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ABSTRACT 

Multi-marker approaches are currently gaining a lot of interest in genome wide association 

studies and can enhance power to detect new associations under certain conditions. Gene and 

pathway based association tests are increasingly being viewed as useful complements to the 

more widely used single marker association analysis which have successfully uncovered 

numerous disease variants. A major drawback of single-marker based methods is that they do not 

consider pairwise and higher-order interactions between genetic variants. Here, we describe 

novel tests for multi-marker association analyses that are based on phenotype predictions 

obtained from machine learning algorithms. Instead of utilizing only a linear or logistic 

regression model, we propose the use of ensembles of diverse machine learning algorithms for 

constructing such association tests. As the true mathematical relationship between a phenotype 

and any group of genetic and clinical variables is unknown in advance and may be complex, 

such a strategy gives us a general and flexible framework to approximate this relationship across 

different sets of SNPs. We show how phenotype prediction obtained from ensemble learning 

algorithms can be used for constructing tests for the joint association of multiple variants. We 

first apply our method to simulated datasets to demonstrate its power and correctness. Then, we 

apply our method to previously studied asthma-related genes in two independent asthma cohorts 

to conduct association tests.   
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INTRODUCTION 

Genome wide association studies (GWAS) have generated a wealth of information about genes 

and genetic variants influencing various diseases and traits (Visscher 2012). The vast majority of 

GWAS have focused on single-marker analysis and tests for significance were corrected for 

multiple hypotheses testing to obtain the correct false positive rates. Because the number of 

markers tested in such studies is large, a single nucleotide polymorphism (SNP) needs to have 

strong effects or the sample size needs to be large enough to cross the stringent genome wide 

significance thresholds. Furthermore, many complex traits are thought to result from the 

interplay of multiple genetic and environmental factors, which are not captured by single SNP 

association tests.  Given these limitations of single-marker analysis, many multi-marker 

approaches for association testing have been proposed and are increasingly being used to 

complement single SNP analysis (e.g. Pang et al. 2006; Wang et al. 2007; Li et al. 2009; Liu et 

al. 2010; Wu et al. 2010; Li et al. 2011; Wu et al. 2011; Huang et al. 2011; Li et al. 2012; Chung 

and Chen 2012).  

 

Genes are the basic functional units of the genome and multiple polymorphisms within or near a 

gene can jointly affect its products. Thus, multi-marker association tests can realistically model 

the multiplicity that occurs biologically. While individual causal variants might show only a 

marginal signal of association, jointly utilizing all informative SNPs within a gene may detect 

their manifold effects.  Testing genes also reduces the burden of multiple testing from millions of 

individual SNP tests to around 20,000 genes. Gene-based methods may also be less sensitive to 

differences in allele frequency and linkage disequilibrium between population groups (and, 

therefore, may produce more replicable results).   
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To date several gene-based association tests have been proposed (e.g. Li et al. 2009; Liu et al. 

2010; Wu et al. 2010; Li et al. 2011; Wu et al. 2011; Huang et al. 2011; Li et al. 2012). Most of 

these approaches first assign a subset of SNPs to a particular gene based on their location in the 

genome; they then seek to calculate a gene-based p value based on the individual SNP 

association tests. VEGAS (Versatile gene-based association study) is a gene-based method that 

combines the chi-square test statistics of individuals SNPs, while accounting for their 

dependence (Liu et al. 2010). GATES is another gene-based association test that uses an 

extended Simes procedure to integrate the p values of individual variants while accounting for 

pairwise correlations between variants when calculating the effective number of independent 

tests (Li et al. 2011).  SKAT is a logistic kernel machine based test that can account for non-

linear effects when determining the gene-level significance (Wu et al. 2010; Wu et al. 2011).  

Generally, the methods used for combining p values in gene-based tests can be divided into 2 

categories: best-SNP picking and all SNP aggregating tests.  Best-SNP picking tests use only one 

SNP-based p value after accounting for multiple testing adjustment. GATES is an example of a 

testing method that falls within this category.  All-SNP aggregating tests, such as VEGAS-SUM 

and SKAT, attempt to accumulate the effects of all SNPs into a test when determining the overall 

p value. HYST is a recently developed hybrid method that use both these kinds of approaches in 

its calculations (Li et al. 2012).   

 

Many existing gene-based approaches either use the minimum of the p values for variants within 

a gene or integrate the p values/test statistics from individual variants to determine the overall 

gene-level p values. However, this may not be optimal in terms of utilizing the information 

available in the data and it may be better to determine the joint association of multiple predictive 
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SNPs rather than use individual SNP measures. In addition, many existing methods do not 

account for nonlinear effects. Our main goal here is to develop an accurate method for multi-

marker association analysis that can incorporate pairwise and higher order interactions between 

variables. We use phenotype prediction algorithms as a basis for constructing such association 

tests.  Since both the underlying genetic architecture of a trait and the optimal model structure  

for combining the association information across multiple SNPs are not usually known before 

testing, we propose a machine learning approach for this purpose. The main novelty of our 

approach is the use of an ensemble of diverse learning models to generate phenotype predictions.  

In this approach, we feed the initial predictions generated from many individual learning 

algorithms into a second-level learning algorithm which weights their contributions suitably to 

generate a final prediction (Breiman 1996; Breiman 2001; Bell et al. 2007; Sill et al. 2009; 

Toscher et al. 2009). Thus, our approach involves blending the results of different learning 

algorithms by using a “meta-level” learning algorithm. We also use additional variables called 

“meta-features” (e.g., age, gender, body mass index, individual genotypes, ancestry) as inputs to 

guide this blending procedure (Sill et al. 2009). In principle, such a combination of models can 

allow us to better approximate (on average) the true underlying relationships between the input 

variables and phenotype across multiple sets of SNPs.  Of note, this method allows the 

relationships between different groups of SNPs and the phenotype to be non-linear, complex, and 

variable, as is likely to occur in nature. 

 

Here, we show how machine learning algorithms can be used to construct powerful tests for 

multi-marker association analysis. We then show how to construct tests of association in the 

presence of non-genetic covariates and how to construct a multi-marker test of interactions under 
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this framework. We first apply our method to simulated datasets to demonstrate its power and 

correctness. Lastly, we apply our method to previously studied asthma-related genes in two 

independent asthma cohorts to conduct gene-based association tests.   
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METHODS 

Approach for predicting phenotypes 

Here, we present an overview of our approach to predict phenotypes from genetic and clinical 

variables through the use of multiple machine learning algorithms.   First, we create a list of all 

genetic variants and clinical covariates that can potentially influence the phenotype of interest 

such as a disease or drug response. Next, we perform a feature selection step where we identify a 

subset of variables, which are useful for building a predictive model (i.e., associated with the 

phenotype). This can be done in many ways such as using variable importance scores from a 

random forest algorithm or Pearson’s correlation coefficient with the phenotype.  Different 

machine learning algorithms (e.g., random forests (Breiman 2001), support vector machines 

(Cortes and Vapnik 1995, Harris et al. 1996) and logistic regression) are then trained using this 

subset of informative variables.  Subsequently, we use the predictions from these individual 

models along with the selected features as inputs in a “meta-level” random forest algorithm.  

Lastly, we assess prediction accuracy by testing the model on an “outside the training set” and 

through 20-fold cross-validation. 

 

Ensemble learning algorithm for phenotype prediction 

Ensemble learning variation 1: 

1. Generate a set of all genetic variables. 

2. Perform feature selection on the training data in order to identify an informative subset of 

variables (f1, f2…fn) for phenotype prediction.  This can be performed using either pairwise 

correlation coefficients between variables and phenotype or by using random forest variable 
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importance scores to rank the variables. Then, we can use the top 10%-30% of the variables 

in a prediction model.  

3. Train k independent machine learning approaches on the training data using the selected 

features and generate model predictions P1, P2…Pk. 

4. Use the predictions from step 3, P1, P2…Pk and f1, f2…fn as inputs and train a “meta-level” 

learning algorithm using random forests. Note that this is a key step in the algorithm and 

generates a final prediction by blending many individual predictions in a possibly nonlinear 

manner. The main goal is to learn the best model to combine individual models from the 

training data so that we can predict the phenotype as well as possible. The non-linear 

combination of models along with the meta-features gives us a more general predictive 

framework, which can accommodate different model structures and also allows the overall 

model to vary across the multi-dimensional parameter space. 

5. Generate predictions in test data Pblend1 using the models trained in steps 3 and then 4. Repeat 

for all cross-validation folds to obtain unbiased phenotype predictions for all samples. 

 

Generalization: An ensemble of ensembles 

Generalizations of the algorithm described previously are also possible that can potentially 

further boost the prediction accuracy. In particular, the creation of an ensemble of models (steps 

3 and 4 in previous algorithm) can be done in a variety of different ways. For example: 

 

Ensemble learning variation 2: Combining of predictions from individual learning models can be 

done sequentially using predictions from all previous steps as inputs in the next step (i.e. instead 

of steps 3 and 4).  Therefore, as an alternative approach, we can do the following: 
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i) Train learning algorithm 1 on the training data using the selected features f1, f2…fn as inputs 

and generate model predictions P1. 

ii) Train learning algorithm 2 on the training data using P1 and the selected features f1, f2…fn as   

inputs and generate model predictions P2. 

iii) Training learning algorithm 3 on the training data using P1, P2 and the selected features f1, 

f2…fn  as inputs and generate model predictions P3. 

………………………………………………………………………………………………..…… 

…………………………………………………………………………………………………..… 

k) Training learning algorithm k on the training data using P1, P2,…Pk-1 and the selected features 

f1, f2…fn as inputs and generate model predictions Pk. 

Note that each algorithm after the first is a meta-level learning algorithm. Then, we generate 

predictions in test data Pblend2 using the models as in training and repeat for all cross-validation 

folds to obtain unbiased phenotype predictions for all samples. 

 

Ensemble learning variation 3: Instead of applying an ensemble learning model (variation 1) to 

all the samples, we can divide the high-dimensional parameter space of variables into different 

subsets. Then, we can train different ensemble learning models using only samples that fall in 

these different subsets and finally merge these models to obtain the overall prediction model.  

Subsequently, we can generate final predictions, Pblend3, in test data as we did for training data for 

all cross-validation folds within all subsets to obtain unbiased phenotype predictions for the 

entire sample.   
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Lastly, we can train a final random forest learning algorithm that uses f1, f2…fn and Pblend1, Pblend2 

and Pblend3 as inputs and performs 20-fold cross-validation to generate the final prediction Pfinal.  
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Multi-marker tests of association                                                                                                                     

Once we have estimated a model using any of the algorithms described in the previous section 

and predicted phenotypes for all individuals using cross-validation, we can construct tests of 

association in the following manner. For continuous traits, we can calculate the Pearson’s 

correlation coefficient between predicted (Pfinal) and observed (Pactual) values and obtaining the 

corresponding p values. For case-control studies, we perform a logistic regression using all the 

genetic variables (i.e., SNPs) and Pfinal as explanatory variables. A chi square based likelihood 

ratio test can then be used to generate p values.  

 

Testing multi-marker associations in the presence of covariates 

Association testing in the presence of covariates (e.g., age, gender, BMI and smoking status) can 

be done in the following manner.  First, consider both non-genetic covariates and genetic 

variables together for phenotype prediction according to any of the ensemble learning algorithms 

described earlier.  Let Pfinal-all be the predicted phenotype values. Then, remove the SNP variables 

and rerun the phenotype prediction algorithm. Let Pfinal-covariates be the predicted phenotype values. 

For continuous traits, we first calculate the Pearson’s correlation coefficient for these predicted 

variables with the true phenotypes (Pactual). The strength of association for the genetic variables 

can then be calculated using the Steiger’s Z test (Steiger 1980) for the difference between the 2 

calculated correlation coefficients. Let r12 and r13 denote the Pearson’s correlations between the 

true phenotype (Pactual) and Pfinal-covariates and Pfinal-all respectively.  Let r23 denote the Pearson’s 

correlation between Pfinal-covariates and Pfinal-all.  The Steiger’s test computes p values based on the 

following test statistic that is assumed to be standard normally distributed: 

Z = (Z12 – Z13) √� � 3/��2	 � 2	���� 
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Here, Z12 and Z13 are Fisher’s transformations of r12 and r13, and 

h = (1 – frm
2) / (1 – rm

2) where f = (1 – r23)/(2 – 2rm
2) and rm

2 = (r12
2 + r13

2)/2. 

For case-control studies we can use both non-genetic covariates, genetic variables, Pfinal-all, and 

Pfinal-covariates as explanatory variables in a logistic regression model.  We then use a chi square 

based likelihood ratio test to compare the former model with a model without any genetic 

variables (i.e. non-genetic covariates and Pfinal-covariates only) to calculate a p value for the genetic 

contribution.   

 

Multi-marker tests for interactions 

We can test for interactions between a set of markers in the following manner.  First, consider all 

of the SNPs together in a linear or logistic regression model (for continuous or case-control 

phenotype) and generate phenotype predictions using cross-validation for all individuals. Let 

Plinear be the predicted phenotype values. Then, generate phenotype predictions for all individuals 

using any of the ensemble learning algorithms described previously.  Let Pensemble denote the 

predicted phenotype values.  For continuous traits, we will use all markers as well as Pensemble and 

Plinear as explanatory variables in a multiple regression model (Model 1) and perform a F test 

with a model (Model 0) without interactions (i.e. one with all markers and Plinear only) to 

calculate the p value.  We compare the sum of the squared errors (SSE) of prediction to construct 

an F statistic with (1, N  – VModel1  – 1) degrees of freedom. Here:  

F = [SSEModel0 – SSEModel1][N – VModel1 - 1]/SSEModel1.  N denotes the number of samples and 

VModel1 denotes the total number of explanatory variables in model 1.  For case-control studies, 

we will use all markers as well as Pensemble and Plinear as explanatory variables in a logistic 
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regression model and use a chi square based likelihood ratio test with a model without 

interactions (i.e. one with all markers and Plinear only) to calculate the p value.   

 

Power and Type-1 error rates of gene-based association tests for data simulated under 

multiplicative and additive models 

We tested the performance of the proposed gene-based test by simulating genotype data for 30 

biallelic SNPs assuming Hardy Weinberg equilibrium. We assumed the following 3 scenarios of 

linkage disequilibrium (LD) for the 30 SNPs: i) SNPs are within blocks with high LD (r = 0.9 or 

0.8 within blocks); ii) SNPs are within blocks in moderate LD (r = 0.5 or 0.4); and iii) SNPs are 

completely independent of one another and in linkage equilibrium.  The choice of simulation 

settings were similar to what has been used previously (Li et al. 2011). For each LD scenario, we 

considered 3 different gene sizes with the first 3, first 10 and all 30 SNPs with 1, 2 and 6 

causative SNPs respectively. For each gene size, we tested the following models: i) a null model 

with no disease loci ii) an additive model where one SNP in each LD block had a minor allele 

that increased the risk additively by 0.14; and iii) a multiplicative model where one SNP in each 

LD block had a minor allele that increased the risk by a factor of 1.14.  Disease prevalence was 

assumed to be 0.1.  For each scenario, we used a sample of 1,500 cases and 1,500 controls drawn 

from a simulated population of 100,000 individuals. More details about LD patterns can be found 

elsewhere (Li et al. 2011). Type-1 error rates and statistical power were obtained from 1,000 and 

500 simulated case-control datasets, respectively and were based on the fraction of datasets for 

which the gene-based association test generated significant p values (i.e. p < 0.05).  
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Power and Type-1 error rates of a gene-based test for models with interactions 

The simulations in the previous section assumed that the effect of various disease susceptibility  

SNPs were independent of one another and that they increased the risk additively or 

multiplicatively.  To explore the effect of pairwise and higher order interactions between genetic 

variants, we also compared the performance of methods for data simulated under models with 

interactions.  We simulated a quantitative trait for many different models with one or more 

interactions among variants in addition to main effects. In addition, we also considered scenarios 

where there is pure epistasis (i.e. where the effect of a group of SNPs is simply due to their 

interactions and there are no main effects).  We simulated samples of 3,000 individuals and 

genes with 5 or 10 SNPs assuming linkage equilibrium. The phenotype was drawn from a 

complex distribution involving the sum of a standard normal random variable and some 

multivariable function involving many SNP variables (Table 4). SNP variables are coded as 0, 1 

or 2. Power and Type-1 error rates were estimated based on 100 and 500 simulated datasets, 

respectively.  We calculated the fraction of simulated datasets for which the gene-based method 

generated a significant p value (p < 0.05).  We compared our result with a gene-based test using 

linear regression and a gene-based test using GATES (Li et al. 2011). For the gene-based test 

with linear regression, p values were obtained using an F test statistic. 

 

Power and Type-1 Error rates for a multi-marker test for interactions 

For all the models simulated in the previous section, we also constructed a multi-marker test for 

interactions as described previously and estimated the power of such a test.  We simulated 

samples of 3,000 individuals and genes with 5 or 10 SNPs assuming linkage equilibrium.  The 

phenotype was drawn from a complex distribution involving a sum of a standard normal variable 
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and interaction terms involving many SNPs as shown in Table 4.  Power and type-1 error rates 

were estimated based on 1,000 simulated datasets.  For each model with interactions, we 

calculated the fraction of simulated datasets for which the multi-marker test of interactions 

generated a significant p value (p < 0.05); p values were based on an F test statistic with two 

parameters as described previously.  

 

Datasets  

We applied the methods developed in this paper to data from 2 independent studies. The studies 

included the Study for Asthma Phenotypes and Pharmacogenomic Interactions by Race-ethnicity 

(SAPPHIRE) and the Genes-environments and Admixture in Latino Americans (GALA II).  

Recruitment for both studies is ongoing. 

 

SAPPHIRE is population-based study which seeks to understand the genetic underpinnings of 

both asthma and asthma medication response.  Study individuals included in this analysis were 

recruited from a single large health system serving the southeast Michigan and the Detroit 

metropolitan area.  Enlisted patients with asthma met the following criteria: age 12-56 years, a 

physician diagnosis of asthma, and no recorded diagnosis of chronic obstructive pulmonary 

disease or congestive heart failure.  Control individuals without asthma were recruited from a 

similar geographic region and were 12-56 years of age, but they did not have a prior recorded 

diagnosis of asthma, chronic obstructive pulmonary disease, or congestive heart failure.  Genome 

wide genotyping was performed using the Axiom Genome-Wide AFR array (Affymetrix, Santa 

Clara, CA).  After data quality control, genotype information was available on 586,952 SNPs for 

1,073 individuals with asthma and 328 healthy controls (Padhukasahasram et al. 2014).  All of 
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the individuals from the SAPPHIRE cohort included in this analysis were African American by 

self-report.                         

 

The GALAII study is a case control study to identify gene-environment interactions contributing 

to asthma.  Children of Latino descent age 8-21 years were recruited from New York City, 

Chicago, San Francisco, Houston, and Puerto Rico.  Children with asthma had a physician 

diagnosis of asthma and either a 12% increase in forced expiratory volume at one second 

following the administration of albuterol or a positive methacholine challenge test.  Genome 

wide genotype data was available on 3,772 individuals (1,891 with asthma and 1,881 without).  

Genomic DNA was genotyped on the Axiom Genome-Wide LAT array.  After data cleaning, 

information was available for 747,075 SNPs genome wide.   
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RESULTS 

Multiplicative and Additive models-Comparisons 

Tables 1-3 shows comparisons for the performance of various methods for disease case-control 

datasets simulated under additive and multiplicative models. We can see that the performance of 

the newly proposed method based on an ensemble of machine learning algorithms is comparable 

to other approaches and the Type-1 error rates produced by all methods are close to what is 

expected. For more details about the different methods tested in these tables, please refer to Li et 

al. 2011. Note that when there are no disease-related SNPs in the data, we expect to see p values 

< 0.05, in around 5% of the simulated datasets due to chance alone. For the ensemble learning 

and logistic regression methods, we can also see that power is not strongly sensitive to the 

strength of linkage disequilibrium. Thus, for both additive and multiplicative models, power 

estimates do not appear to change much across Tables 1-3 for these methods. 

 

Models with epistatic effects  

In Table 4, we show the power of the ensemble learning based multi-marker association test 

using a simulated quantitative trait for models with interactions. We compare the ensemble 

learning approach with a gene-based test constructed using multiple linear regression, as well as 

with the extended Simes procedure as implemented by GATES.  In all situations, our simulations 

indicate that the machine learning approach, which can model interactive effects, is uniformly 

more powerful for detecting gene-based associations when compared with the other two 

approaches. Table 4 also shows that the estimated gain in power can be substantial.  Among the 

other two methods, multiple linear regression performed second best while the GATES method 

which only integrates the p values from single marker tests had the lowest power. In Table 5, we 
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show the power and Type-1 error rates of a multi-marker test for interactions using the same 

models as in Table 4. These results clearly demonstrate the ability of our approach to detect the 

presence of interactions by considering the difference between ensemble learning and linear 

model based predictions.    

 

Application to real datasets 

We applied the proposed gene-based association test to an empirical dataset consisting of 1,401 

African American individuals (1,073 individuals with asthma and 328 individuals without 

asthma) from the SAPPHIRE cohort and 3,772 Latino children (1,891 individuals with asthma 

and 1,881 individuals without asthma) from the GALAII study.  Tables 6 and 7 show the sample 

characteristics of these populations. We tested 9 previously studied asthma-related genes (Li et 

al. 2010; Moffatt et al. 2010; Torgerson et al. 2011) to see if these are also associated with 

asthma status in our datasets. Although 100s of genes have been implicated in asthma, only a few 

have been reliably replicated in multiple groups. Therefore, to demonstrate the performance of 

our method, we restricted our analysis to a small subset of asthma genes identified (and 

replicated in some cases) in well-powered, high-quality studies. This also reduces the burden of 

multiple testing. When constructing gene-based association tests, we adjusted for age, gender 

and the first 10 principal components in both study groups.  Principal component analysis was 

performed using the prcomp function in R using a random set of 10,000 markers. Tables 8 and 9 

show the results of our ensemble learning gene-based association test in the SAPPHIRE and 

GALAII study populations, respectively.  The results are compared with those obtained using the 

GATES method and logistic regression.  At a Bonferroni adjusted significance threshold of 

0.0027 (= 0.05/18 [i.e., 9 genes assessed twice]), we found that the ensemble learning gene-based 
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test identified more statistically significant results when compared with the other gene-based 

methods.  Specifically, IL33 was significantly associated with asthma in Latino children using 

the ensemble learning gene-based test, but this gene was of borderline significance using the 

other 2 approaches.     

.  
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DISCUSSION 

We have introduced a new method for assessing gene-based associations using genome wide 

genotype data.  This method uses diverse machine learning algorithms to construct predictive 

models for the phenotype using the SNP variation with a gene and then using these predictions to 

construct tests of association.  Machine learning algorithms represent powerful tools for inferring 

the relationship between multiple explanatory variables and a phenotype while accounting for 

complicated interactions between the former.  Because the “true” multivariable relationship 

between a set of variables and a trait like disease or drug response is not known in advance, we 

can better approximate this relationship by first learning from the data.  The use of ensemble 

learning-based predictions leads to novel multi-marker tests of association.  In addition to gene-

based tests of association, we expect that these methods could also be applied for pathway-based 

analysis or to any other set of polymorphic variants defining a region of interest or a functional 

class.   

 

There are three key advantages of using our gene-based approach compared to existing 

approaches. First, our method does not make a priori assumptions about the genetic model for a 

SNP (i.e. additive, recessive or dominant).  When constructing our tests, we can include 3 

variables for each SNP where the variants are encoded according to these 3 models (i.e. additive, 

recessive, dominant). Thus, we can include heterogeneous effects within and across SNPs.  A 

second advantage is the ability to include any number of covariates (genetic or non-genetic) and 

model higher level interactions between them.  This feature makes machine learning particularly 

suited for assessing gene-environment or gene-gene interactions. Third, creating an ensemble of 

diverse multivariate models with meta-features makes our method less restrictive and capable of 
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approximating the phenotype more accurately.  Collectively, these novel aspects can boost 

statistical power and result in novel genetic discoveries. 

 

Extensions of these methods towards the case of multiple correlated phenotypes should also be 

straightforward.  If instead of a single phenotype, we are interested in many phenotypes that are 

correlated with one another in some manner, we can construct a joint association test for all of 

them in the following manner.  First, we will apply the ensemble learning based gene-based 

association test to each phenotype individually and obtain their corresponding p values.  

Subsequently, we can obtain an overall p value from these individual p values using the TATES 

multi-trait association method (van der et al. 2013), which is analogous to the extended Simes 

procedure of GATES developed for testing multi-marker associations.  

 

We applied our method to both simulated and empirical datasets to demonstrate its power and 

utility.  For models without interactions between variables, the ensemble learning approach 

worked similarly when compared with other previous gene-based association tests.  In contrast, 

for models dominated by interactions, our simulation studies suggested that the ensemble 

learning test can be considerably more powerful than other methods.  Thus, for situations where 

epistatic or gene-environment effects are likely to be important, our association test is more 

likely to detect associations as compared to the alternative methods described.  

 

There are a number of potential limitations to our approach that require mentioning.  First, 

computational time can be a limitation when applying an ensemble learning algorithm based 

associations tests to thousands of genes.  One potential solution would be to start by using a 
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computationally efficient gene-based method, such as the GATES procedure, to first identify a 

smaller subset of likely candidate genes. Then, a machine learning based multi-marker 

association approach could be applied to this restricted set to further refine the group of 

candidate genes.  However, at this point it is uncertain whether such an approach would result in 

improved statistical power. Next, we cannot state with certainty that the genes assessed here are 

involved in asthma pathogenesis, since many of these genes were identified in association studies 

and their function (as it relates to asthma) has not yet been elucidated.  Therefore, while we 

assume that these genes represent true-positives, this portion of our analysis may not represent an 

actual demonstration of statistical power unless more detailed functional studies are conducted 

for the relevant genes to directly demonstrate their role in asthma. Lastly, it should also be 

mentioned that while our multi-marker tests can detect associations or the presence of interactive 

effects, they do not attempt to pinpoint the specific variants contributing to such effects. 

Elucidating such details will entail more in-depth analysis of the models learned and construction 

of additional tests. 

 

In summary, ensemble learning algorithms provide a general and flexible framework for 

conducting association analysis.  We have shown that phenotype predictions made by such 

algorithms can be used for many common tasks encountered in association analysis, such as 

multi-marker association tests, adjusting for genetic and non-genetic covariates, and tests of 

interaction. Because machine learning is a highly developed area of study, prediction of response 

from many input variables is a well-studied problem and numerous well-established algorithms 

are already available which can be readily incorporated as components in an ensemble learning 

framework to maximize prediction accuracy and construct powerful tests of association.     
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Table 1. Comparison of empirical power and Type 1 error rates of gene-based association 

tests for simulated datasets assuming linkage equilibrium. 

 #SNP 

(#DSL) 

Logistic 

Regression 

Fisher Vegas-

Sum 

Original

-Simes 

Vegas-

Max 

GATES Machine-

Learning 

Ensemble 

Linkage Equilibrium 

Type 1 Error 3(0) 4.66 4.67 4.70 4.61 4.62 4.61 4.90 

Type 1 Error 10(0) 5.10 5.00 5.04 5.06 5.07 5.06 4.80 

Type 1 Error 30(0) 5.26 4.96 4.97 4.97 5.04 4.97 5.60 

Power 
Additive 

3(1) 43.71 41.79 42.67 45.28 45.22 45.28 56.00 

Power 
Additive 

10(2) 56.88 53.32 54.56 54.76 54.00 54.76 57.60 

Power 
Additive 

30(6) 65.32 61.5 63.28 47.18 45.62 47.18 69.00 

Power 
Multiplicative 

3(1) 46.61 44.72 45.54 48.39 48.3 48.39 53.00 

Power 
Multiplicative 

10(2) 69.00 65.25 66.88 67.00 66.26 67.00 69.00 

Power 
Multiplicative 

30(6) 93.45 91.44 92.28 82.21 80.18 82.21 94.60 

DSL denotes the number of disease susceptibility markers. 
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Table 2. Comparison of empirical power and Type 1 error rates of gene-based association 

tests in simulated datasets for moderate linkage disequilibrium. 

 #SNP 

(#DSL) 

Logistic 

Regression 

Fisher Vegas-

Sum 

Original

-Simes 

Vegas-

Max 

GATES Machine-

Learning 

Ensemble 

Linkage Disequilibrium 

Type 1 Error 3(0) 4.86 7.17 4.91 4.54 4.81 4.98 5.20 

Type 1 Error 10(0) 4.88 9.8 4.83 4.55 4.92 5.00 5.60 

Type 1 Error 30(0) 5.63 11.09 5.03 4.97 5.29 5.56 5.70 

Power 
Additive 

3(1) 44.59 55.8 49.36 49.71 50.51 51.23 55.20 

Power 
Additive 

10(2) 56.25 72.38 61.36 58.39 59.12 60.72 63.80 

Power 
Additive 

30(6) 65.47 83.04 71.96 53.29 52.24 55.65 68.00 

Power 
Multiplicative 

3(1) 46.52 57.5 50.98 51.19 52.00 52.65 53.40 

Power 
Multiplicative 

10(2) 68.42 81.73 72.48 70.66 70.9 72.4 70.20 

Power 
Multiplicative 

30(6) 93.68 98.04 95.59 86.07 84.34 87.52 94.70 

DSL denotes the number of disease susceptibility markers. 
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Table 3. Comparison of empirical power and Type 1 error rates of gene-based association 

tests on simulated datasets for strong linkage disequilibrium. 

 #SNP 

(#DSL) 

Logistic 

Regression 

Fisher Vegas-

Sum 

Original

-Simes 

Vegas-

Max 

GATES Machine-

Learning 

Ensemble 

Linkage Disequilibrium 

Type 1 Error 3(0) 4.96 11.49 5.23 3.88 5.22 5.35 6.00 

Type 1 Error 10(0) 5.33 15.68 4.84 3.37 4.88 5.34 5.70 

Type 1 Error 30(0) 5.57 17.9 4.89 3.38 4.89 5.64 5.90 

Power 
Additive 

3(1) 45.03 72.29 58.81 53.88 58.2 60.43 61.00 

Power 
Additive 

10(2) 57.20 89.82 75.74 66.39 71.71 74.3 59.00 

Power 
Additive 

30(6) 65.56 96.04 86.3 62.84 66.80 72.75 65.80 

Power 
Multiplicative 

3(1) 47.13 74.28 60.88 56.28 60.74 62.77 65.00 

Power 
Multiplicative 

10(2) 68.45 94.41 84.89 77.14 80.59 83.00 74.40 

Power 
Multiplicative 

30(6) 93.4 99.92 99.2 91.42 92.24 95.38 94.00 

DSL denotes the number of disease susceptibility markers. 
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Table 4. Comparison of empirical Power and Type-1 error rates of gene-based association 

tests for a quantitative trait simulated under models with interactions. 

Value Phenotype distribution #SNP 

(#TAS) 

Linear 

Regression 

GATES Machine 

learning 

Ensemble 

Type 1 
error 

P ~ N(0,1) 5(0) 5.66 4.00 5.00 

Type 1 
error 

P ~ N(0,1) 10(0) 5.30 6.00 5.66 

Power P~N(0,1)+0.20*snp1*snp2*snp9*snp10 10(4) 40.0 36.0 44.0 

Power P~N(0,1)+0.002*snp1 +0.002*snp2 

+0.12*snp1*snp2 + 0.18*snp3*snp4 

5(4) 84.0 66.0 87.0 

Power P~N(0,1)+0.25*snp1*snp2*snp3 5(3) 38.0 34.0 56.0 

Power P ~N(0,1)+0.3*snp1*snp2*snp3 5(3) 49.0 36.0 64.0 

Power P~N(0,1)+0.35*snp2*snp3*snp4 5(3) 64.0 55.0 87.0 

Power P~N(0,1)+0.65*snp1*snp2*snp3*snp8*snp9*

snp10 

10(6) 58.0 47.0 85.0 

Power P~N(0,1)+0.002*snp1 +0.002*snp2 + 

[0.2*(1+snp1)/(1+snp2)] + 0.3*snp4*snp5 

5(4) 66.0 50.0 80.0 

Power P~N(0,1)+0.002*snp1 +0.002*snp2 

+0.3*snp1*snp2 + 0.2*snp3*snp4 

5(4) 61.0 49.0 96.0 

TAS denotes the number of trait associated SNPs. 
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Table 5. Empirical Power and Type-1 error rate of a gene-based test of interactions for a 

simulated quantitative trait.  

Value Phenotype distribution #SNP 

(#TAS) 

Machine  

learning 

Ensemble 

Type 1 
error 

P ~ N(0,1) 5(0) 6.10 

Type 1 
error 

P ~ N(0,1) 10(0) 5.10 

Power P~N(0,1)+0.20*snp1*snp2*snp9*snp10 10(4) 55.5 

Power P~N(0,1)+0.002*snp1 +0.002*snp2 

+0.12*snp1*snp2 + 0.18*snp3*snp4 

5(4) 52.5 

Power P~N(0,1)+0.25*snp1*snp2*snp3 5(3) 64.6 

Power P ~N(0,1)+0.3*snp1*snp2*snp3 5(3) 78.2 

Power P~N(0,1)+0.35*snp2*snp3*snp4 5(3) 87.5 

Power P~N(0,1)+0.65*snp1*snp2*snp3*snp8*snp9*snp1

0 

10(6) 87.4 

Power P~N(0,1)+0.002*snp1 +0.002*snp2 + 

[0.2*(1+snp1)/(1+snp2)] + 0.3*snp4*snp5 

5(4) 53.5 

Power P~N(0,1)+0.002*snp1 +0.002*snp2 

+0.3*snp1*snp2 + 0.2*snp3*snp4 

5(4) 83.6 

TAS denotes the number of trait associated SNPs. 
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Table 6. Sample characteristics of the SAPPHIRE cohort. 
Variable Healthy African American 

individuals 

(n=328) 

African American individuals 

with asthma 

(n=1,073) 

Age (years) – mean ± SD 41.23 ± 13.28 31.65 ± 14.57 

Female Sex – no. (%) 212 (64.63) 671 (62.53) 

Body mass index (kg/m2) – 

mean ± SD 

32.19 ± 7.58 31.49 ± 9.07 

Smoking status – no. (%)   

 Never 239 (72.8) 893 (83.2) 

 Past 33 (10.1) 96 (8.9) 

 Current 56 (17.1) 84 (7.8) 

Asthma age of onset (years) 

– mean ± SD 

-- 12.65 ± 13.55 

FEV1 (liters) – mean ± SD 2.74 ± 0.71 2.58 ± 0.75 

Percent of predicted FEV1 – 

mean ± SD 

97.6 ± 15.3 87.9 ± 18.4 

SABA response (% change) 

– mean ± SD* 

2.51 ± 7.95 10.53 ± 12.93 
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Table 7. Sample characteristics of the GALAII cohort. 

Variable Healthy Latino children 

(n=1,881) 

Latino children with asthma 

(n=1,891) 

Age (years) – mean ± SD 13.65 + 3.50 12.53 + 3.25 

Female Sex – no. (%) 1059 (56.29%) 845 (44.68%) 

Body Mass index (kg/m2) 

mean ± SD 

24.40 + 6.87 23.09 + 6.51 

Smoking status- no(%)   

Smoker 92 (4.89%) 57(3.01%) 

Non-smoker 1789 (95.11%) 1834(96.99%) 

Ethnicity – no(%)   

Mexican 661 (35.14%) 596 (31.52%) 

Peurto Rican 894 (47.53%) 892 (47.17%) 

Spanish 125 (  6.64%) 244 (12.90%) 

Other 201 (10.69%) 159 (  8.41%) 
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Table 8. Gene-based p values for previously reported asthma-related genes in 1,401 African 

American individuals from the SAPPHIRE cohort. 

Chromosome Gene Length in 

base pairs 

Number of 

SNPs 

tested 

Gene-based  

p value  

from  

Ensemble 

Learning 

Gene-based 

p value 

from 

Logistic 

Regression 

Gene-based 

p value 

from 

GATES 

1 PYHIN1 45513 13 0.198 0.230 0.130 

2 IL1RL1 7466 6 0.982 0.982 0.832 

5 TSLP 6333 5 0.063 0.064 0.533 

9 IL33 42198 12 0.408 0.180 0.130 

17 GSDMB 14056 15 0.401 0.401 0.870 

5 IL13 2937 3 0.156 0.164 0.387 

15 SMAD3 57175 23 0.323 0.323 0.359 

5 SLC22A5 25906 15 0.0095 0.162 0.0076 

5 RAD50 87698 34 0.010 0.010 0.367 
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Table 9. Gene-based p values for previously reported asthma-related genes in 3,772 Latino 

individuals from the GALA study. 

Chromosome Gene Length  

in  

base pairs 

Number 

of SNPs 

tested 

Gene-based  

p value  

from  

Ensemble 

Learning 

Gene-based 

p value 

from 

Logistic 

Regression 

Gene-based 

p value 

from 

GATES 

1 PYHIN1 45513 15 0.320 0.320 0.530 

2 IL1RL1 7466 16 0.038 0.038 0.046 

5 TSLP 6333 7 0.270 0.270 0.250 

9 IL33 42198 14 0.0014 0.095 0.069 

17 GSDMB 14056 13 2.33E-09 4.20E-08 6.24E-11 

5 IL13 2937 10 0.280 0.280 0.100 

15 SMAD3 57175 28 0.464 0.464 0.063 

5 SLC22A5 25906 12 0.838 0.838 0.956 

5 RAD50 87698 33 0.217 0.217 0.050 
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