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Understanding the regulation and structure of the eukaryotic ribosome is es-

sential to understanding protein synthesis and its deregulation in disease. While

ribosomes are believed to have a fixed stoichiometry among their core ribo-

somal proteins (RPs), some experiments suggest a more variable composi-

tion. Reconciling these views requires direct and precise quantification of RPs.

We used mass-spectrometry to directly quantify RPs across monosomes and

polysomes of budding yeast and mouse embryonic stem cells (ESC). Our data

show that the stoichiometry among core RPs in wild-type yeast cells and ESC

depends both on the growth conditions and on the number of ribosomes bound

per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-

gene is inversely proportional to the enrichment of the corresponding RP in

polysomes. Together, our findings support the existence of ribosomes with dis-

tinct protein composition and physiological function.

Introduction

In eukaryotes, the most–studied molecular mechanisms for regulating protein translation are

mediated by eukaryotic initiation factors that activate mRNAs for translation by the ribosomes

and can be modulated by microRNAs and RNA binding proteins (1–5). Eukaryotic ribosomes

are believed to have a fixed composition of 4 ribosomal RNAs and 80 core RPs (5–8), some

of which are represented by several paralogous RPs. However, studies of eukaryotic ribosomes

(9–16) have demonstrated that (i) genetic perturbations to the core RPs specifically affect the

translation of some mRNAs and not others and (ii) mRNAs coding for core RPs are transcribed,

spliced, and translated differentially across physiological conditions (17–23). These results sug-

gest the hypothesis (24–26) that, depending on the tissue type and the physiological conditions,

cells can alter the stoichiometry among the core RPs comprising the ribosomes and thus in
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turn alter the translational efficiency of distinct mRNAs. However, differential RP–expression

can reflect extra ribosomal functions of the RPs (9, 27, 28). Furthermore, polysomes (multi-

ple ribosomes per mRNA) from different cell–lines have similar core RP stoichiometries (29).

Thus, the variable RP–stoichiometry in the ribosomes of wild-type cells that is suggested by the

ribosome specialization hypothesis remains unproven.

Results

Variable stoichiometry among core RPs in yeast

To measure whether the stoichiometry among RPs can change with growth conditions, we used

velocity-sedimentation in 10−50% sucrose-gradients to isolate fractions containing monosomes

and polysomes from yeast cells grown in minimal media with either glucose or ethanol as the

sole source of carbon and energy (23); see SI Appendix. Consistent with previous observations

that the type and the concentration of the carbon source influence the ratio among monosomes

and polysomes (30, 31), the ratio between monosomes and polysomes in our yeast cells grown

in 0.4 % ethanol (Fig. 1A) or in 0.2 % glucose (Fig. 1B) is higher than is typically observed for

yeast grown in rich media containing 2 % glucose. The proteins from individual fractions were

spiked-in with known amounts of universal proteomics standard (UPS2) proteins, digested to

peptides, labeled with tandem mass tags (TMT), and quantified on Orbitrap Elite based on the

MS2 intensities of the TMT reporter ions (23); see SI Appendix for details and biological repli-

cas. The accuracy of estimated fold-changes for peptides can be gauged by the good agreement

between the measured and the spiked-in fold-changes for UPS2 (Fig. 1C) that were measured

simultaneously with the yeast RPs. The measured fold–changes for UPS2 peptides are about

12% smaller than expected from the spiked-in levels, as indicated by the 0.88 slope of the linear

fit in Fig. 1C, most likely due to coisolation interference (23, 32).
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To quantify RP paralogs independently from one another, the fold-change of each RP was

estimated as the median fold-change of its unique peptides, i.e., peptides whose sequences are

found only in that RP. Our data have multiple high–confidence unique peptides for most RPs

(Fig. S1A, B) except for highly homologous paralogs. These quantified unique peptides al-

low reproducible estimates (Fig. 1D and Fig. S1) of the relative RP levels in monosomes and

polysomes collected from yeast grown in glucose or ethanol media (Fig. 1E). We systematically

tested whether the variability in the estimated RP levels (Fig. 1E) reflects stoichiometry differ-

ences among the RPs or other factors and artifacts, such as noise in the MS measurements, a

differential distribution of nascent RP polypeptides among monosomes and polysomes, post-

translational modifications (PTMs) of the RPs, and the presence of 90S ribosomal biogenesis

particles (33). These factors are unlikely to contribute significantly to the data in Fig. 1E since

the majority of RP fold-changes that are estimated from multiple unique peptides differ by 10–

20 % or less (Fig. S1C, D), RP fold-changes measured in independent biological replicas are

highly consistent (Fig. 1D, E; ρ = 0.96), and the 90S particles are over 100–fold less abundant

than the mature ribosomes (Fig. S2); see SI Appendix.

We find that the relative RP levels depend on two factors: the carbon source in the growth

media and the number of ribosomes per mRNA (Fig. 1E). The RP levels that are higher in

glucose compared to ethanol also tend to increase with the number of ribosomes per mRNA

(Fig. 1E). Importantly, the RP composition of trisomes in ethanol is more similar to the com-

position of monosomes than to tetrasomes. This observation shows that polysomes may have

similar RP composition to monosomes, suggesting that the RP composition of monosomes is

not necessarily indicative of a non–functional state.

Some of the RPs without paralogs (e.g., Rpl5, Rps12, and Rps2) are enriched in monosomes

and ethanol carbon source while others (e.g., Rpl39, and Rps13) are enriched in polysomes and

glucose carbon source (Fig. 1E). Thus, exchange among paralogous RPs is not the sole reason

for the variable RP–stoichiometry. Furthermore, while the levels of some paralogs, such as
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Rpl37a and Rpl37b, are anticorrelated and consistent with paralog–exchange, the levels of other

paralogs, such as Rpl17a and Rpl17b, are positively correlated and inconsistent with paralog–

exchange across the analyzed ribosomes (Fig. 1E).

Variable stoichiometry among core RPs in mouse ESCs

Having found variability in the stoichiometry among yeast RPs, we sought to test its gener-

ality. We separated the ribosomes of exponentially growing mouse ESC on sucrose gradients

(Fig. 2A). The ratio between the polysomal peaks and the monosomal peak is higher than the

corresponding ratio in the neural tube and somites of mouse embryos (12) but lower than in

many cell-lines, consistent with previous observations in mouse ESC (34). We quantified the

core RPs, as annotated by Swiss–Prot, across different fractions corresponding to different num-

bers of ribosomes per mRNA. To control for protease–biases and to estimate the measurement

noise, the proteins from each analyzed sucrose fraction were digested either with Trypsin (T) or

Lys–C (L), and the data from these separate quantifications were juxtaposed in adjacent columns

(Fig. 2B). As in yeast, we observe significant variation in the stoichiometry among the mouse

RPs depending on the number of ribosomes bound per mRNA. For many RPs, this variability

is clearly present in all replicas for both Lys-C and Trypsin digested samples; for other RPs,

the variability is comparable to the noise of the measurement and thus does not correspond to

biological variability. We further tested the RP variability with an independent method, Western

blots. Consistently with the MS data (Fig. 2B), the Western Blots data (Fig. 2C) indicate that

Rps29 and Rps14 are enriched in polysomes, Rpl11 is enriched in monosomes, and Rpl32 does

not change beyond the measurement noise (loading control). Interestingly, the ratios between

the polysomal and monosomal levels of mouse RPs correlate to the corresponding ratios for

their yeast orthologs (Fig. 2D; p-value < 0.03), suggesting that the RP-stoichiometry differ-

ences between monosomes and polysomes are conserved across yeast and mouse.
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Most variable RPs, such as Rps4x, Rps14, Rps20, Rpl5, Rpl10, and Rpl27, directly bind

mRNAs (35, 36), and this binding might mediate translational regulation as previously sug-

gested (24, 37). Furthermore, deletions or overexpressions of many of the variable RPs (Fig. 2B)

have well characterized phenotypes both in development and in cancer. For example, knocking

down of the polysomally enriched Rps19 (Fig. 2B) causes Diamond Blackfan anemia by se-

lectively affecting the synthesis of some proteins but not of others (14). Interestingly, our data

indicate that RPs that are frequently mutated in cancers, such as Rpl5 and Rpl10 (38, 39), are en-

riched in the monosomes (Fig. 2B). Conversely, RPs whose (over)–expression promotes cancer,

such as Rpl30, Rps20, and Rpl39 (40, 41), are enriched in the polysomes (Fig. 2B). One inter-

pretation, among others, of these data is that loss of function of monosomally–enriched RPs or

overexpression of polysomally–enriched RPs might promote protein synthesis and cancer cell

growth.

RP variability correlates to fitness

Next, we tested the variability among RPs and its phenotypic consequences by independent

fitness measurements. Our observation that the RP stoichiometry depends on the number of ri-

bosomes bound per mRNA parallels measurements of higher translational activity of polysomes

compared to monosomes (42–45); some studies have even reported that the translational activ-

ity per ribosome increases with the number of ribosomes bound per mRNA (44, 45) but this

finding has not been widely reproduced. We therefore hypothesized that genetic deletions of

RPs enriched in the more active ribosomes – as compared to RPs enriched in less active ri-

bosomes – may result in a larger decrease of the translation rate and thus lower fitness. To

test this hypothesis, we computed the correlation (Fig. 3A) between the fitness of yeast strains

with single RP–gene deletions (46) and the corresponding relative RP levels measured in the

tetra-ribosomal fraction (4 ribosomes per mRNA). Consistent with our hypothesis, the fitness
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of strains lacking RP–genes is inversely proportional to the relative levels of the corresponding

RPs in the tetra-ribosomes (Fig. 3A). Extending this correlation analysis to the RP–levels in all

sucrose fractions shown in Fig. 1E results in a correlation pattern (Fig. 3B) that further sup-

ports our hypothesis by showing the opposite dependence for fractions with fewer ribosomes

per mRNA: the fitness of strains lacking RP–genes is proportional to the relative levels of the

corresponding RPs in fractions with fewer ribosomes per mRNA (Fig. 3B). This correlation

pattern holds both for ethanol and for glucose carbon sources. The difference in the growth

media of the fitness experiments and in our experiments likely reduces the magnitude of the

correlations but it is unlikely to result in observing artifactulaly significant correlations. To

mitigate possible artifacts in the fitness data due to potential chromosome duplications in the

deletion strains, we computed the correlations between the RP–levels and the fitness of the cor-

responding RP–deletion strains only for RPs without paralogs (thus unlikely to be affected by

chromosome duplication) and found much higher magnitudes of the correlations (Fig. 3A, B).

This result suggests that the variability in the RP stoichiometry is not limited to paralogous RPs

substituting for each other.

To further test the hypothesis that the RP composition of ribosomes affects their translational

activity, we used independent measurements of RP transcript levels across different growth–

rates (19, 21); we examined whether differences in the growth-rate dependent transcription

of RP genes are consistent with the possibility that polysome–enriched RPs are preferentially

induced at higher growth–rates. For this analysis, we used the transcriptional growth-rate re-

sponse that we previously quantified by growth-rate slopes that were computed by regressing

RP–transcript levels on the growth-rates; all data were collected from steady–state yeast cul-

tures grown in minimal media (19, 21). While most RP transcripts have positive growth–rate

slopes, the magnitudes of these slopes (and thus the extent of growth–rate transcriptional induc-

tion) differ significantly, and some RP transcripts even have negative slopes, i.e., decrease with

growth–rate (19, 21). Analogously to our fitness analysis (Fig. 3A), we correlated these growth-
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rate slopes to the relative RP levels from Fig. 1E. Consistent with our hypothesis, the correlation

pattern (Fig. 3C) indicates that the higher the growth–rate slope of a RP, the higher its enrich-

ment in sucrose-fractions corresponding to increasing numbers of ribosomes per mRNA and to

glucose carbon source.

We extended our fitness analysis from yeast to mouse using the published depletion data

from CRISPR knockouts in human ESC (47); see SI Appendix. We used BLAST to identify

the closest mouse orthologs of each human RP with deletion data (Fig. 3D), and correlated the

fitness of human ESC lacking the human RP orthologs to the RP levels across sucrose frac-

tions that we measured (Fig. 2B). The correlation pattern (Fig. 3E) is similar to the one in yeast

(Fig. 3A-C) and highly significant, false discovery rate (FDR) < 0.1%. This pattern indicates

that the fitness of ESC lacking RP-genes is directly proportional to the relative RP levels in

monosomes and inversely proportional to the relative RP levels in polysomes. The magnitude

of this inverse proportionality increases with the number of ribosomes per mRNA (Fig. 3E),

consistent with our hypothesis. The fact that the fitness of human ESC lacking RPs correlates

significantly to the levels of the corresponding mouse orthologous RPs suggests that the vari-

ability of the RP stoichiometry and its biological function are likely conserved across mouse

and human. The magnitude of this correlation increases when the correlation is computed

based only on orthologs whose sequences are over 80% identical between mouse and human

(Fig. 3E), providing further evidence for the conserved fitness consequences of the altered RP

stoichiometry.

Discussion

A simple mechanism that may account for our observations is that the rates of translation ini-

tiation and elongation depend on the RP composition. Ribosomes whose RP composition cor-

responds to higher ratios between the initiation and the elongation rates are likely to be found

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2015. ; https://doi.org/10.1101/005553doi: bioRxiv preprint 

https://doi.org/10.1101/005553
http://creativecommons.org/licenses/by-nc-nd/4.0/


in fractions with multiple ribosomes per mRNA. Conversely, ribosomes whose RP composition

corresponds to lower ratios between the initiation and the elongation rates are likely to be found

in fractions with fewer ribosomes per mRNA. The correlations between RP–composition and

fitness can be explained by the expectation that the higher the translational activity of a ribo-

some, the higher the fitness cost of its perturbation in rapidly growing stem cells. The key factor

required for this expectation is the variable ribosomal composition that we measured. The vari-

able RP stoichiometry in the absence of external perturbations suggests that cells use variable

RP composition of their ribosomes as a regulatory mechanism of protein translation. One such

example might be the preferential transcriptional induction of polysome-enriched RPs at higher

growth rates (Fig. 3C).

For decades, the ribosome has been considered the preeminent example of a large RNA–

protein complex with a fixed stoichiometry among the constituent core RPs (5–8). However,

the direct and precise measurements of RP–levels required to support this view have been very

challenging. Prior to our work, the most direct and precise quantification of RP stoichiometry

that we know of is based on measuring the radioactivity from RPs labeled with 14C or 3H and

separated on 2D–gels. Some of these studies (48, 49) achieved very high precision (standard

error < 10 %) and reported over 2–fold deviation from 1 : 1 stoichiometry for multiple RPs.

Other studies of prokaryotic ribosomes (50) achieved lower precision, and the deviation from

1 : 1 stoichiometry was within the experimental error of the measurements. The results re-

ported in ref. (48–50) are all consistent with our findings, albeit our measurements are limited

to eukaryotic ribosomes. This prior work and our measurements reflect population–averages

across a heterogeneous pool of ribosomes and thus likely underestimate the magnitude of the

variability among RP stoichiometries.

Our data show that the stoichiometry among RPs varies across ribosomes from different

sucrose fractions. However, velocity sedimentation in sucrose gradients is unlikely to perfectly

separate ribosomes based on their RP composition. For example, short mRNAs and the ribo-
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somes translating them can be found only in the fractions containing few ribosomes per mRNA

regardless of the efficiency of translation and the RP-composition of the ribosomes (51). Sim-

ilarly, even the most highly translated mRNA that is likely to be translated by polysome-type

ribosomes will go through a stage when only a single ribosome is loaded and thus will be found

in the monosomal fraction. Other factors may also contribute to the mixing of different ribo-

somes in each sucrose fraction, including variation in the mRNA length, any degree of ribosome

run-off, and mRNA shearing during sample handling, if any. None of these factors, however,

can artifactually contribute to the variable RP stoichiometry that we observe. Rather, the pres-

ence of ribosomes with different RP compositions in the same sucrose fraction would average

out and decrease the differences, resulting in underestimation of the RP variability.

Materials and Methods

All yeast experiments used a prototrophic diploid strain (DBY12007) with a S288c background

and wild type HAP1 alleles (52). We grew our cultures in a bioreactor (LAMBDA Laboratory

Instruments) using minimal media with the composition of yeast nitrogen base (YNB) and sup-

plemented with 2g/L D-glucose. Before inoculation, the reactor was filled with 2L of minimal

media and warmed up to a working temperature of 30oC.

Mouse embryonic stem cells (E14 10th passage) were grown as adherent cultures in 10 cm

plates with 10 ml DMEM/F12 media supplemented with 10 % knockout serum replacement,

nonessential amino acids (NEAA supplement), 0.1 mM β–mercapto–ethanol, 1 % penicillin

and streptomycin, leukemia inhibitory factor (LIF; 1,000 U LIF/ml), and 2i (GSK3β and Mek

1/2 inhibitors).

Both yeast and mouse embryonic stem cells were lysed by vortexing for 10 min with glass

beads in cold PLB (20 mM HEPES–KOH at pH 7.4, 1 % Triton X–100, 2 mM Magnesium

Acetate, 100 mM Potassium Acetate, 0.1 mg/ml cycloheximide, and 3 mM DTT). The crude
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extracts obtained from this lysis procedure were clarified by centrifugation. The resulting su-

pernatants were applied to linear 11 ml sucrose gradients (10 % − 50 %) and spun at 35,000

rpm in a Beckman SW41 rotor either for 3 hours (for yeast samples) or for 2.5 hours (for mouse

samples). Twelve fractions from each sample were collected using a Gradient Station. More

details are available in the SI Appendix.

All data will be made available at: http://alum.mit.edu/www/nslavov/data webs.htm
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Figure 1. The stoichiometry among core RPs in yeast ribosomes depends both on the
number of ribosomes per mRNA and on the physiological condition. Ribosomes from
either ethanol (A) or glucose (B) grown yeast where separated by velocity sedimentation in
sucrose gradients. The absorbance at 254 nm reflects RNA levels, mostly ribosomal RNA; see
SI Appendix. The vertical dashed lines indicate the boundaries of the collected fractions. (C)
Fold-changes estimated by MS are plotted against the fold-changes expected from the amount
of universal proteomics standard (UPS2) added to sucrose fractions. All fold-changes are rela-
tive to the first data point, and the error bars are coefficients of variation. The fitted line has a
slope of 0.88, indicating about 12% systematic underestimation. See SI Appendix and Fig. S1
for details and error estimates. (D) A comparison of biological replicas for the fold–changes of
all quantified yeast RPs between the tetrasomes of yeast grown in glucose carbon source and the
monosomes of yeast grown in ethanol carbon source. The ethanol samples were collected and
processed independently and compared to the glucose tetrasomes; thus the noise in the scatter
plot reflects all biological and technical noise in our protocols. (E) Levels of core RPs in the
sucrose fractions estimated from their unique peptides quantified by MS. The RP levels vary
depending on the carbon source (glucose or ethanol) and on the number of ribosomes bound
per mRNA, indicated on the top. Monosomes from ethanol grown yeast were quantified in two
biological replicas (first two columns). RP levels are plotted on a log2 scale relative to the mean
levels across all fractions.
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Figure 2. The stoichiometry among core RPs in mouse ribosomes depends on the number
of ribosomes per mRNA. (A) Sucrose gradients allow separating ribosomes that are free or
bound to a single mRNA (monosomes) from multiple ribosomes bound to a single mRNA
(polysomes). The absorbance at 254 nm reflects RNA levels, mostly ribosomal RNA. The
vertical dashed lines indicate the boundaries of the collected fractions. (B) The levels of core
RPs in monosomes and polysomes were quantified by MS and found to vary depending on the
number of ribosomes bound per mRNA. The measurement noise was estimates by (i) replica
quantifications of the monosomal fraction (by using different tandem-mass-tags reporter ions,
126 or 131) and by (ii) estimating RP levels separately using either trypsin (T) or Lys–C (L)
digestion, as indicated at the bottom of each column. The levels of each RP are shown on
a log2 scale relative to the mean level across all fractions. See SI Appendix and Fig. S1 for
more details and error estimates. (C) RPs were quantified by Western blots in monosomes and
polysomes from high passage–number E14 mouse ESCs. Rpl32 was used as a loading control
and the boxplots summarize data from 9 ratios for each quantified RP; see SI Appendix. (D)
The log2 ratios between polysomal and monosomal levels of mouse RPs are plotted against the
corresponding log2 ratios between the polysomal and monosomal levels of their orthologous
yeast RPs. The significant (p-value < 0.03) positive correlation between these ratios suggests
that the RP-stoichiometry differences are conserved across yeast and mouse. The plot includes
all orthologous RP pairs with over 65% sequence identity between yeast and mouse.

Figure 3. The relative levels of RPs across monosomes and polysomes correlate sig-
nificantly to the fitness of yeast and mammalian cells lacking the genes encoding these
RPs. (A) The fitnesses of RP–deleted yeast strains (46) are inversely proportional (p–value
< 4×10−3) to the relative levels of the corresponding RPs in tetrasomes from yeast growing on
ethanol carbon source. The RPs without paralogs are marked with red squares. (B) Extension
of the analysis in panel (A) to all sucrose fractions: correlations between the relative RP levels
from Fig. 1E and the fitnesses of strains lacking the corresponding RP genes (46). The correla-
tions are shown either for all quantified RPs or only for RPs without paralogs. (C) Correlations
between the relative levels of the RPs from Fig. 1E and the their transcriptional growth–rate re-
sponses (slopes). The growth-rate slopes were previously computed by regressing (R2 > 0.87)
the levels of mRNAs in glucose-limited steady-state cultures of yeast against the growth-rates
of the cultures (19, 21). (D) The distribution of sequence identity between human RPs and
their closest mouse orthologs; the sequences and annotations for RPs are from Swiss–Prot. (E)
Extension of the analysis for yeast in panels (A-B) to mouse: correlations between the relative
levels of mouse RPs from Fig. 2B and the fitnesses of human ESC lacking the corresponding
human ortholog (47). The correlations are shown either for all quantified RPs or only for RPs
whose sequence identity between mouse and human exceeds 80 %. All error bars are standard
deviations from bootstrapping.
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Figure 3
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