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Background Transgenic constructs intended to be stably established at high frequencies in wild popu-
lations have been demonstrated to “drive” from low frequencies in experimental insect populations. Link-
ing such population transformation constructs to genes which render them unable to transmit pathogens
could eventually be used to stop the spread of vector-borne diseases like malaria and dengue.

Results Generally, population transformation constructs with only a single transgenic drive mechanism
have been envisioned. Using a theoretical modelling approach we describe the predicted properties of a
construct combining autosomal Medea and underdominant population transformation systems. We show
that when combined they can exhibit synergistic properties which in broad circumstances surpass those
of the single systems.

Conclusion With combined systems, intentional population transformation and its reversal can be
achieved readily. Combined constructs also enhance the capacity to geographically restrict transgenic
constructs to targeted populations. It is anticipated that these properties are likely to be of particular
value in attracting regulatory approval and public acceptance of this novel technology.

Keywords: Dynamical systems, Gene drive, Genetic pest management, Population transformation, Population
replacement

BACKGROUND

Curbing the spread of vector borne diseases such as
malaria or dengue is possible by eliminating the transmis-
sion capabilities of the insect vectors. One of the many
approaches to achieve this is population transformation of
vector species. In the most commonly discussed applica-
tion of population transformation the aim is to introduce
transgenes into insect populations which render them re-
fractory to spreading diseases. Usually the technique seeks
to use evolutionary principles to establish such transgenes
at high frequency in populations through the release of ge-
netically transformed stocks (also called population replace-
ment, [1]). Synthetic disease refractory genes have already
been developed for human malaria, dengue fever and avian
malaria [2–5]. However, to stably transform insect popula-
tions with transgenes that are not selectively advantageous
it will be necessary to link refractory transgenes to systems
that drive them to high frequency in a population [1, 6–8].
Three transgenic population transformation systems have
been shown to be effective in laboratory populations of in-
sects. One is a homing endonuclease based system (HEG),
which works by converting heterozygotes to homozygotes
[9]. The remaining two systems work by reducing the av-
erage fitness of heterozygotes and are: Medea [10, 11] and
a bi-allelic form of underdominance [12]. Here we explore
theoretically a mono-allelic form of underdominance the im-
plementation of which has to date not been published.

∗ gokhale@evolbio.mpg.de

While most studies examine the theoretical properties of
transgenic constructs embodying single drive mechanisms
[7–10, 13], the observation that “most of them have specific
characteristics that make them less than ideal” led Huang et
al. 2007 [14] to explore combinations. They demonstrated
that certain combinations resulted in enhanced properties
relative to single systems while others had the opposite ef-
fect. Here we take an analogous approach for autosomal
Medea and mono-allelic underdominance constructs (not
examined in Huang et al. 2007[14]). We provide a rig-
orous and flexible analytical framework to explore salient
properties across the entire parameter space. Intuitively, the
inclusion within a single transgenic construct of more than
one drive mechanism provides a degree of resilience to either
mutations in the transgenic construct or to drive-resistance
alleles which may exist in target population. While the value
of this desirable functional redundancy is not analytically
explored here, it does however provides an additional mo-
tivation for analyzing the properties of combined systems.
Similar to Huang et al. [14] the motivation for the analysis
presented here comes from the realization that intuitive pre-
dictions about combined systems can be misleading and that
identifying the parameter space where synergistic enhance-
ments occur can motivate technical developments, including
the development of mono-allelic form of underdominance.

We briefly summarise the previously known properties of
Medea and mono-allelic underdominant systems separately.
Then we look in turn at each of the properties of interest
and determine if the combined model performs better than
each of the techniques independently. The discussion fo-
cuses on the impact of a combined system and provides an
assessment of its strengths and weaknesses.
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Medea

Natural Maternal effect dominant embryonic arrest
(Medea) alleles were first discovered in Tribolium flour bee-
tles [15] and have also been reported in the mouse [16, 17].
They derive their ability to invade populations by mater-
nally induced lethality of wildtype offspring not inheriting a
Medea allele (Figure 1) [18]. Thus the wildtype homozy-
gous offspring of the heterozygous mother die with a certain
probability d. Despite the mechanism(s) by which natu-
ral Medea elements exert their maternal effect remaining
unknown, Chen et al. [10] were able to generate a syn-
thetic system (Medeamyd88) which mimics their evolution-
ary properties.
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FIG. 1. Effect of the Medea allele is seen in offsprings when
mothers are heterozygous for Medea. If the mother is a Medea
carrier then she deposits a toxin in the oocytes. Only the off-
spring who have a copy of the Medea allele are rescued. Thus
the wildtype homozygous offspring of a heterozygous mother
are affected (shaded) and die with a certain probability d.

To date, the only published Medea construct
(Medeamyd88) has been inserted on an autosomal
chromosome in D. melanogaster [10, 11]. Autosomal
Medea insertions unlike sex-chromosome insertions [13]
exhibit a high-frequency stable equilibrium when the
transgenic construct is associated with any fitness cost
(see Figure 2a). As described previously [7, 8, 10, 13, 18]
this stable equilibrium results in the persistence of wildtype
alleles in populations transformed with autosomal Medea
constructs (Figure 2a, though if a linked refractory gene
is dominant this is likely to prove unproblematic from the
perspective of target disease control).

Underdominance

When the heterozygote is less fit than both the possi-
ble homozygotes then we have a case of underdominance.
However there are only a few examples where alleles at
a given locus have been robustly inferred to exhibit un-
derdominance [19]. In a random mating, Hardy-Weinberg
population, rarer alleles have larger sojourn times in the
heterozygote state, consequently where an underdominant
construct is rare it will mostly be in this unfit genotype.
Due to the inherently unstable nature of underdominance,
if the construct exceeds a threshold value through releases
of sufficient homozygotes it is predicted to proceed to fix-

ation within the population (Figure 2b). Intentional under-
dominant population transformation is inherently reversible
where it is realistically possible to release sufficient wildtype
individuals to traverse the unstable equilibrium in the lower
frequency direction. However, underdominant constructs
can be viewed as unappealing when transforming large pop-
ulations due to the high release numbers required to initiate
population transformation (Figure 2b) [20, 21]. The mono-
allelic underdominance modeled here describes the situation
where there is a transgenic allele at a single autosomal lo-
cus (the site of the transgenic construct integration). We
have only examined situations where an insert is underdom-
inant in both sexes. A recent publication [12] describing the
development of a single locus bi-allelic form of underdom-
inance where there are two functionally distinct transgenic
alleles is not applicable to the mono-allelic underdominance
analysis described here.

Medea and underdominance in a single transgenic construct

Here we explore the properties of combining both Medea
and underdominance in a single transgenic construct on an
autosome. As single locus transgenic underdominance ef-
fective in both sexes cannot by definition be configured on
sex chromosomes we have modeled both systems on auto-
somes to permit the most direct comparison between single
and combined systems. By combining systems, some prop-
erties will be discounted, remain the same or synergistically
enhanced. We find a broad parameter space where the ap-
plied properties of single systems can be argued to be syn-
ergistically enhanced. The principle criteria being: (i) lower
transformation threshold, (ii) faster population transforma-
tion and (iii) enhanced spatial stability of the transformed
population.

METHODS AND RESULTS

Genotype fitnesses and expected dynamics

The recursion dynamics are analysed for genotype fre-
quencies as maternal-effect killing violates the Hardy-
Weinberg principle. With Medea the action of selection
on wildtype homozygotes depends not only on their current
state but also on the maternal genotype. Here we have
the three genotypes, wildtype homozygous, transgenic ho-
mozygous and the heterozygous represented by ++, MM,
and M+ respectively. We set the fitness of the wildtype
homozygote, ++, to 1. The relative fitnesses of the MM
homozygote and the M+ heterozygote are given by ν and
ω. The parameter d measures the degree of lethality of ho-
mozygous wildtype offspring from Medea carrying mothers,
from no Medea effect (d = 0) to complete lethality (d = 1).
Using Table I we calculate the expected frequencies of all
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FIG. 2. de Finetti diagrams for example parameters. At the vertices the complete population consists of the genotype given
by that vertex (++ is for the wildtype homozygote, M+ for the heterozygotes and MM for the transgenic homozygotes).
In the interior the population composition is a combination of all the three genotypes with frequencies proportional to the
perpendicular distance from the vertex. Unstable equilibrium points are shown as white circles and are always internal within
the simplex. Stable equilibrium are shown as black circles and occur on edges (the equilibria which always exist at the ++
and MM corners are not shown). The fitness of the wildtype homozygote is assumed to be 1 and the fitnesses of the other
genotypes relative to it are given by ω = heterozygotes and ν = homozygotes. The lethality effect of the Medea allele is
given by the parameter d. The three panels describe: (a) “Medea only”, an unstable and stable equilibrium occur. These
parameters equate to a strong Medea phenotype associated with a significant fitness cost that is substantially dominant. The
M allele frequency at the stable threshold is 0.88 and at the unstable threshold is 0.21. (b) “Underdominace only”, an unstable
equilibrium occurs, always in the right half of the simplex.These parameters equate to weak underdominace with a significant
fitness cost in transgenic homozygotes. The unstable threshold frequency of the M allele is 0.8. (c) A combined Medea and
underdominance system, shows only an unstable equilibrium occurs. We assume multiplicative fitness for ν from the values
in (a) and (b), The unstable threshold frequency of the M allele is 0.5, which is the ideal threshold for transformation and
reversibility (see Appendix). The black line shows the Hardy-Weinberg equilibrium. Note that the system under study easily
diverges from the Hardy-Weinberg null model.
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three genotypes in the next generation as,

Ḡx′ = ν

(
x2 + xy +

y2

4

)
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(
xy + yz + 2xz +

y2

2

)
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Ḡz′ = z2 +
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2
+ (1− d)

yz

2
+ (1− d)

y2

4

where x, y, and z are the frequencies of MM, M+, and ++
respectively in the current generation and x′, y′, and z′ are
the expected frequencies in the next generation (in [18] dif-
ferences in fitness were ascribed to differences in maternal
fecundity rather than zygotic genotypes as is done here).
The total contribution from all genotypes in the population
(i.e., the average fitness) is given by Ḡ. It is the sum of the
right hand sides of the set of Eqs. (1) [22]. Another way
to view the recursion equations is x′ = xfx/Ḡ, where fx
is the average fitness of the MM genotype [23]. Equating
the fitnesses of the three genotypes helps us to solve for the
fixed points of this dynamical system (see Appendix). For
d = 1 there can be an unstable internal equilibrium (Ap-
pendix Eq. (A.3)). From the point of view of reversibility it
is ideal to have this equilibrium as close as possible to one-
half (see Figure 3). This is possible when the fitness values
of the heterozygote and the Medea homozygote sum up to
unity (see Appendix Eq. (A.5)) as can be seen in Figure 4.
The fitnesses of the systems described here are assumed to
relate only to the drive mechanism (i.e. without linked re-
fractory genes). In Figure 2 we illustrate how selecting a
Medea construct with appropriate parameters results in the
combined system having an internal equilibrium closer to
the ideal one-half. The release thresholds are determined
by the unstable fixed points of the system. As illustrated in
Figure 4, combined systems have the potential to be engi-
neered towards an optimal unstable equilibrium value of 0.5
(Eqs. (A.4) and (A.5)). A release threshold substantially
smaller than 0.5 would make the construct unappealing from
the point of view of reversibility (Figure 3). However, if the
size of the target population is large and the capacity to
reverse population transformation is not important, then
a ‘Medea only’ construct would be the most efficient ap-
proach. Solely from the perspective of initiating population
transformation, ‘underdominance only’ is disadvantageous
as it requires multigenerational release of a large numbers
of individuals (albeit smaller than the numbers required for
sterile male release programs [24]).

It is generally appreciated that once releases commence,
population transformation should occur as rapidly as possi-
ble and proceed to complete fixation. This minimizes the
possibility of selection for insects resistant to the trans-
formed construct. Furthermore the pathogen itself could
evolve mechanisms to evade the effects of the linked refrac-
tory genes. A rapid and complete fixation of the transgenic
construct and elimination of the pathogen minimizes both
possibilities (neither of which are explicitly modeled here).
Clearly, releasing as many individuals as is feasible is an ef-
fective way to speed population transformation [21, 25]. We

TABLE I. The next generation offspring proportions

Parents Offspring♂ ♀ MM M+ ++
++ ++ 1
++ M+ 0.5ω 0.5(1− d)
++ MM ω
M+ ++ 0.5ω 0.5
M+ M+ 0.25ν 0.5ω 0.25(1− d)
M+ MM 0.5ν 0.5ω
MM ++ ω
MM M+ 0.5ν 0.5ω
MM MM ν
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FIG. 3. Minimum Release Sizes for Population Transforma-
tion. Size of release relative to the wild population is plotted
as a function of the unstable equilibrium given by the fre-
quency of the Medea allele p = x̂ + ŷ/2. To achieve popula-
tion transformation the release size must be above the solid
red line (p/(1 − p)). To reverse a transformation the release
must be above the dashed blue line ((1−p)/p). The combined
transformation-reversal release sizes are above the thick black
line (1/p(1− p)− 2), which has a minimum at p = 1/2.

show that the time taken to achieve population transforma-
tion can also be reduced by combining two systems, where
even very weak Medea (d ≤ 0.2) has a large impact on the
speed of transformation. (see Figure 5 and 0.65 starting
frequency). The acceleration can also occur during rever-
sal of population transformation. Knowledge of this effect
will permit the design of efficient release strategies for both
the initiation of population transformation and for its rapid
reversal.

Population structure dynamics

We consider a simple two-deme model of population
structure, where two populations of large and equal size are
coupled by a symmetrical fraction of migrants m between
the populations in each generation. Considering asymme-
tries in population sizes, migration needs to be dealt with
separately, as in [26]. Also migration dynamics with an ex-
plicitly set spatial system has been recently assessed [27]
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FIG. 4. Fitness and its impact on the unstable equilibrium for complete Medea lethality (d = 1). The position of the internal
unstable equilibrium is illustrated which needs to be traversed for population transformation and for reversal. As the value of
ν increases the unstable equilibrium moves closer to the all ++ vertex. The different values of ω trace a curve which intersects
the Hardy-Weinberg equilibrium line at ν = ω. For underdominance the fixed points are always below the Hardy-Weinberg
curve (also see Figure 7). This also graphically demonstrates Eqs. (A.4) and (A.5) i.e. the frequency of the Medea allele is 1/2
when ν + ω = 1 (vertical line, which also represents the ideal with respects to the ease of transformation and its reversal, see
Figure 3). Note that when the unstable equilibrium is above the Hardy-Weinberg equilibrium line, there also exists a stable
root on the M+ – MM edge given by (x̂, ŷ) = ( ν

2ω−ν
, 1− x̂). Disks indicate the positions of results plotted in Figure 2 for the

‘Medea only’ system (M) and the combined system (C).
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FIG. 5. Numerical solutions for critical times starting at dif-
ferent initial frequencies of the MM genotype. With the pa-
rameter values for the combined system (ω = 0.48, ν = 0.52,
Figure 2 C) we begin on the ++ - MM edge at different fre-
quencies. The time required to reach MM frequencies > 0.95
are plotted as the critical times. Starting with the frequency
of MM genotypes of 0.6 (circles) only if d ≥ 0.85 the system
moves to the MM vertex. As the Medea lethality increases the
all MM vertex can be reached by starting at lower frequencies
of MM genotype. Starting at already high frequencies (0.9,
open squares) the time to reach fixation quickly drops to the
levels which are almost the same as that of complete Medea
lethality. (Initial MM frequencies 0.6 (circles), 0.65 (squares),
0.7 (diamonds), 0.75 (triangles), 0.8 (inverted triangles)). For
the recursions, Eqs. (1) were employed.

(albeit not for a combined system). In population i the ex-
pected genotype frequency of genotype k after migration is
g′k,i = (1 −m)gk,i +mgk,j , where gk,i is the frequency of

the kth genotype in population i and gk,j is the kth geno-
type frequency in population j. These adjusted genotype
frequencies can then be substituted into Eqs. (1).

We initialize the two populations where the Medea allele
is almost fixed in one and almost lost in the other. The re-
cursions were performed for different migration rates, slowly
incremented in units of 10−3. The migration rate where the
difference in allele frequencies between the two populations
fell below 1% (thus assuming populations to have reached
an equilibrium), was recorded as the critical migration rate.
At lower than critical migration rates the combined systems
will not spread far from a successfully transformed zone,
and will be resistant to loss by immigration. We evaluated
the critical migration rate which allow the transformation
of a local population stably (Figure 6). For a varying het-
erozygote fitness ω ranging from 0.01 to 0.95 we consis-
tently see that having a Medea construct provides more ge-
ographical stability as compared to a system without Medea
even as we move from a system with directional selection
against Medea to an underdominant system. Figure 6 shows
that a combined system has a higher geographic stability in
terms of limiting the unintentional transformation of ad-
jacent wildtype populations for a wide range of values of
transgenic homozygote fitness ν (‘Medea only’ exhibits lim-

ited geographic control if fitness costs of being transgenic
are high [8]). Interestingly, in combined systems geographic
stability does not increase monotonically with respects to ν
. This can result in maximal geographic stability for com-
bined systems at intermediate values of ν (Figure 6). The
levels of sustained migration, which maintain geographic
stability, can be surprisingly high and of an order expected
between highly interconnected demes rather than between
isolated populations [28]. In addition to the obvious regu-
latory benefits of robust geographic stability, this property
can be exploited to limit the number of transgenic individ-
uals in which unintended mutational events can occur or
to lower the probability that pathogens evolve resistance to
linked refractory genes.

DISCUSSION AND CONCLUSION

In the theoretical analysis of combined population trans-
formation systems Huang et al. [14] considered the com-
bination of a transgenic two-locus form of underdomi-
nance (termed engineered underdominance [29] with two
other natural phenomena (Wolbachia and sex-linked meiotic
drive). Both Wolbachia and sex-linked meiotic drive were
demonstrated to have the potential to significantly impact
the feasibility and dynamics of population transformation in
both positive and negative ways. It was clearly shown that
intuitive expectations of combined systems could be mis-
leading and that mathematical modeling was essential in
identifying potentially useful combinations and parameter
values (most notably those relating to genotypic fitness).
An excellent example is the Huang et al. [14] theoreti-
cal analysis of the two-locus form of engineered underdom-
inance which has been only recently realised [12].

Here we have followed an analogous approach to explore
the properties of combining two currently developed trans-
genic drive systems within a single autosomal construct.
The underdominant and Medea systems are assumed to be
physically interspersed in a manner that maximizes the prob-
ability that they remain linked (e.g. in a configuration anal-
ogous to that shown in Figure 2 [10]). The described model-
ing framework has allowed us to identify a broad parameter
space where combined systems can in some circumstances
outperform single systems in terms of (i) optimizing release
thresholds (Figures 3, 4, 7) (ii) increasing the speed of popu-
lation transformation and (Figure 5) (iii) enhancing the geo-
graphic stability of population transformation (Figure 6). In
addition, the reliance on two distinct mechanisms for popu-
lation transformation could reduce the probability that resis-
tance to the transgenic construct arises in the target insects.
If however, long term selective pressures within successfully
transformed target populations would result in the loss of
the underdominance mechanism, this essentially leaves a
‘Medea only’ construct at high frequency. This ‘Medea
only’ construct would be impractical to remove (unless it
was associated with a high fitness cost) and could spread
to adjacent populations. Conversely, loss of the Medea
mechanism from a combined construct has a considerably
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FIG. 6. Critical migration rates allowing stable local transformations over a range of genotype and Medea parameter configu-
rations. Using the recursion equations Eq. (1) with modifications as described in the “Population structure dynamics” section
we explore the pattern when there is no Medea effect (d = 0) and complete Medea lethality (d = 1). For different values of
the heterozygote fitness (ω) we explore the genotype configurations going from directional selection to underdominance. The
transition in the fitness structure between these two states is indicated within the plots using token bar charts (illustrated
graphically within the plots). Over a wide range of parameter space the combined construct exhibits substantially higher
critical migration thresholds than ‘underdominance only’. Interestingly the d = 1 dynamics are not monotonic. The figure
illustrate how migrational stability can be enhanced, even with a reduction in fitness of the genetically modified homozygote.
Disks indicate the positions of results plotted in Figure 2 for the ‘underdominance only’ system (U), the combined system
(C) and ‘Medea only’ (M). Comparing the combined system with with ‘Medea only’ system we see that not only Medea but
underdominance also is necessary to get the desired migrational stability in experimental systems.
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smaller impact on reversibility and stability (Figures 2 and
6). Recognizing that the loss of Medea is preferable to loss
of underdominance, it would be prudent to engineer under-
dominance which is more mutationally stable than Medea
(duplicating the underdominant mechanism would be one
simple strategy). It is also noteworthy that many of the
synergistic enhancements ascribed to combined systems are
to a significant extent shared by Medea constructs inserted
on sex-chromosomes [13]. Consequently, depending on the
empirical properties of autosomal versus sex-chromosome
inserts the relative merits of both approaches would warrant
evaluation within the specific objectives of a given program.

FIG. 7. The configuration of the stable and unstable equi-
librium in the phase space for d = 1. The high-frequency
unstable equilibrium and stable equilibrium were determined
numerically for d = 1 over a range of fitness values. In the
shaded region an unstable equilibrium exists within the inte-
rior of the simplex. In the meshed region a stable equilibrium
exists on the M+ to MM edge of the simplex The non-mesh
region corresponds to underdominance. The dark diagonal
line denotes an ideal unstable threshold in terms of ease of
populations transformation and reversal (x̂+ ŷ/2 = 1/2) (see
Appendix). Disks indicate the positions of results plotted in
Figure 2 for the ‘Medea only’ system (M) and the combined
system (C).

It has been assumed throughout that fitness costs are di-
rectly associated with the drive mechanism or mechanisms
in a transgenic construct, however it is also likely that addi-
tional costs will also be associated with anti-Plasmodial or
anti-viral genes included as part of a working construct. The
analytical framework described here will permit the predic-
tion of the properties of combined systems loaded with such
disease refectory genes. The fitness cost of refractory genes
has in some, but not all, circumstances been estimated to
be quite high [30]. Consequently the illustrative parameters
values used in Figure 2 may represent plausible values for
‘loaded’ constructs (though the framework presented here
allows exploration of the entire range of parameters). The
immediate practical use of this method could help protect
D. melanogaster from an unintended species wide Medea
transformation if combined with underdominance for test-
ing in the lab. The most likely application of population
transformation is in species of the genera Anopheles and
Aedes which act as devastating disease vectors [7]. Within
these genera there are significant differences in dispersal
capacities estimated at various locations, in some instances
individuals migrate hundreds of meters over their lifetime
[31]. Consequently, the capacity to restrict transgenic con-
structs to particular populations is likely to be considered of
high value. Various configurations of underdominance have
been proposed as representing the most likely system to
maintain geographic stability [12, 29]. Geographic stability
is generally achieved by maximizing the fitness of transgenic
homozygotes fitness ν. However where this is not possible
due to cost arising from the underdominant drive mecha-
nism or of refractory genes, our analysis indicates that max-
imal geographic stability can be achieved by combining sys-
tems for intermediate values of ν (Figure 6). Exploitation
of this phenomena, in addition to the value of functional
redundancy in drive mechanisms, could provide a valuable
practical incentive to explore combined drive systems exper-
imentally.
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APPENDIX

Average genotype fitnesses and calculating the equilibria

The frequencies of the genotypes in the next generation
are given by x′, y′ and z′. In equilibrium we have x′ = x,
y′ = y and z′ = z. However the expressions for the next
generation frequencies are rational functions given by, x′ =
xfx/Ḡ, y′ = yfy/Ḡ and z′ = zfz/Ḡ where the fitnesses of
the genotypes are given by,

Ḡx′

x
= fx = ν

(
x+ y +

y2

4x

)
Ḡy′

y
= fy = ω

(
x+ z +

2xz

y
+

y

2

)
(A.1)

Ḡz′

z
= fz = z +

y

2
+ (1− d)

y

2
+ (1− d)

y2

4z
.

Now in equilibrium the frequencies of the genotypes do not
change over generations but it is a consequence of their av-
erage fitnesses being the same. Hence we can deduce the
equilibria of the system just be equating the average fit-
nesses. This is just another way of writing x′ = x, y′ = y
and z′ = z, which reduces to fx = fy = fz = Ḡ. Con-
sidering the average fitness of the genotypes in a pairwise
fashion, two genotypes are neither increasing or decreasing
relative to each other if their average fitnesses are equal,
e.g., fx = fy. This argument is obvious when we view the
system in continuous time. While the recursion equations
predict the dynamics of the system in the next time step,
one at a time, we can explore the complete dynamics by
analysing the analogous differential equations given by,

ẋ = x(fx − Ḡ)

ẏ = y(fy − Ḡ) (A.2)

ż = z(fz − Ḡ).

where the time derivative of a variable is given by ẋ = dx/dt
and so forth for y and z. From the form of these differential
equations the equilibrial solutions are evident, either when

the frequencies are zero (vertices of the simplexes in Fig-
ure 2) or when the bracketed terms are zero. Since the
genotype frequencies sum up to 1, we can solve for just two
frequencies. The solutions obtained though are complicated
expressions with a possibility of imaginary roots.

Assuming complete Medea lethality (d = 1), the equilib-
rium of the system is given by,

x̂ =
(ω − 1)2

1 + ν − ω
; ŷ =

2ω(1− ω)

1 + ν − ω
; ẑ =

ω2 − ω + ν

1 + ν − ω
. (A.3)

When it exists (0 < {x̂, ŷ, ẑ} < 1) then it is always unstable.
Of particular interest is the case where the Medea allele
frequency (given by p = x̂+ŷ/2) at the unstable equilibrium
is 0.5,

p = 1/2, (A.4)

as this is ideal from the point of view of reversibility (see
Figure 3). In order to cross an unstable equilibrium thresh-
old, to ultimately transform a population, releases have to
be made of a minimum size of p/(1−p) relative to the wild
population size. To cross this boundary and then recross it
(i.e. if we wish to reverse a completely transformed popu-
lation) requires two releases with a minimum combined size
of 1/p(1− p)− 2. This function approaches positive infin-
ity at p = 0 and p = 1 and has a minimum at p = 1/2
with the release ratio being twice that of the wild popula-
tion (Figure 3). Thus, an unstable threshold of p = 1/2 is
ideal from the perspective of population transformation and
reversibility and is still much lower than release sizes used in
successful applications of the sterile insect technique. Sub-
stituting the equilibrium values in Eqs. (A.3) into Eq. (A.4)
gives

ν + ω = 1 (A.5)

at d = 1 (Figure 7). For t < 1, there may exist two internal
equilibria, the lower allele frequency one is unstable and the
higher frequency one is stable, given by

x̂ =
ν

2ω − ν
; ŷ = 1− x̂; ẑ = 0. (A.6)

However, in case of underdominance if Eq. (A.5) holds then
only the unstable internal equilibrium exists at p = 1/2.
This is graphically illustrated in Figure 7.
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