
Song et al.

SOFTWARE

Lighter: fast and memory-efficient error
correction without counting
Li Song 1, Liliana Florea2,1 and Ben Langmead1,2*

*Correspondence:

langmea@cs.jhu.edu
1Department of Computer

Science, Johns Hopkins University,

21218, Baltimore, USA

Full list of author information is

available at the end of the article

Abstract

Lighter is a fast, memory-efficient tool for correcting sequencing errors. Lighter

avoids counting k-mers. Instead, it uses a pair of Bloom filters, one holding a

sample of the input k-mers and the other holding k-mers likely to be correct. As

long as the sampling fraction is adjusted in inverse proportion to the depth of

sequencing, Bloom filter size can be held constant while maintaining

near-constant accuracy. Lighter is parallelized, uses no secondary storage, and is

both faster and more memory-efficient than competing approaches while

achieving comparable accuracy.

Keywords: Probablistic method; Low space complexity; Sequence error

correction

Introduction

The cost and throughput of DNA sequencing have improved rapidly in the past sev-

eral years [1], with recent advances reducing the cost of sequencing a single human

genome at 30-fold coverage to around $1,000 [2]. With these advances has come an

explosion of new software for analyzing large sequencing datasets. Sequencing error

correction is a basic need for many of these tools. Removing errors at the outset of

an analysis can improve accuracy of downstream tools such as variant callers [3].

Removing errors can also improve the speed and memory-efficiency of downstream

tools, particularly for de novo assemblers based on De Bruijn graphs [4, 5].

To be useful in practice, error correction software must make economical use of

time and memory even when input datasets are large (many billions of reads) and

when the genome under study is also large (billions of nucleotides). Several methods

have been proposed, covering a wide tradeoff space between accuracy, speed and

memory- and storage-efficiency. SHREC [6] and HiTEC [7] build a suffix index of

the input reads and locate errors by finding instances where a substring is followed

by a character less often than expected. Coral [8] and ECHO [9] find overlaps

among reads and use the resulting multiple alignments to detect and correct errors.

Reptile [10] and Hammer [11] detect and correct errors by examining each k-mer’s

neighborhood in the dataset’s k-mer Hamming graph.

The most practical and widely used error correction methods descend from the

spectral alignment approach introduced in the earliest De Bruijn graph based assem-

blers [4, 5]. These methods count the number of times each k-mer occurs (its multi-

plicity) in the input reads, then apply a threshold such that reads with multiplicity

exceeding the threshold are considered solid. These k-mers are unlikely to have

been altered by sequencing errors. k-mers with low multiplicity (weak k-mers) are

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 2 of 18

systematically edited into high-multiplicity k-mers using a dynamic-programming

solution to the spectral alignment problem [4, 5] or, more often, a fast heuristic

approximation. Quake [3], the most widely used error correction tool, uses a hash-

based k-mer counter called Jellyfish [12] to determine which k-mers are correct.

CUDA-EC [13] was the first to use a Bloom filter as a space-efficient alternative to

hash tables for counting k-mers and for representing the set of solid k-mers. More

recent tools such as Musket [14] and BLESS [15] use a combination of Bloom filters

and hash tables to count k-mers or to represent the set of solid k-mers.

Lighter (LIGHTweight ERror corrector) is also in the family of spectral alignment

methods, but differs from previous approaches in that it avoids counting k-mers.

Rather than count k-mers, Lighter samples k-mers randomly, storing the sample in

a Bloom filter. Lighter then uses a simple test applied to each position of each read

to compile a set of solid k-mers, stored in a second Bloom filter. These two Bloom

filters are the only sizable data structures used by Lighter.

A crucial advantage is that Lighter’s parameters can be set such that memory

footprint and accuracy are near-constant with respect to depth of sequencing. That

is, no matter how deep the coverage, Lighter can allocate the same sized Bloom

filters and achieve nearly the same (a) Bloom filter occupancy, (b) Bloom filter

false positive rate, and (c) error correction accuracy. Lighter does this without

using any disk space or other secondary memory. This is in contrast to BLESS and

Quake/Jellyfish, which use secondary memory to store some or all of the k-mer

counts.

Lighter’s accuracy is comparable to competing tools. We show this both in simu-

lation experiments where false positives and false negatives can be measured, and

in real-world experiments where read alignment scores and assembly statistics can

be measured. Lighter is also very simple and fast, faster than all other tools tried

in our experiments. These advantages make Lighter quite practical compared to

previous counting-based approaches, all of which require an amount of memory or

secondary storage that increases with depth of coverage. Lighter is free open source

software available from https://github.com/mourisl/Lighter/.

Method

Lighter’s workflow is illustrated in Figure 1. Lighter makes three passes over the

input reads. The first pass obtains a sample of the k-mers present in the input

reads, storing the sample in Bloom filter A. The second pass uses Bloom filter A to

identify solid k-mers, which it stores in Bloom filter B. The third pass uses Bloom

filter B and a greedy procedure to correct errors in the input reads.

Bloom filter

A Bloom filter [16] is a compact probabilistic data structure representing a set. It

consists of an array of m bits, each initialized to 0. To add an item o, h independent

hash functions H0(o), H1(o), ..., Hh−1(o) are calculated. Each maps o to an integer

in [0,m) and the corresponding h array bits are set to 1. To test if item q is a

member, the same hash functions are applied to q. q is a member if all corresponding

bits are set to 1. A false positive occurs when the corresponding bits are set to 1

“by coincidence,” that is, because of items besides q that were added previously.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 3 of 18

Assuming the hash functions map items to bit array elements with equal probability,

the Bloom filter’s false positive rate is approximately (1− e−h n

m)h, where n is the

number of distinct items added, which we call the cardinality. Given n, which is

usually determined by the dataset, m and h can be adjusted to achieve a desired

false positive rate. Lower false positive rates can come at a cost, since greater

values of m require more memory and greater values of h require more hash function

calculations. Many variations on Bloom filters have been proposed that additionally

permit compression of the filter, storage of count data, representation of maps in

addition to sets, etc [17]. Bloom filters and variants thereon have been applied in

various bioinformatics settings, including assembly [18], compression [19], k-mer

counting [20], and error correction [13].

By way of contrast, another way to represent a set is with a hash table. Hash

tables do not yield false positives, but Bloom filters are far smaller. Whereas a

Bloom filter is an array of bits, a hash table is an array of buckets, each large

enough to store a pointer, key, or both. If chaining is used, lists associated with

buckets incur additional overhead. While the Bloom filter’s small size comes at the

expense of false positives, these can be tolerated in many settings including in error

correction.

Lighter’s efficiency depends on the efficiency of the Bloom filter implementation.

Specifically Lighter uses a pattern-blocked Bloom filter to decrease overall number

of cache misses and improve efficiency. This comes at the expense of needing a

slightly larger filter to achieve a comparable false positive rate to a standard filter,

as discussed in Supplementary Note 1.

In our method, the items to be stored in the Bloom filters are k-mers. Because

we would like to treat genome strands equivalently for counting purposes, we will

always canonicalize a k-mer before adding it to, or using it to query a Bloom filter.

A canonicalized k-mer is either the k-mer itself or its reverse complement, whichever

is lexicographically prior.

Sequencing model

We use a simple model to describe the sequencing process and Lighter’s subsam-

pling. The model resembles one suggested previously [21]. LetK be the total number

of k-mers obtained by the sequencer. We say a k-mer is incorrect if its sequence has

been altered by one or more sequencing errors. Otherwise it is correct. Let ǫ be the

fraction of k-mers that are incorrect. We assume ǫ does not vary with the depth of

sequencing. The sequencer obtains correct k-mers by sampling independently and

uniformly from k-mers in the genome. Let the number of k-mers in the genome be

G, and assume all are distinct. If κc is a random variable for the multiplicity of a

correct k-mer in the input, κc is binomial with success probability 1/G and number

of trials (1 − ǫ)K: κc ∼ Binom((1 − ǫ)K, 1/G). Since the number of trials is large

and the success probability is small, the binomial is well approximated by a Poisson:

κc ∼ Pois(K(1− ǫ)/G)

A sequenced k-mer survives subsampling with probability α. If κ′

c is a random

variable for the number of times a correct k-mer appears in the subsample, κ′

c ∼

Binom((1− ǫ)K,α/G), which is approximately Pois(αK(1− ǫ)/G).

We model incorrect k-mers similarly. The sequencer obtains incorrect k-mers

by sampling independently and uniformly from k-mers “close to” a k-mer in the

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 4 of 18

genome. We might define these as the set of all k-mers with low but non-zero

Hamming distance from some genomic k-mer. If κe is a random variable for the

multiplicity of an incorrect k-mer, κe is binomial with success probability 1/H and

number of trials ǫK: κe ∼ Binom(ǫK, 1/H), which is approximately Pois(Kǫ/H).

It is safe to assume H ≫ G. κ′

e ∼ Pois(αKǫ/H) is a random variable for the

number of times an incorrect k-mer appears in the subsample.

Others have noted that, given a dataset with deep and uniform coverage, incor-

rect k-mers occur rarely while correct k-mers occur many times, proportionally to

coverage [4, 5].

Stages of the method

First pass. In the first pass, Lighter examines each k-mer of each read. With

probability 1 − α, the k-mer is ignored. k-mers containing ambiguous nucleotides

(e.g. “N”) are also ignored. Otherwise, the k-mer is canonicalized and added to

Bloom filter A.

Say a distinct k-mer a occurs a total of Na times in the dataset. If none of the Na

occurrences survive subsampling, the k-mer is never added to A and A’s cardinality

is reduced by one. Thus, reducing α can in turn reduce A’s cardinality. Because

correct k-mers are more numerous, incorrect k-mers tend to be discarded from A

before correct k-mers as α decreases.

The subsampling fraction α is set by the user. We suggest adjusting α in inverse

proportion to depth of sequencing, for reasons discussed below. For experiments

described here, we set α = 0.1 when the average coverage is 70-fold. That is, we set

α to 0.1 70
C where C is average coverage.

Second pass. A read position is overlapped by up to x k-mers, 1 ≤ x ≤ k, where x

depends on how close the position is to either end of the read. For a position altered

by sequencing error, the overlapping k-mers are all incorrect and are unlikely to

appear in A. We apply a threshold such that if the number of k-mers overlapping

the position and appearing in Bloom filter A is less than the threshold, we say

the position is untrusted. Otherwise we say it is trusted. Each instance where the

threshold is applied is called a test case. When one or more of the x k-mers involved

in two test cases differ, we say the test cases are distinct.

Let P ∗(α) be the probability an incorrect k-mer appears in A, taking the Bloom

filter’s false positive rate into account. If random variable Be,x represents the num-

ber of k-mers appearing in A for an untrusted position overlapped by x k-mers,

Be,x ∼ Binom(x, P ∗(α)). We define thresholds yx, for each x in [1, k]. yx is the

minimum integer such that p(Be,x ≤ yx − 1) ≥ 0.995.

Ignoring false positives for now, we model the probability of a sequenced a k-mer

having been added to A as P (α) = 1−(1−α)f(α). We define f(α) = max{2, 0.2/α}.

That is, we assume the multiplicity of a weak k-mer is at most f(α), which will

often be a conservative assumption, especially for small α. It is also possible to

define P (α) in terms of random variables κe and κ′

e, but we avoid this here for

simplicity.

A property of this threshold is that when α is small, P (α/z) = 1−(1−α/z)0.2z/α ≈

1 − (1 − α)0.2/α = P (α), where z is a constant greater than 1 and we use the fact

that (1− α/z)z ≈ 1− α.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 5 of 18

For P ∗(α), we additionally take A’s false positive rate into account. If the false

positive rate is β, then P ∗(α) = P (α) + β − βP (α).

Once all positions in a read have been marked trusted or untrusted using the

threshold, we find all instances where k trusted positions appear consecutively. The

k-mer made up by those positions is added to Bloom filter B.

Third pass. In the third pass, Lighter applies a simple, greedy error correction

procedure similar to that used in BLESS [15]. A read r of length |r|, contains

|r|−k+1 k-mers. ki denotes the k-mer starting at read position i, 1 ≤ i ≤ |r|−k+1.

We first identify the longest stretch of consecutive k-mers in the read that appear

in Bloom filter B. Let kb and ke be the k-mers at the left and right extremes of

the stretch. If e < |r| − k + 1, we examine successive k-mers to the right starting

at ke + 1. For a k-mer ki that does not appear in B, we assume the nucleotide at

offset i + k − 1 is incorrect. We consider all possible ways of substituting for the

incorrect nucleotide. For each substitution, we count how many consecutive k-mers

starting with ki appear in Bloom filter B after making the substitution. We pick

the substitution that creates the longest stretch of consecutive k-mers in B. The

procedure is illustrated in Figure 2.

If more than one candidate substitution is equally good (i.e. results in the same

number of consecutive k-mers from B), we call position i + k − 1 ambiguous and

make no attempt to correct it. The procedure then resumes starting at ki+k, or the

procedure ends if the read is too short to contain k-mer ki+k.

When errors are located near to end of a read, the stretches of consecutive k-

mers used to prioritize substitutions are short. E.g. if the error is at the very last

position of the read, we must choose a substation on the basis of just one k-mer: the

rightmost k-mer. This very often results in a tie, and no correction. Lighter avoid

many of these ties by considering k-mers that extend beyond the end of the read,

as discussed in Supplementary Note 2.

For better precision, Lighter also limits the corrections that can be made in any

window of size k in a read. The default limit is 4, and it is configurable. Correc-

tions at positions with an “N” contribute 0, and corrections at low-quality bases

(defined in the Quality score section below) contribute 0.5 toward this limit. All

other positions contribute 1.

Scaling with depth of sequencing

Lighter’s accuracy can be made near-constant as the depth of sequencing K in-

creases and its memory footprint is held constant. This is accomplished by holding

αK constant, i.e., by adjusting α in inverse proportion to K. This is illustrated in

Tables 1 and 2. We also argue this more formally in Supplementary Note 3.

Quality score

A low base quality value at a certain position can force Lighter to treat that position

as untrusted even if the overlapping k-mers indicate it is trusted. First, Lighter scans

the first 1 million reads in the input, recording the quality value at the last position

in each read. Lighter then chooses the 5th-percentile quality value; that is, the value

such that 5% of the values are less than or equal to it say t1. Use the same idea,

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 6 of 18

we get another 5th-percentile quality, say t2 value for the first 1 million reads’ first

base. When Lighter decides whether a position is trusted or not, if its quality score

is less or equal to min{t1, t2 − 1}, then call it untrusted regardless of how many of

the overlapping k-mers appear in Bloom filter A.

Parallelization

As shown in Figure 1, Lighter works in three passes: (1) populating Bloom filter A

with a k-mer subsample, (2) applying the per-position test and populating Bloom

filter B with likely-correct k-mers, and (3) error correction. For pass 1, because α is

usually small, most time is spent scanning the input reads. Consequently, we found

little benefit to parallelizing pass 1. Pass 2 is parallelized by using concurrent threads

handle subsets of input reads. Because Bloom filter A is only being queried (not

added to), we need not synchronize accesses to A. Accesses to B are synchronized

so that additions of k-mers to B by different threads do not interfere. Since it

is typical for the same correct k-mer to be added repeatedly to B, we can save

synchronization effort by first checking whether the k-mer is already present and

adding it (synchronously) only if necessary. Pass 3 is parallelized by using concurrent

threads to handle subsets of the reads; since Bloom filter B is only being queried,

we need not synchronize accesses.

Evaluation

Supplementary Note 4 describes the computer all experiments were conducted on.

Supplementary Note 5 describes the exact command lines used.

Simulated dataset

Accuracy on simulated data. We compared Lighter v1.0.2’s performance with

Quake v0.3 [3], Musket v1.1 [14], BLESS v0p17 [15], and SOAPec v2.0.1 [22]. We

simulated a collection of reads from the reference genome for the K12 strain of E.

coli (NC 000913.2) using Mason v0.1.2 [23].

We simulated six distinct datasets with 101bp single-end reads, varying average

coverage (35x, 75x 140x) and average error rate (1% and 3%). For a given error rate

e we specify Mason parameters -qmb e/2 -qme 3e, so that the average error rate is

e but errors are more common toward the 3’ end, as in real datasets.

We then ran all four tools on all six datasets, with results presented in Table

1. BLESS was run with the -notrim option to make the results more compara-

ble. In these comparisons, a true positive (TP) is an instance where an error is

successfully corrected, i.e. with the correct base substituted. A false positive (FP)

is an instance where a spurious substitution is made at an error-free position. A

false negative (FN) is an instance where we either fail to detect an error or an

incorrect base is substituted. As done in previous studies [14], we report the fol-

lowing summaries: recall = TP/(TP+NP), precision = TP/(TP+FP), F-score =

2×recall×precision/(recall+precision) and gain = (TP-FP)/(TP+FN).

Since these tools are sensitive to the choice of k-mer size, we tried several values

for this parameter (17, 19, 23, 27, 31) and picked the value yielding the greatest

gain in the accuracy evaluation. The k-mer sizes chosen are shown in the bottom

rows of Table 1. Note that SOAPec’s maximum k-mer size is 27. We found that

Quake crashed for k-mer sizes 23 and up.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 7 of 18

Unlike the other tools, Quake both trims the untrusted tails of the reads and

discards reads it cannot correct. BLESS also trims some reads (even in -notrim

mode), but only a small fraction (<0.1%) of them, which has only a slight effect

on results. For these simulation experiments, we measure precision and recall with

respect to all the nucleotides (even the trimmed ones) in all the reads (even those

discarded). This tends to lead to higher precision but lower recall for Quake relative

to the other tools.

Apart from Quake, SOAPec, Musket and Lighter achieve the highest precision.

Lighter achieves the highest recall, F-score and gain in the experiments with 1%

error, and is comparable to BLESS when the error rate is 3%.

To see how quality value information affects performance, we repeated these ex-

periments with quality values omitted (Supplementary Table 1). Quake and BLESS

accept only FASTQ input files (which include quality values), and so were not in-

cluded in the experiment. Lighter achieves superior recall, gain and F-score.

To see how the choice of read simulator affects performance, we repeated these

experiments using the Art [24] simulator to generate the reads instead of Mason

(Supplementary Table 2). All tools perform quite similarly in this experiment, ex-

cept SOAPec, which has poor recall compared to the others. There is less difference

between tools than in the Mason experiment, likely because Art simulates a rela-

tively low (∼0.25%) error rate. Lighter and Musket perform best overall.

For the Mason-simulated 1% error dataset, we found that Lighter’s gain was

maximized by setting the k-mer size to 23. We therefore fix the k-mer size to 23 for

subsequent experiments, except where otherwise noted.

C. elegans simulation. We performed a similar accuracy test as in the previous

section, but using data simulated from the larger C. elegans genome, WBcel235

(Supplementary Table 3). We used Mason to simulate a dataset of 101bp single-end

reads with a 1% error rate totaling 35x coverage. We again tried several values for

the k-mer size parameter (19, 23, 27, 31) and picked the value yielding the greatest

gain in the accuracy evaluation. As for the E. coli experiment, Lighter had the

greatest recall, F-score and gain.

Scaling with depth of simulated sequencing. We also used Mason to generate a

series of datasets with 1% error, similar to those used in Table 1, but for 20×, 35×,

70×, 140× and 280× average coverage. We ran Lighter on each and measured final

occupancies (fraction of bits set) for Bloom filters A and B. If our assumptions and

scaling arguments are accurate, we expect the final occupancies of the Bloom filters

to remain approximately constant for relatively high levels of coverage. As seen in

Table 2, this is indeed the case.

Cardinality of Bloom filter B. We also measured the number of correct k-mers

added to table B. We used the Mason dataset with 70x coverage and 1% error rate.

The E. coli genome has 4,564,614 distinct k-mers, and 4,564,569 (99.999%) of them

are in table B.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 8 of 18

Effect of ploidy on Bloom filter B. We conducted a experiment similar to that in

the previous section but with Mason configured to simulate reads from a diploid

version of the E. coli genome. Specifically, we introduced heterozygous SNPs at

0.1% of the positions in the reference genome. Mason then sampled equal numbers

of reads from both genomes, making a dataset with 70x average coverage in total.

Of the 214,567 simulated k-mers that overlapped a position with a heterozygous

SNP, table B held 214,545 (99.990%) of them at the end of the run. Thus, Lighter

retained in table B almost the same fraction of the k-mers overlapping heterozygous

positions (99.990%) as of the k-mers overall (99.999%).

Musket and BLESS both infer a threshold for the multiplicity of solid k-mers. In

this experiment, Musket inferred a threshold of 10 and BLESS inferred a threshold

of 9. All three tools are using a k-mer size of 23. By counting the multiplicity

of the k-mers overlapping heterozygous positions, we conclude that Musket would

classify 214,458 (99.949%) as solid and BLESS would classify 214,557 (99.995%) as

solid. So in the diploid case, it seems Lighter’s ability to identify correct k-mers

overlapping heterozygous SNPs is comparable to that of error correctors that are

based on counting.

Diploidy is one example of a phenomenon that tends to drive the count distri-

bution for some correct k-mers (those overlapping heterozygous variants) closer to

the count distribution for incorrect k-mers. In the Discussion section we elaborate

on other such phenomena, such as copy number, sequencing bias, and non-uniform

coverage.

Effect of varying α. In a series of experiments, we measured how different settings

for the subsampling fraction α affected Lighter’s accuracy as well as the occupancies

of Bloom filters A and B. We still use the datasets simulated by Mason with 35×,

70× and 140× coverage.

As shown in Figures 3 and 4, only a fraction of the correct k-mers are added to

A when α is very small, causing many correct read positions to fail the threshold

test. Lighter attempts to “correct” these error-free positions, decreasing accuracy.

This also has the effect of reducing the number of consecutive stretches of k trusted

positions in the reads, leading to a smaller fraction of correct k-mers added to B,

and ultimately to lower accuracy. When α grows too large, the yx thresholds grow

to be greater than k, causing all positions to fail the threshold test, as seen in Figure

4’s right-hand side. This also leads to a dramatic drop in accuracy as seen in Figure

3. Between the two extremes, we find a fairly broad range of values for α (from

about 0.15 to 0.3) that yield high accuracy when the error rate is 1% or 3%. The

range is wider when the error rate is lower.

Effect of varying k. A key parameter of Lighter is the k-mer length k. Smaller k

yields higher probability that a k-mer affected by a sequencing error also appears

elsewhere in the genome. For larger k, the fraction of k-mers that are correct de-

creases, which could lead to fewer correct k-mer in Bloom filter A. We measured

how different settings for k affect accuracy using the simulated data with 35× cov-

erage and both 1%, 3% error rate. Results are shown in Figure 5. Accuracy is high

for k-mer lengths ranging from about 18 to 30 when the error rate is 1%. But the

recall drops gradually when when the rror rate is 3%.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 9 of 18

Real datasets

E. coli. Next we benchmarked the same error correction tools using a real sequenc-

ing dataset, ERR022075. This is a deep DNA sequencing dataset of the the K-12

strain of the E. coli genome. To obtain a level of coverage more reflective of other

projects, we randomly subsampled the reads in the dataset to obtain roughly 75x

coverage (∼3.5M reads) of the E. coli K-12 reference genome. The reads are 100

× 102 bp paired-end reads. Because BLESS cannot handle paired-end reads where

the ends have different lengths, we truncated the last 2 bases from the 102 bp end

before running our experiments. We again ran BLESS with the -notrim option.

These data are not simulated, so we cannot measure accuracy directly. But we

can measure it indirectly, as other studies have [15], by measuring read alignment

statistics before and after error correction. We use Bowtie2 [25] v2.2.2 with default

parameters to align the original reads and the corrected reads to the E. coli K-12

reference genome. For each error corrector, we tested different k-mer sizes (17, 19,

23, 27, 31) and chose the size that yielded the greatest total number of matching

aligned nucleotides. For Quake and BLESS, we use only the reads (and partial reads)

that remained after trimming and discarding for this evaluation. Results are shown

in Table 3. Lighter yields the greatest improvement in fraction of reads aligned,

whereas Quake and BLESS yield the greatest improvement in fraction of aligned

bases that match the reference, with Lighter very close behind. As before, Quake is

hard to compare to the other tools because it trims and discards many reads.

We repeated this experiment using a less sensitive setting for Bowtie 2 (Supple-

mentary Table 4) and using BWA-MEM [26] v0.7.9a-r786 to align the reads instead

of Bowtie 2 (Supplementary Table 5) and found that the error correction tools

performed similarly relative to each other.

To further assess accuracy, we assembled the reads before and after error correc-

tion and measured relevant assembly statistics using Quast [27]. The corrected reads

are those reported in Table 3. We used Velvet 1.2.10 [28] to assemble. Velvet is a

De Bruijn graph-based assembler designed for second-generation sequencing reads.

A key parameter of Velvet is the De Bruijn graph’s k-mer length. For each tool we

tested different k-mer sizes for Velvet (43, 47, 49, 51, 53, 55, 57, 63, 67) and chose

the one that yielded the greatest NG50. We set the error correctors’ k-mer sizes to

match those selected in the alignment experiment of Table 3. As before, we used

only the reads (and partial reads) that remained after trimming and discarding for

Quake and BLESS. For each assembly, we then evaluated the assembly’s quality

using Quast, which was configured to discard contigs shorter than 100 bp before

calculating statistics. Results are shown in Table 4.

N50 is the length such that the total length of the contigs no shorter than the N50

cover at least half the assembled genome. NG50 is similar, but with the require-

ment that contigs cover half the reference genome rather than half the assembled

genome. Edits per 100kbps is the number of mismatches or indels per 100kbps when

aligning the contigs to the reference genome. A misassembly is an instance where

two adjacent stretches of bases in the assembly align either to two very distant or to

two highly overlapping stretches of the reference genome. The Quast study defines

these metrics in more detail [27].

Assemblies produced from reads corrected with the four programs are very similar

according to these measures, with Quake and Lighter yielding the longest contigs

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 10 of 18

and the greatest genome coverage. Surprisingly, the post-correction assemblies have

more differences at nucleotide level compared to the pre-correction assemblies, per-

haps due to spurious corrections.

GAGE human chromosome 14. We also evaluated Lighter’s effect on alignment

and assembly using a dataset from the GAGE project [29]. The dataset consists of

real 101 × 101 bp paired-end reads covering human chromosome 14 to 35× average

coverage (∼36.5M reads). For each error corrector, we tested different k-mer sizes

(19, 23, 27, 31) and chose the size that yielded the greatest total number of matching

aligned nucleotides. For the assembly experiment, we set each error corrector’s k-

mer size to match that selected in the alignment experiment. Also for each assembly

experiment, we tested different k-mer sizes for Velvet (47, 53, 57 ,63, 67) and chose

the one that yielded the greatest NG50.

Error correction’s effect on Bowtie 2 alignment statistics are shown in Table 5.

We used Bowtie 2 with default parameters to align the reads to an index of the

human chromosome 14 sequence of the hg19 build of the human genome. As before,

Lighter yields the greatest improvement in fraction of reads aligned, whereas Quake

and BLESS yield the greatest improvement in fraction of aligned bases that match

the reference, with Lighter very close behind.

We repeated this experiment using BWA-MEM as the aligner instead of Bowtie

2 (Supplementary Table 6) and found that the tools performed similarly.

We also tested error correction’s effect on de novo assembly of this dataset using

Velvet for assembly and Quast to evaluate the quality of the assembly. For each

tool we tested different k-mer sizes (19, 23, 27, 31) and chose the one that yielded

the greatest NG50. Results are shown in Table 6. Overall, Lighter’s accuracy on

real data is comparable to other error correction tools, with Lighter and BLESS

achieving the greatest N50, NG50 and coverage.

C. elegans. Using the same procedure as in the previous section, we measured the

effect of error correction on another large real data using the reads from accession

SRR065390. Results are shown in Tables 7 and 8. This run contains real 100 ×

100 bp paired-end reads covering the C. elegans genome (WBcel235) to 66× aver-

age coverage (∼ 67.6M reads). k-mer sizes for the error correctors and for Velvet

were selected in the same was as for the chromosome 14 experiment. The align-

ment comparison shows BLESS achieving the greatest increase in fraction of reads

aligned, and BLESS and Quake achieving the greatest fraction of aligned bases that

match the reference, probably due to their trimming policy. Lighter does the best of

the non-trimming tools in the alignment comparison. In the assembly comparison,

Lighter and SOAPec achieve the greatest N50, NG50, and coverage.

Speed, space usage, and scalability

We compared Lighter’s peak memory usage, disk usage, and running time with

Quake, Musket and BLESS. These experiments were run on a computer running Red

Hat Linux 4.1.2-52 with 48 2.1GHz AMD Opteron processors and 512G memory.

The input datasets are the same simulated E. coli datasets with 1% error rate

discussed previously, plus the GAGE human chromosome 14 dataset and C. elegans

dataset.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 11 of 18

The measure of space usage is shown in Table 9. BLESS and Lighter achieve con-

stant memory footprint across sequencing depths. While Musket uses less memory

than Quake, it uses more than either BLESS or Lighter. BLESS achieves con-

stant memory footprint across sequencing depths, but consumes more disk space

for datasets with deeper sequencing. Note that BLESS can be configured to trade

off between peak memory footprint and the number of temporary files it creates.

Lighter’s algorithm uses no disk space. Lighter’s only sizable data structures are

the two Bloom filters, which reside in memory.

To assess scalability, we also compared running time for Quake, Musket and

Lighter using different number of threads. For these experiments we used the simu-

lated E. coli dataset with 70× coverage and 1% error. Results are shown in Figure 6.

Note that Musket requires at least 2 threads due to its master-slave design. BLESS

can only be run with one thread and its running time is 1812s, which is slower than

Quake.

Discussion

At Lighter’s core is a method for obtaining a set of correct k-mers from a large

collection of sequencing reads. Unlike previous methods, Lighter does this without

counting k-mers. By setting its parameters appropriately, its memory usage and

accuracy can be held almost constant with respect to depth of sequencing. It is also

quite fast and memory-efficient, and requires no temporary disk space.

Though we demonstrate Lighter in the context of sequencing error correction,

Lighter’s counting-free approach could be applied in other situations where a col-

lection of solid k-mers is desired. For example, one tool for scaling metagenome

sequence assembly uses of a Bloom filter populated with solid k-mers as a memory-

efficient, probabilistic representation of a De Bruijn graph [18]. Other tools use

counting Bloom filters [30, 31] or the related CountMin sketch [32] to represent De

Bruijn graphs for compression [19] or digital normalization and related tasks [33].

We expect Ideas from Lighter could be useful in reducing the memory footprint of

these and other tools.

An important question is how Lighter’s performance can be improved for datasets

where coverage is significantly non-uniform, and where solid k-mers can therefore

have widely varying abundance. In practice, datasets have non-uniform coverage be-

cause of ploidy, repeats and sequencing bias. Also, assays such as exome and RNA

sequencing intentionally sample non-uniformly from the genome. Even in standard

whole-genome DNA sequencing of a diploid individual, k-mers overlapping heterozy-

gous variants will be about half as abundant as k-mers overlapping only homozygous

variants. Lighter’s ability to classify the heterozygous k-mers deteriorates as a re-

sult, as shown in the section “Effect of ploidy on Bloom Filter B” above. Hammer

[11] relaxes the uniformity-of-coverage assumption and favors corrections that in-

crease the multiplicity of a k-mer, without using a threshold to separate solid from

non-solid k-mers. A question for future work is whether something similar can be

accomplished in Lighter’s non-counting regime, or whether some counting (e.g. with

a counting Bloom filter [30, 31] or CountMin sketch [32]) is necessary.

A related issue is systematically biased sequencing errors, i.e. errors that correlate

with the sequence context. One study demonstrates this bias in data from the

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 12 of 18

Illumina GA II sequencer [34]. This bias boosts the multiplicity of some incorrect k-

mers, causing problems for error correction tools. For Lighter, increased multiplicity

of incorrect k-mers causes them to appear more often (and spuriously) in Bloom

filters A and/or B, ultimately decreasing accuracy. It has also been shown that these

errors (a) tend to have low base quality, and (b) tend to occur only on one strand

or the other [34]. Lighter’s policy of using a 5th-percentile threshold to classify low-

quality positions as untrusted will help in some cases. However, because Lighter

canonicalizes k-mers (as do many other error correctors), it loses information about

whether an error tends to occur on one strand or the other.

Lighter has three parameters the user must specify: the k-mer length k, the

genome length G, and the subsampling fraction α. While the performance of Lighter

is not overly sensitive to these parameters (see Figures 3 and 5), it is not desirable to

leave these settings to the user. In the future, we plan to extend Lighter to estimate

G, along with appropriate values for k, and α, from the input reads. This could be

accomplished with methods proposed in the KmerGenie [35] and KmerStream [21]

studies.

Lighter is free open source software released under the GNU GPL license, and has

been compiled and tested on Linux, Mac OS X and Windows computers. The soft-

ware and its source are available from https://github.com/mourisl/Lighter/.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

LS and BL designed and analyzed the method. LS implemented the software. LS, LF and BL evaluated the software

and wrote the manuscript.

Acknowledgements

The authors thank Jeff Leek for helpful discussions. Funding: National Science Foundation grant ABI-1159078 to LF

and a Sloan Research Fellowship to BL.

Author details
1Department of Computer Science, Johns Hopkins University, 21218, Baltimore, USA. 2McKusick-Nathans Institute

of Genetic Medicine, Johns Hopkins University School of Medicine, 21205, Baltimore, USA.

References

1. Glenn, T.C.: Field guide to next-generation dna sequencers. Molecular Ecology Resources 11(5), 759–769

(2011)

2. Hayden, E.C.: Is the $1,000 genome for real? Nature News (2014)

3. Kelley, D.R., Schatz, M.C., Salzberg, S.L., et al.: Quake: quality-aware detection and correction of sequencing

errors. Genome Biol 11(11), 116 (2010)

4. Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to dna fragment assembly. Proceedings

of the National Academy of Sciences 98(17), 9748–9753 (2001)

5. Chaisson, M., Pevzner, P., Tang, H.: Fragment assembly with short reads. Bioinformatics 20(13), 2067–2074

(2004)

6. Schröder, J., Schröder, H., Puglisi, S.J., Sinha, R., Schmidt, B.: Shrec: a short-read error correction method.

Bioinformatics 25(17), 2157–2163 (2009)

7. Ilie, L., Fazayeli, F., Ilie, S.: Hitec: accurate error correction in high-throughput sequencing data. Bioinformatics

27(3), 295–302 (2011)

8. Salmela, L., Schröder, J.: Correcting errors in short reads by multiple alignments. Bioinformatics 27(11),

1455–1461 (2011)

9. Kao, W.-C., Chan, A.H., Song, Y.S.: Echo: a reference-free short-read error correction algorithm. Genome

research 21(7), 1181–1192 (2011)

10. Yang, X., Dorman, K.S., Aluru, S.: Reptile: representative tiling for short read error correction. Bioinformatics

26(20), 2526–2533 (2010)

11. Medvedev, P., Scott, E., Kakaradov, B., Pevzner, P.: Error correction of high-throughput sequencing datasets

with non-uniform coverage. Bioinformatics 27(13), 137–141 (2011)

12. Marçais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting of occurrences of k-mers.

Bioinformatics 27(6), 764–770 (2011)

13. Shi, H., Schmidt, B., Liu, W., Müller-Wittig, W.: A parallel algorithm for error correction in high-throughput

short-read data on cuda-enabled graphics hardware. Journal of Computational Biology 17(4), 603–615 (2010)

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 13 of 18

14. Liu, Y., Schröder, J., Schmidt, B.: Musket: a multistage k-mer spectrum-based error corrector for illumina

sequence data. Bioinformatics 29(3), 308–315 (2013)

15. Heo, Y., Wu, X.-L., Chen, D., Ma, J., Hwu, W.-M.: Bless: Bloom-filter-based error correction solution for

high-throughput sequencing reads. Bioinformatics, 030 (2014)

16. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7),

422–426 (1970)

17. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of bloom filters for distributed systems.

Communications Surveys & Tutorials, IEEE 14(1), 131–155 (2012)

18. Pell, J., Hintze, A., Canino-Koning, R., Howe, A., Tiedje, J.M., Brown, C.T.: Scaling metagenome sequence

assembly with probabilistic de bruijn graphs. Proceedings of the National Academy of Sciences 109(33),

13272–13277 (2012)

19. Jones, D.C., Ruzzo, W.L., Peng, X., Katze, M.G.: Compression of next-generation sequencing reads aided by

highly efficient de novo assembly. Nucleic acids research 40(22), 171–171 (2012)

20. Melsted, P., Pritchard, J.K.: Efficient counting of k-mers in dna sequences using a bloom filter. BMC

bioinformatics 12(1), 333 (2011)

21. Melsted, P., Halldórsson, B.V.: Kmerstream: Streaming algorithms for k-mer abundance estimation. bioRxiv

(2014)

22. Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., et al.: Soapdenovo2:

an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1), 18 (2012)

23. Holtgrewe, M.: Mason–a read simulator for second generation sequencing data. Technical Report FU Berlin

(2010)

24. Huang, W., Li, L., Myers, J.R., Marth, G.T.: Art: a next-generation sequencing read simulator. Bioinformatics

28(4), 593–594 (2012)

25. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with bowtie 2. Nature methods 9(4), 357–359

(2012)

26. Li, H.: Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv preprint

arXiv:1303.3997 (2013)

27. Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G.: Quast: quality assessment tool for genome assemblies.

Bioinformatics 29(8), 1072–1075 (2013)

28. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de bruijn graphs. Genome

research 18(5), 821–829 (2008)

29. Salzberg, S.L., Phillippy, A.M., Zimin, A., Puiu, D., Magoc, T., Koren, S., Treangen, T.J., Schatz, M.C.,

Delcher, A.L., Roberts, M., et al.: Gage: A critical evaluation of genome assemblies and assembly algorithms.

Genome research 22(3), 557–567 (2012)

30. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area web cache sharing protocol.

IEEE/ACM Transactions on Networking (TON) 8(3), 281–293 (2000)

31. Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: An improved construction for counting

bloom filters. In: Algorithms–ESA 2006, pp. 684–695. Springer, ??? (2006)

32. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-min sketch and its

applications. Journal of Algorithms 55(1), 58–75 (2005)

33. Zhang, Q., Pell, J., Canino-Koning, R., Howe, A.C., Brown, C.T.: These are not the k-mers you are looking for:

efficient online k-mer counting using a probabilistic data structure. arXiv preprint arXiv:1309.2975 (2013)

34. Nakamura, K., Oshima, T., Morimoto, T., Ikeda, S., Yoshikawa, H., Shiwa, Y., Ishikawa, S., Linak, M.C., Hirai,

A., Takahashi, H., et al.: Sequence-specific error profile of illumina sequencers. Nucleic acids research, 344

(2011)

35. Chikhi, R., Medvedev, P.: Informed and automated k-mer size selection for genome assembly. Bioinformatics

30(1), 31–37 (2014)

Figures

Tables

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 14 of 18

Figure 1 The framework of Lighter

Figure 2 An example of the greedy error correction procedure k-mer CCGATTC does not appear
in Bloom filter B, so we attempt to substitute a different nucleotide for the C shown in red. We
select A since it yields the longest stretch of consecutive k-mers that appear in Bloom filter B.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 15 of 18

 86

 88

 90

 92

 94

 96

 98

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6

pe
rc

en
t(

%
)

alpha

35x 1% Recall
35x 1% Precision

35x 3% Recall
35x 3% Precision

Figure 3 The effect of α on the accuracy using the simulated 35× dataset

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6

oc
cu

pa
nc

y(
%

)

alpha

35x Table A
35x Table B
70x Table A
70x Table B

140x Table A
140x Table B

Figure 4 The effect of α on occupancy of Bloom filters A and B The effect of α on occupancy
of Bloom filters A and B using simulated 35×, 70× and 140× datasets. The error rate is 1%

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 16 of 18

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35

G
ai

n(
%

)

k-mer length

35x 1% Recall
35x 1% Precision

35x 3% Recall
35x 3% Precision

Figure 5 The effect of k-mer length k on accuracy

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10 12 14 16

tim
e(

s)

of threads

Quake
Musket
Lighter

Figure 6 Running times The running times of Quake, Musket and Lighter on 70× simulated
dataset with increasing number of threads

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 17 of 18

Table 1 Accuracy measures for datasets simulated with Mason with various sequencing depths and
error rates. Rows labeled k show the k-mer sizes selected for each tool and dataset.

Coverage 35× 70× 140×

Error rate 1% 3% 1% 3% 1% 3%

α for Lighter 0.2 0.2 0.1 0.1 0.05 0.05

Quake 89.68 48.77 89.64 48.82 89.59 48.78
SOAPec 57.71 38.00 57.57 37.71 57.09 36.76

Recall Musket 93.75 92.62 93.73 92.64 93.73 92.63
Bless 99.81 99.33 99.82 99.58 99.82 99.58
Lighter 99.87 98.53 99.84 98.72 99.86 98.78

Quake 99.99 99.99 99.99 99.99 99.99 99.99
SOAPec 99.99 100.00 99.99 99.99 99.99 99.99

Prec Musket 99.99 99.93 99.99 99.93 99.99 99.93
Bless 99.73 98.86 99.73 99.35 99.72 99.36
lighter 99.98 99.96 99.98 99.96 99.98 99.96

Quake 94.55 65.56 94.54 65.61 94.51 65.57
SOAPec 73.18 55.07 73.07 54.77 72.68 53.75

F-score Musket 96.77 96.14 96.76 96.15 96.76 96.15
Bless 99.77 99.09 99.77 99.47 99.77 99.47
Lighter 99.93 99.24 99.91 99.33 99.92 99.36

Quake 89.67 48.76 89.64 48.82 89.59 48.78
SOAPec 57.70 38.00 57.57 37.71 57.09 36.75

Gain Musket 93.74 92.56 93.72 92.58 93.72 92.57
Bless 99.54 98.19 99.54 98.93 99.54 98.94
Lighter 99.85 98.49 99.81 98.68 99.84 98.73

Quake 17 17 17 17 17 17
SOAPec 17 17 17 17 17 17

k Musket 23 19 23 19 23 19
Bless 31 23 31 23 31 23
Lighter 23 19 23 19 23 19

Table 2 Occupancy (fraction of bits set) for Bloom filters A and B for various coverages

Coverage α Bloom A (%) Bloom B (%)
20× 0.35 53.082 34.037
35× 0.2 53.085 34.398
70× 0.1 53.082 34.429
140× 0.05 53.094 34.411
280× 0.025 53.088 34.419

Table 3 Alignment statistics for the 75× E. coli dataset, before error correction (Original) and after
error correction (other rows). k column shows k-mer size selected for each tool. First “Increase”
column shows percent increase in reads aligned. Second “Increase” column shows percent increase in
the fraction of aligned bases that match the reference genome.

Read Level Base Level
k Mapped Reads Increase (%) Matches/aligned base (%) Increase (%)

Original - 3,464,137 - 99.038 -
Quake 19 3,373,498 -2.62 99.659 0.63
SOAPec 17 3,465,819 0.05 99.130 0.09
Musket 17 3,467,875 0.11 99.601 0.57
BLESS 19 3,468,677 0.13 99.666 0.63
Lighter 19 3,478,658 0.42 99.639 0.61

Table 4 De novo assembly statistics for the E. coli dataset

N50 NG50 Edits / 100kbps Misassemblies Coverage (%)
Original 94,879 94,879 3.41 0 97.496
Quake 89,470 88,209 11.62 4 97.515
SOAPec 98,111 94,879 3.49 1 97.473
Musket 86,421 86,421 6.45 0 97.53
BLESS 85,486 85,486 3.58 1 97.302
Lighter 105,460 105,460 3.71 1 97.477

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

Song et al. Page 18 of 18

Table 5 Alignment statistics for the GAGE chromosome 14 dataset

Read Level Base Level
k Mapped Reads Increase (%) Matches/aligned base (%) Increase (%)

Original - 35,993,147 - 98.507 -
Quake 19 32,547,091 -9.57 99.845 1.36
SOAPec 19 36,116,405 0.34 98.768 0.26
Musket 19 36,316,699 0.90 99.109 0.61
BLESS 27 36,301,816 0.86 99.411 0.92
Lighter 19 36,320,688 0.91 99.235 0.74

Table 6 De novo assembly statistics for the GAGE chromosome 14 dataset

N50 NG50 Edits / 100kbps Misassemblies Coverage (%)
Original 5290 3861 139.46 1263 78.778
Quake 4829 3520 141.59 1201 78.358
SOAPec 5653 4143 127.8 623 79.087
Musket 5587 4105 131.17 559 79.175
BLESS 5898 4345 128.4 581 79.279
Lighter 5827 4280 127.69 618 79.287

Table 7 Alignment statistics for the C. elegans dataset

Read Level Base Level
k Mapped Reads Increase (%) Matches/aligned base (%) Increase (%)

Original - 63,017,855 - 99.048 -
Quake 19 60,469,150 -4.04 99.834 0.79
SOAPec 19 63,032,768 0.02 99.185 0.14
Musket 23 63,060,601 0.07 99.420 0.38
BLESS 31 64,150,807 1.80 99.744 0.70
Lighter 23 63,081,655 0.10 99.469 0.43

Table 8 De novo assembly statistics for the C. elegans dataset

N50 NG50 Edits / 100kbps Misassemblies Coverage (%)
Original 17,330 17,317 27.66 441 94.873
Quake 13,887 13,668 27.19 559 94.320
SOAPec 19,369 19,457 25.71 449 95.308
Musket 18,761 18,917 28.02 438 95.288
BLESS 17,673 17,693 29.24 524 94.968
Lighter 19,222 19,333 26.9 434 95.332

Table 9 Comparison of four error correction tools based on their memory usage (peak resident
memory) and disk usage.

35× 70× 140× chr14 C.Elegans
Mem Disk Mem Disk Mem Disk Mem Disk Mem Disk

Quake 2.8G 3.3G 7.1G 6.0G 14G 12G 48G 57G 86G 99G
Musket 119M 0 165M 0 225M 0 1.4G 0 2.5G 0
BLESS 11M 918M 11M 1.8G 13M 3.5G 138M 15G 175M 36G
Lighter 35M 0 35M 0 35M 0 514M 0 514M 0

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 7, 2014. ; https://doi.org/10.1101/005579doi: bioRxiv preprint

https://doi.org/10.1101/005579
http://creativecommons.org/licenses/by-nd/4.0/

