the constructed linkage map and B73 628 

reference genome (version 2).  629 

 630 

Estimating the relative divergence time between temperate and tropical lines 631 

Assuming a time scale of teosinte/maize divergence of about 10,000 years, an 632 

FST-based approach (Schlebusch et al. 2012) was used to estimate a relative divergence 633 

time between temperate and tropical subpopulations, under the assumptions of no 634 

genetic drift, no change in effective population size, and equal generation times in each 635 

lineage. Although violations of these assumptions are probable and may reduce the 636 

accuracy of the estimated divergence times, the estimated divergence times will still be 637 

useful for the purposes of this study and in the general study of maize evolution. We 638 

combined our SNP data with the maize HapMapII (Chia et al. 2012) data and retained 639 

all the SNPs from teosinte (Chia et al. 2012) and maize with the same loci, consistent 640 

alleles, and missing ratio of alleles less than 20% to calculate Fst between temperate 641 

maize (TEM) and teosinte (TEO, 0.0668), and between TEM and tropical/subtropical 642 

maize (TST, 0.0453). Divergence time (T, measured in units of 2Ne generations where 643 

Ne is the effective number of diploid individuals) was calculated using Fst as according 644 

to the following formula (Schlebusch et al. 2012): 645 

T � �log �1 � ���� 

Most of the SNP genotypes were located within expressed sequences, but the results 646 

should not be affected by this, assuming similar biases between the two comparisons 647 

and sufficient numbers of markers to smooth out unequal biases due to potential 648 
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unequal selection pressures on some loci. Different models were proposed to improve 649 

estimation of the relative divergence time. Assuming the teosinte lines from which we 650 

extracted SNPs were indeed the primitive ancestors (or contained the same sequence 651 

diversity within them as the actual ancestors), then  ��	
��� � 10,000 "�#�$; (Fig. 652 

2A) and we can calculate the divergence time between TEM and TST using the 653 

following formula:  654 

 ��	
���/ ��	
��� � �log �1 � �$%��	
����/�� log�1 � �$%��	
����� 

 655 

This resulted in a divergence time of   ��	
���=6,700 years BP. Assuming further that 656 

the teosinte lines have undergone a similar selection pressure (Fig. 2B), the analogical 657 

formula can be used to calculate   ��	
��� divergence time as 3,400 years BP. 658 

However, because it is more likely that the teosinte lines have experienced a selection 659 

level that is not as strong as that of the adaptation process (Fig. 2C), the true 660 

divergence time of adaptation would fall between the two estimated times. Bioclimatic 661 

variables data from WORLDCLIM database (Hijmans et al. 2005) and the DIVA-GIS 662 

(Hijmans et al. 2012) software was used to map the stress (annual mean temperature) 663 

faced by maize during the adaptation process (Fig. 2D). 664 

 665 

Analysis of directional selection of phenomic divergence 666 

��� � ���  comparison provide us with a method to distinguish population 667 

differentiation of complex polygenic traits as having been caused by natural selection 668 

or by genetic drift (Leinonen et al. 2013). ��� was estimated for all phenomic traits 669 

including expression traits as follows: 670 

��� � &�

� /�&�


� � 2&��
� � 

Where &�

�   refers to the genetic component of variance among subpopulations, and 671 

&��
�  is the average component of variance within each subpopulation.  672 

To accurately estimate the distribution of mean ��� among tropical and temperate 673 

subpopulations, 10,000 SNPs were chosen randomly from the entire SNP data set and 674 

the calculation was repeated 1,000 times (Supplemental Fig. S14). By applying a strict 675 

outlier definition, we employed a 99% confidence interval (0.025~0.0273) for the ���  676 

distribution, ensuring a more correct comparison of ���-��� . A ���>���  value was 677 

regarded as proof of trait divergence outstripping the expectation of a neutral state and 678 

thus of a strong directional selection signal (Leinonen et al. 2013). 679 
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 680 

Differential expression analysis 681 

Cyber-T (Baldi and Long 2001), a regularized t-test method that also contains 682 

statistical inferences on experiment-wide false positive and negative levels based on 683 

the modeling of p-value distributions, was used on normalized expression data (Fu et al. 684 

2013) for the identification of statistically significant differentially expressed genes. 685 

Posterior Probability of Differential Expression (PPDE) 
0.9999 was determined to 686 

identify differentially expressed (DE) genes in our study.  687 

 688 

Characterization of genes displaying altered expression conservation 689 

To identify which genes show Altered Expression Conservation (AEC), a statistic 690 

which reflects the co-expression of genes in a gene network (Swanson-Wagner et al. 691 

2012), the expression data was divided into 2 matrices (Etst and Etem) based on 692 

adaptation (tropical and temperate) and a co-expression network was created for each 693 

matrix ((��
���  and (��

���). The hmisc package in R (Harrell 2012) was used to calculate 694 

the Pearson correlation coefficient between each pair of gene expression values within 695 

each subset, (TEM or TST). Hmisc is an efficient algorithm for calculations in very 696 

large data sets, and is calculated as: 697 

(��
��� � ,--�.�

��� , .�
���� 

(��
��� � ,--�.�

��� , .�
���� 

for i, j = 1 ,..., 28,769. Thus, (��
���  and (��

��� are square matrices with the same 698 

dimensions (28,769 × 28,769). Each value in the two matrices represents an edge 699 

weight in the co-expression network and is the measured similarity between expression 700 

profiles of paired genes. Although the two matrices have identical dimensions, the 701 

distribution of values in each matrix may differ because of unequal sample sizes. Thus, 702 

to compare the two co-expression networks more accurately, the distributions were 703 

normalized by subtracting the mean and dividing by the SD to obtain a standard 704 

normal distribution. An expression conservation (EC) score was calculated as the 705 

Pearson correlation coefficient between gene profiles in the two co-expression 706 

networks as described by Swanson-Wagner et al. (2012): 707 
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.- � ,--�.�
��� , .�

���� 

Where .�
��� and .�

���  were represented by the i-th rows in the temperate and tropical 708 

co-expression matrices, respectively. AEC genes were selected using a / score 709 

(Swanson-Wagner et al. 2012) to calculate each EC value as follows: 710 

/ �
.- � 0

&
 

Where μ and σ were the mean and SD of all the gene’s EC scores. The z score cutoff 711 

of altered expression conservation values of genes was set at �−2.5. The software 712 

Circos (Krzywinski et al. 2009) was used for visualizing the results in a circular layout. 713 

 714 

Candidate gene annotation and GO enrichment analysis 715 

To more fully explore candidate genes’ functions, the annotation resources of 716 

maizeGDB (Lawrence et al. 2008) and the InterPro (Zdobnov and Apweiler 2001) 717 

database were integrated into the analyses. Gene Onotology (GO) enrichment analysis 718 

was maintained by AgriGO (Du et al. 2010) with the Fisher statistical test method (P 719 

<=0.05) and Yekutieli muti-test adjustment method (FDR<=0.05).The GOSlimViewer 720 

of AgBase (McCarthy 2006) was used to implement GO slim analysis, and the updated 721 

GO items of the maize genome were downloaded from Ensembl BioMart (Kinsella et 722 

al. 2011) on April 4th, 2013. 723 

 724 

Association and QTL mapping analysis 725 

SNPs within regions that have experienced selection according to the XP-CLR 726 

approach (24,595 in total) were used in an association analysis with the 111 different 727 

traits using the software package GAPIT (Lipka et al. 2012) and a compressed mixed 728 

linear model. The cutoff for significance for associations was set at 1/n (n is the 729 

number of SNPs used, p <4.06E-05). To better compare trait-SNP GWAS results with 730 

the genes identified following DE analysis, the DE identified genes were transformed 731 

prior to analysis into a discontinuous pseudo genotype with two alleles, one if 732 

expression of the gene for a given line was higher than the median of all lines, and the 733 

other if it was lower. Three recombinant inbred line (RIL) populations were used to 734 

map QTL: BY population: BK (an inbred selected from a tropical landrace with very 735 
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big kernel size) × Yu87-1 (an elite inbred with tropical background used frequently in 736 

Chinese breeding programs), SZ population: SK (an inbred selected from a tropical 737 

landrace with very small kernel size) × Zheng58 (an elite inbred used frequently in 738 

Chinese breeding programs), and YZ population: Yu87-1 (an elite inbred with tropical 739 

background used frequently in Chinese breeding programs) × Zong3 (an elite inbred 740 

used frequently in Chinese breeding programs). The QTL were mapped for three 741 

flowering times traits: days to tasseling (DTT), measured as the number of days from 742 

planting to 50% male flower appearance; days to silking (DTS) or the number of days 743 

from planting to 50% female flower appearance; and days to anthesis (DTA), the 744 

number of days from planting to 50% male flower pollen shed. Mapping was done 745 

using WinQTLcart (Wang et al. 2011) and a LOD threshold value for significance set 746 

to 2.5. The flowering time traits are an indication of adaptation and thus used as a 747 

proxy for that trait. 748 

 749 

Comparison with DE gene sets from other tissues  750 

Li et al. (Li et al. 2013) conducted RNA-seq on the shoot apex from 2-wk-old 751 

seedlings of the NAM founders. We downloaded the raw data and quantified with the 752 

same procedure used in the present study (Fu et al. 2013) and average expression level 753 

of the two runs of each line was used. The third leaf (L3) after germination of the 754 

NAM founders was also RNA-sequenced by the Springer laboratory, and the RPKM 755 

results were obtained by the author (Eichten et al. 2013). These two studies provided 756 

different tissues and different genetic backgrounds compared to the current study; these 757 

were used to test if genes identified with differential expression in the current study are 758 

tissue-specific or if, as assumed in the current study, will prove to have lasting effects 759 

during maize development and maturity. Furthermore, consistency of expression 760 

differences in different populations can be validated. Genes with zero mapped reads in 761 

more than 60% of the inbred lines were excluded and the overall distribution of 762 

expression levels for each remaining gene was normalized using the normal quantile 763 

transformation (Fu et al. 2013). Lines with unmixed temperate (NSS+SS) and tropical 764 

backgrounds were used to call DE genes (P value < 0.05) with the same method (Fu et 765 

al. 2013). To test if the number of overlapping DE genes (Supplemental Fig. S3) is 766 

significant between the current study and the two published experiments, random 767 

subsamples of genes were chosen from each comparison pair (using same the number 768 

for each subset as the number of DE genes identified by each study); this simulation 769 
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was repeated 10,000 times to create a distribution of random overlap DE comparisons 770 

(Supplemental Fig. S3). This distribution was used to test if the observed number of 771 

DE overlaps is in accordance with the simulated normal distribution. 772 
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Data access 774 

There is no newly generated data in this study. All the data used in this study were 775 

published previously, and can be found in the Methods section.  776 
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TABLE LEGEND 801 

Table 1. Summary of SNP-trait and expression-trait association studies  802 

 803 

 804 

FIGURE LEGENDS 805 

Figure 1. Integrated results of genome-selection (XP-CLR), transcriptome analysis (DE 806 

and AEC) and QTL mapping. ① Ten chromosomes of maize. ② XP-CLR value: the 807 

top 20% are marked in red, and the bottom 80% in grey.③ QTL mapping results for 808 

days to silking (DTS, red), days to tasseling (DTT, green) and days to anthesis (DTA, 809 

blue). ④  Results of DE and AEC. Red and blue boxes indicate up- and 810 

down-regulated genes in temperate maize (TEM) relative to tropical (TST), 811 

respectively; green boxes indicate AEC genes. Some of the larger boxes are genes 812 

referred to in the text. 813 

 814 

Figure 2. Maize dispersion map and divergence time estimations. (A) Divergence time 815 

(T) was estimated between temperate (TEM) and tropical/subtropical (TST) maize, 816 

using extant teosinte (TEO) lines as the ancestor of maize. (B) Divergence time (T) 817 

was estimated using a model supposing a common ancestor to TEM, TST, and TEO 818 

and equal selection pressure on extant TEO lines (leading to T’ for teosinte) as on TST 819 

and TEM. (C) Divergence time was estimated between (A) and (B), with the more 820 

likely assumption that TEO lines have experienced a lower level of selection pressure 821 

(and smaller T’) than the intensity faced by TEM and TST during the adaptation 822 

process. (D) Maize dispersion map showing environmental difference in annual mean 823 

temperature. Arrows show possible dispersion routes and the numbers beside the routes 824 

indicate the likely time (in years before present) when the dispersion happened, and the 825 

circle (beside a silver star) is the center of maize domestication (Hufford et al. 2012). 826 

Even though there are no inbred lines from South America, the dispersion route to 827 

South America was inferred from a previous study (Wallace et al. 2014). 828 

 829 

Figure 3. Examples of validation of the function of genes within selected genomic 830 

regions, using GWAS, QTL mapping, and gene annotations. (A) Gene 831 

GRMZM2G360455 was in a selected region on chromosome 5. (B) The region which 832 

contained GRMZM2G360455 covered a QTL for days to silking (DTS). (C) 833 
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Annotation of GRMZM2G360455 disclosed a CCT domain in this gene which is 834 

related to flowering time. (D) GRMZM2G095043 was in the selected region on 835 

chromosome 1. (E) GRMZM2G095043 was strongly associated with cob color and 836 

naringenin, which is upstream of the anthocyanin and maysin pathways, and causes 837 

changes in cob color. (F). Annotation of GRMZM2G095043 indicates that it contains a 838 

WD40 domain which could control multiple enzymatic steps in the flavonoid pathway. 839 

 840 

Figure 4. Transcriptional differential expression analysis. (A) Density plots for the 841 

coefficient of variance (COV) for gene expression levels in all lines (black), temperate 842 

lines (blue), and tropical lines (red). (B) Genes with significantly different expression 843 

were used for hierarchical clustering. (C) Enrichment analysis of GO annotation within 844 

up-regulated genes in temperate lines relative to tropical lines. (D) Enrichment analysis 845 

of GO annotation of down-regulated genes in temperate lines relative to tropical lines. 846 

Within the specific GO terms in (C) and (D), MF represents genes of molecular 847 

function, CC represents genes with a cellular component, and BP are genes associated 848 

with biological processes. 849 

 850 

Figure 5. Cob color was influenced by the flavonoid biosynthetic pathway in maize. (A) 851 

A simplified flavonoid biosynthetic pathway. Genes in red were found to be associated 852 

with cob color in this study. (B). Genes involved in the flavonoid pathway showed 853 

significantly differential expression between temperate and tropical groups. (C). Three 854 

DE genes (c2 (GRMZG2G422750), pr1 (GRMZG2G025832), a1 (GRMZG2G026930)) 855 

had significant association with cob color. 856 

 857 
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Table 1. Summary of SNP-trait and expression-trait association studies  1133 

 Associated 

traitsa 

Agronomic 

traits 

Amino 

acid traits 

Metabolic 

traits 

Related 

genesb 

Genome 100 3 1 96 518 

Transcriptome  101 6 5 90 245 

Overlapped 75 3 1 71 7 

Total 126 6 5 115 756 

a represents the divergent traits which were associated with varied markers (SNPs or DE genes) 1134 

using genome wide association study (GWAS). 1135 

b represents the closest genes (or within genes) of the significant associated markers. 1136 

 1137 
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