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Abstract 

Multi-marker approaches are currently gaining a lot of interest in genome wide association 

studies and can enhance power to detect new associations under certain conditions. Gene and 

pathway based association tests are increasingly being viewed as useful complements to the 

more widely used single marker association analysis which have successfully uncovered 

numerous disease variants. A major drawback of single-marker based methods is that they do not 

consider pairwise and higher-order interactions between variants. Here, we describe multi-variate 

methods for gene and pathway based association analyses using phenotype predictions based on 

machine learning algorithms. Instead of utilizing only a linear or logistic regression model, we 

propose the use of ensembles of diverse machine learning algorithms for testing multi-variate 

associations. As the true mathematical relationship between a phenotype and any group of 

genetic and clinical variables is unknown in advance and may be complex, such a strategy gives 

us a general and flexible framework to approximate this relationship across different sets of 

SNPs. We show how phenotype prediction based on our method can be used for constructing 

tests for SNP set association analysis. We first apply our method to simulated datasets to 

demonstrate its power and correctness. Then, we apply our method to previously studied asthma-

related genes in 2 independent asthma cohorts to conduct association tests.   
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INTRODUCTION 

Genome wide association studies (GWAS) have generated a wealth of information about genes 

and genetic variants influencing various diseases and traits. The vast majority of GWAS have 

focused on single-marker analysis and tests for significance were corrected for multiple 

hypotheses testing to obtain the correct false positive rates. Because the number of markers 

tested in such studies is large, a SNP needs to have strong effects or the sample size needs to be 

large enough to cross the stringent genome wide significance thresholds. Furthermore, many 

complex traits are thought to result from the interplay of multiple genetic and environmental 

factors, which are not captured by single SNP association tests.  Given these limitations of 

single-marker analysis, many multi-marker approaches for association testing have been 

proposed and are increasingly being used  to complement single SNP analysis.
(1-10)

  

 

As genes are the basic functional unit of the genome and since genes rarely work in isolation, 

multi-marker association tests appear to account for the multiplicity that occurs biologically. 

Therefore, while individual causal variants might show only a marginal signal of association, 

jointly utilizing all informative SNPs within a gene or a pathway may detect their manifold 

effects  Testing genes and pathways also reduces the burden of multiple testing from millions of 

individual SNP tests to ~20,000 genes and even fewer pathways. Multi-marker methods may 

also be less sensitive to differences in allele frequency and linkage disequilibrium between 

population groups (and, therefore, may produce more replicable results).   

 

To date several gene-based association tests have been proposed.
(1;2;4;8-10)

  Most of these 

approaches first assign a subset of SNPs to a particular gene based on their location in the 
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genome; they then seek to calculate a gene-based p value based on the individual SNP 

association tests. VEGAS is a versatile, gene-based method that combines the chi-square test 

statistics of individuals SNPs (while accounting for their dependence) to compute gene-level 

significance.
(2)

 GATES is another gene-based test that uses an extended Simes procedure to 

integrate the p values of individual variants while accounting for pairwise correlations between 

variants when calculating the effective number of tests.
(1)

 SKAT is a logistic kernel machine 

based test that can account for non-linear effects when determining the gene-level significance.
(9)

 

The methods used for combining p values in gene-based tests can be divided into 2 broad 

categories: best-SNP picking and all SNP aggregating tests. Best-SNP picking tests use only one 

SNP-based p value after accounting for multiple testing adjustment. GATES is an example of 

such a test. All-SNP aggregating tests like VEGAS-SUM and SKAT attempt to accumulate the 

effects of all SNPs into a test when determining the overall p value. HYST is a recently 

developed hybrid method that use both these kinds of approaches in its calculations.
(8)

  The 

initial pathway-based approaches
(3)

 for analyzing GWAS data were developed by adapting ideas 

from the microarray field where similar methods have been developed for gene expression 

data.
(11)

  In pathway-based analysis, researchers examine SNPs within predefined sets of genes 

based on prior biological knowledge or computer predictions. In the recent years, a range of 

pathway-based analytic methods have been developed.
(3;7;8;12-15)

 These can be broadly classified 

into 2 types based on whether they utilize SNP-based p values or individual-level genotype 

information to determine significance.  

 

There is considerable room for further improvement in existing gene- and pathway-based 

methods.  For example, many existing approaches use the minimum of the p values for variants 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 23, 2014. ; https://doi.org/10.1101/005405doi: bioRxiv preprint 

https://doi.org/10.1101/005405


within a gene to determine the gene-level p values. However, this may not be optimal in terms of 

utilizing the available information and it may be better to determine the joint association of 

multiple predictive SNPs rather than use individual SNP p values.  Similarly, multi-marker 

association tests that jointly utilize all informative genetic variants from a pathway may offer a 

more powerful test when compared with combining gene-based p values. In addition, many 

existing methods do not account for nonlinear and epistatic effects.    

 

Our main goal here is to develop an accurate method for multi-marker association analysis that 

can incorporate pairwise and higher order interactions. We use phenotype prediction algorithms 

as a basis for constructing such association tests.  Since both the underlying genetic architecture 

of a trait and the optimal model structure to use for combining the association information across 

multiple SNPs are not usually known before testing, we propose a machine learning approach for 

this purpose. The main novelty of our approach is the use of ensembles of diverse learning 

models to generate phenotype predictions. In this approach, we feed the initial predictions 

generated from many individual learning algorithms into a second-level learning algorithm 

which weights their contributions suitably to generate a final prediction.
(16-19)

 Thus, our approach 

involves blending the results of different learning algorithms by using a “meta-level” learning 

algorithm. We also use additional variables called “meta-features” (e.g., age, sex, body mass 

index, SNPs etc) as inputs to guide this blending procedure.
(18)

 In principle, such a combination 

of models can allow us to better approximate the true underlying relationships between the input 

variables and phenotype across multiple sets of SNPs.  Note that this relationship can be non-

linear, complex and variable in nature across different SNP sets. 
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Here, we show how machine learning algorithms can be used to construct powerful tests for 

multi-marker association analysis. We then show how to construct tests of association in the 

presence of non-genetic covariates and how to construct a multi-marker test for interactions 

under this framework. We first apply our method to simulated datasets to demonstrate its power 

and correctness. Lastly, we apply our method to previously studied asthma-related genes in 2 

independent asthma cohorts to conduct gene-based association tests.   

 

METHODS 

Approach for predicting phenotypes 

Here, we present an overview of our approach to predict phenotypes from genetic and clinical 

variables through the use of multiple machine learning algorithms.   First, we created a list of all 

genetic variants and clinical covariates that can potentially influence the phenotype of interest. 

Next, we perform a feature selection step where we identify a subset of variables which are 

useful for building a predictive model. This can be done in many ways such as using variable 

importance scores from a random forest algorithm or Pearson’s correlation coefficient with the 

phenotype. Different machine learning algorithms (e.g., random forests, support vector 

regression, multiple regression, artificial neural networks, and boosted regression trees) are then 

trained using this subset of informative variables.  Subsequently, we use the predictions from 

these individual models along with the selected features as inputs in a “meta-level” random 

forest algorithm.  Lastly, we assess prediction accuracy by testing the model on an “outside the 

training set” and through 5-fold cross-validation. 

 

Ensemble learning algorithm for phenotype prediction 

Ensemble learning variation 1: 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 23, 2014. ; https://doi.org/10.1101/005405doi: bioRxiv preprint 

https://doi.org/10.1101/005405


1. Generate a set of all genetic variables. 

2. Perform feature selection on the training data in order to identify an informative subset of 

variables (f1, f2…fn) for phenotype prediction. This can be performed using either pairwise 

correlation coefficients between variables and phenotype or by using random forest variable 

importance scores to rank the variables. Then, we can use the top 10%-30% of the variables 

in a prediction model.  

3. Train k independent machine learning approaches on the training data using the selected 

features and generate model predictions P1, P2…Pk. 

4. Use the predictions from step 3, P1, P2…Pk and f1, f2…fn as inputs and train a “meta-level” 

learning algorithm using random forests. Note that this is a key step in the algorithm and 

generates a final prediction by blending many individual predictions in a possibly nonlinear 

manner. The main goal is to learn the best model to combine individual models from the 

training data so that we can predict the phenotype as well as possible. The non-linear 

combination of models along with the meta-features gives us a more general predictive 

framework which can accommodate different model structures and also allows the overall 

model to vary across the multi-dimensional parameter space. 

5. Generate predictions in test data Pblend1 using the models trained in steps 3 and then 4. 

Repeat for all cross-validation folds to obtain unbiased phenotype predictions for all 

samples. 
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Generalization: An ensemble of ensembles 

Generalizations of the algorithm described previously are also possible that can potentially 

further boost the prediction accuracy. In particular, the creation of an ensemble of models (steps 

3 and 4 in previous algorithm) can be done in a variety of different ways. For example: 

 

Ensemble learning variation 2: Combining of predictions from individual learning models can 

be done sequentially using predictions from all previous steps as inputs in the next step i.e. 

instead of 3 and 4 we can: 

i) Train learning algorithm 1 on the training data using the selected features f1, f2…fn as inputs 

and generate model predictions P1. 

ii) Train learning algorithm 2 on the training data using P1 and the selected features f1, f2…fn as   

inputs and generate model predictions P2. 

iii) Training learning algorithm 3 on the training data using P1, P2 and the selected features f1, 

f2…fn  as inputs and generate model predictions P3. 

iv)……………………………………………………………………………………………………………… 

v)………………………………………………………………………………………………………………. 

vi) Training  learning algorithm k on the training data using P1, P2,…Pk-1 and the selected 

features f1, f2…fn as inputs and generate model predictions Pk. 

Note that each algorithm after i) is a meta-level learning algorithm. Then, we generate 

predictions in test data Pblend2 using the models as in training and repeat for all cross-validation 

folds to obtain unbiased phenotype predictions for all samples. 
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Ensemble learning variation 3: Instead of applying an ensemble learning model (variation 1) to 

all the samples, we can divide the high-dimensional parameter space of variables into different 

subsets. Then, we can train different ensemble learning models using only samples that fall in 

these different subsets and finally merge these models to obtain the overall prediction model. 

Then, we can generate final predictionsPblend3 in test data as we did for training data for all 

cross-validation folds within all subsets to obtain unbiased phenotype predictions for entire 

sample. 

Lastly, we can train a final learning algorithm that uses Pblend1, Pblend2 and Pblend3 as inputs to 

generate the final prediction Pfinal.  

 

Multi-marker tests of association                                                                                                                                                       

Once we have estimated a model using any of the algorithms described in the previous section 

and predicted phenotypes, we can construct tests of association in the following manner. For 

continuous traits, we can calculate the Pearson’s correlation coefficient between predicted (Pfinal) 

and observed (Pactual) values and obtaining the corresponding p values. For case-control studies, 

we perform a logistic regression using all the genetic variables (SNPs) and Pfinal as explanatory 

variables. A chi square based likelihood ratio test can then be used to generate p values.  

 

Testing multi-marker associations in the presence of covariates 

Association testing in the presence of covariates (e.g., age, gender, BMI and smoking status) can 

be done in the following manner.  First, consider both non-genetic covariates and genetic 

variables together for phenotype prediction according to any of the ensemble learning algorithms 

described earlier. Let Pfinal-all be the predicted phenotype values. Then, remove the SNP variables 
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and rerun the phenotype prediction algorithm. Let Pfinal-covariates be the predicted phenotype 

values. For continuous traits, we first calculate the Pearson’s correlation coefficient for both 

these predicted variables with the true phenotypes (Pactual). The strength of association for the 

genetic variables can then be calculated using the Steiger’s Z test for the difference between the 2 

calculated correlation coefficients. Let r12 and r13 denote the Pearson’s correlations between the 

true phenotype (Pactual) and Pfinal-covariates, Pfinal-all respectively. Let r23 denote the Pearson’s 

correlation between Pfinal-covariates and Pfinal-all. The Steiger’s test computes p values based on the 

following test statistic that is assumed to be standard normally distributed: 

Z = (Z12 – Z13) √    √(         ) 

Here, Z12 and Z13 are Fisher’s transformations of r12 and r13, and 

h = (1 – frm
2
) / (1 – rm

2
) where f = (1 – r23)/(2 – 2rm

2
) and rm

2
 = (r12

2
 + r13

2
)/2. 

 

For case-control studies we can use both non-genetic covariates and genetic variables as well as 

Pfinal-all, Pfinal-covariates as explanatory variables in a logistic regression model and use a chi square 

based likelihood ratio test with a model without any genetic variables (i.e. non-genetic 

covariates, Pfinal-covariates only) to calculate the p value.   

 

Multi-marker tests for interactions 

We can test for interactions between a set of markers in the following manner. First, consider all 

of the SNPs together in a linear or logistic regression model (for continuous or case-control 

phenotype) and generate phenotype predictions using cross-validation for all individuals. Let 

Plinear be the predicted phenotype values. Then, generate phenotype predictions for all individuals 

using any of the ensemble learning algorithms described previously. Let Pensemble denote the 
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predicted phenotype values. For continuous traits, we will use all markers as well as Pensemble and 

Plinear as explanatory variables in a multiple regression model (Model 1) and perform a F test 

with a model (Model 0) without interactions (i.e. one with all markers and Plinear only) to 

calculate the p value.  We compare the sum of the squared errors (SSE) of prediction to construct 

an F statistic with (1, N  – VModel1  – 1) degrees of freedom. Here:  

F = [SSEModel0 – SSEModel1][N – VModel1 - 1]/SSEModel1. N denotes the number of samples and 

VModel1 denotes the total number of explanatory variables in model 1. For case-control studies, 

we will use all markers as well as Pensemble and Plinear as explanatory variables in a logistic 

regression model and use a chi square based likelihood ratio test with a model without 

interactions (i.e. one with all markers and Plinear only) to calculate the p value.   

 

Power and Type 1 Error rates of gene-based association test for data simulated under 

multiplicative and additive models 

We tested the performance of the proposed gene-based test by simulating genotype data for 30 

biallelic SNPs assuming Hardy Weinberg equilibrium. We assumed 3 different scenarios of 

linkage disequilibrium (LD) structures for the 30 SNPs: i) SNPs are within blocks with high LD 

(r = 0.9 or 0.8 within blocks) ii) SNPs are within blocks in moderate LD (r
 
= 0.5 or 0.4) iii) SNPs 

are completely independent of one another and in linkage equilibrium. The choice of simulation 

settings are similar to what was used previously for comparisons in 
(1)

. For each LD scenario, we 

considered 3 different gene sizes with the first 3, first 10 and all 30 SNPs with 1, 2 and 6 disease 

SNPs respectively. For each gene size, we tested 3 models i) a null model with no disease loci. 

ii) additive model where one SNP in each LD block has a minor allele that increases the risk 

additively by 0.14. iii) multiplicative model where one SNP in each LD block has a minor allele 
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that increases the risk by a factor of 1.14. The baseline risk for individuals with non-risk alleles 

was calculated using risk ratios and allele frequencies and the population disease prevalence was 

0.1. We used a sample of 1,500 cases and 1,500 controls drawn from a simulated population of 

100,000 individuals for each scenario. For more details about these LD patterns, please refer to 

(1)
. Type1 error rates and statistical power was obtained as the fraction of 1,000 and 500 

simulated case-control datasets  respectively, for which the gene-based association test generated 

significant p values (i.e. p <= 0.05).  

 

Power and Type 1 Error rates of gene-based test for models with interactions 

The simulations in the previous section assumed that the effect of various disease susceptibility  

SNPs are independent of one another and they increase the risk additively or multiplicatively. To 

explore the effect of pairwise and higher order interactions between genetic variants, we also 

compared the performance of methods for data simulated under models with interactions. We 

simulated a quantitative trait for many different models with one or more interactions among 

variants in addition to main effects. In addition, we also considered scenarios where there is pure 

epistasis i.e. where the effect of a group of SNPs is simply due to their interactions and there are 

no main effects. We simulated samples of 3000 individuals and genes with 5 or 10 SNPs 

assuming linkage equilibrium. The phenotype was drawn from a complex distribution involving 

a sum of a standard normal variable and products of SNPs. Power and Type 1 Error rates were 

estimated based on 100 and 500 simulated datasets respectively. We calculated the fraction of 

simulated datasets for which the gene-based method generated a significant p value (p <= 0.05) 

and compared it with a gene-based test with linear regression as well as with GATES
(1)

. For a 

gene-based test with linear regression, p values were obtained by using an F test statistic. 
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Power and Type 1 Error rates for multi-marker test for interactions 

For all the models simulated in the previous section, we also constructed a multi-marker test for 

interactions as described previously and estimated the power of such a test. We simulated 

samples of 3000 individuals and genes with 5 or 10 SNPs assuming linkage equilibrium. The 

phenotype was drawn from a complex distribution involving a sum of a standard normal variable 

and interactions terms involving SNPs. Power and Type 1 Error rates were estimated based on 

1000 simulated datasets. For each model with interactions, we calculated the fraction of 

simulated datasets for which the multi-marker test of interactions generated a significant p value 

(p <= 0.05). p values were based on an F test statistic with two parameters as described 

previously.  

 

Datasets  

We apply the methods developed in this paper to 2 different datasets from independent studies. 

These datasets are briefly described below: 

i) The Study for Asthma Phenotypes and Pharmacogenomic Interactions by Race-ethnicity 

(SAPPHIRE) is an ongoing NIH-funded project that seeks to identify the genomic determinants 

of asthma controller medication response in a population based sample of asthmatic individuals. 

In particular, this cohort includes individuals with asthma who visit the Henry Ford Health 

System (HFHS) and Henry Ford Medical Group (HFMG), who consent to participation, and who 

undergo a detailed enrollment evaluation. The health system serves the primary and specialty 

medical needs of people in southeastern Michigan, including Detroit and its surrounding 

metropolitan area. The enlisted SAPPHIRE patients meet the following criteria: age 12-56 years, 

a prior clinical diagnosis of asthma, and no recorded diagnosis of chronic obstructive pulmonary 
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disease or congestive heart failure. In this cohort, we had genome wide data from 586,952 SNPs 

for testing associations in the primary GWAS data in a sample of 1,401 African American 

individuals. This includes 1,073 asthma cases and 328 healthy controls (For more details about 

dataset and quality control refer to 
(20)

).                             

ii) GALA (Gene-environment studies of asthma in Hispanic/Latino children) II study is a case 

control study in a cohort of Latino/Hispanic children between 8-22 years in age which aims to i) 

assess interactions between ancestry, environment and asthma ii) examine candidate gene- 

environment interactions with asthma and related phenotypes and iii) Determine whether 

migration and acculturation are associated with asthma and severe asthma. We have genome 

wide genotype data from 747,075 markers and various clinical covariates for a collection of 

3,772 individuals from different regions of the United States. This dataset includes 1,891 asthma 

cases and 1,881 controls. 
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Results 

Multiplicative and Additive models-Comparisons 

Tables 1-3 shows comparisons for the performance of various methods for disease case-control 

datasets simulated under additive and multiplicative models. We can see that the performance of 

the newly proposed method based on an ensemble of machine learning algorithms is competitive 

with other approaches and the Type 1 error rates produced by all methods are close to 

expectations. Power for many existing approaches are similar to one another for the parameters 

investigated here and for the machine learning and logistic regression methods, power is not 

sensitive to the strength of linkage disequilibrium. 

 

Models with epistatic effects  

In Table 4, we compare the power of our approach for models with pairwise and higher-order 

interactions between SNP variants using a simulated quantitative trait. We compare the ensemble 

learning approach with a gene-based test constructed using multiple linear regression as well as 

with the extended Simes procedure as implemented by GATES. In all situations, our simulations 

indicate that the machine learning approach which can model interactive effects is uniformly 

more powerful than the other 2 approaches. Table 4 also shows that the estimated gain in power 

can be substantial. Among the other 2 methods, multiple linear regression performed second best 

while the GATES method which only integrates the p values from single marker tests had the 

lowest power. In Table 5, we show the Power and Type 1 Error rates for a multi-marker test for 

interactions for the same models as in Table 4. These results clearly demonstrate the ability of 

our approach to detect the presence of interactions by considering the difference between 

ensemble learning and linear model based predictions.    
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Application to real datasets 

Lastly, we applied the proposed gene-based association test to an empirical dataset consist of 328 

healthy non-asthmatic individuals and 1,073 individuals with asthma. These individuals are of 

African American descent and are part of the Study of Pharmacogenomic Interactions by Race 

Ethnicity (SAPPHIRE) cohort. We tested 9 previously studied asthma-related genes
(21-23)

 in this 

cohort, to see if these are also associated with asthma status in the African American population. 

When constructing this gene-based test, we adjusted for age, gender and principal components 1-

10 as covariates.  

 

In addition to the SAPPHIRE cohort, we also applied the gene-based association tests to the 

same set of 9 genes in 3,772 Hispanic/Latino children (1891 cases and 1881 controls) from the 

GALAII study. Again, we adjusted for age, gender and principal components 1-10 as covariates 

when constructing a gene-based association test. Tables 6 and 7 show the results of our ensemble 

learning gene-based association tests in the African American and Latino groups respectively. 

We also show comparison of results with the GATES and logistic regression methods. At a 

Bonferroni adjusted significance threshold of 0.0027 (= 0.05/18), we can see that the ensemble 

learning gene-based test finds more hits than the other 2 approaches.     

.  
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Discussion 

We have introduced a new method for assessing the significance of association of a set of SNPs 

with a particular phenotype. This method uses diverse machine learning algorithms to construct 

predictive models for the phenotype using SNPs from a gene or a pathway, and, subsequently 

uses such predictions to construct tests of association. Machine learning algorithms represent 

powerful tools for inferring the relationship between multiple variables and a response variable 

of interest and can account for complicated interactions between the predictor variables. 

Although the use of machine learning for prediction is not a new idea, the construction of 

ensembles using diverse machine learning approaches yields a more general predictive model 

which can accommodate different kinds of model structures. Because the “true” multi-variate 

relationship between a set of variables and response is not known in advance and may be 

variable, such ensembles of models allow us to better approximate this relationship across 

different sets of SNPs by learning from the data. The use of ensemble-based ML predictions 

leads to novel multi-marker tests of association. We expect these tests to be useful for gene- and 

pathway-based association analysis. The method can applied to any arbitrary set of SNP 

variables (e.g. from a region of interest or SNPs from a functional class) and for admixed 

populations (e.g. African Americans, Latinos etc) it should be straightforward to use both SNP 

variables and local ancestry variables as inputs to construct similar tests.   

 

There are 3 key advantages of using our gene-based approach compared to existing approaches. 

The first is our method is flexible does not have to assume a particular genetic effects model (i.e. 

additive, recessive, dominant etc) for a SNP. When constructing our tests, we can include 3 

variables for each SNP where the variants are encoded according to these 3 models (i.e. additive, 
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recessive, dominant etc). Thus, we can test genes/pathways/SNP-sets where the genetic effects 

are heterogeneous in nature across SNPs. Another advantage is the ability to include any number 

of covariates (note that covariates can also be other SNPs from related genes) in the gene-based 

association tests and accounting for the interactions between them. This allows us to model 

higher-level multi-variable interactions (e.g. SNP x SNP x COVARIATE,  SNP x COVARIATE 

x COVARIATE), which are not considered using single marker and other gene-based association 

tests. Lastly, creating an ensemble of diverse multivariate models as well as the incorporation of 

meta-features, makes our method less restrictive than other methods allowing us to approximate 

a wider range of models accurately. All these novel aspects can boost the power of the method 

and may allow us to discover new genetic associations missed by existing approaches. 

 

Extensions of these methods towards the case of multiple correlated phenotypes should also be 

straightforward. If instead of a single phenotype, we are interested in many phenotypes that are 

correlated with one another in some manner, we can construct a joint association test for all of 

them in the following manner. First, we will apply the ensemble learning based gene-based 

association test to each phenotype individually and obtain their corresponding p values. 

Subsequently, we can obtain an overall p value from these individual p values using the TATES 

multi-trait association method
(24)

, which is analogous to the extended Simes procedure of 

GATES developed for testing multi-marker associations.  

 

We applied our method to both simulated and empirical datasets to demonstrate its power and 

utility. For models without interactions between variables, the ensemble learning approach works 

as well as many currently existing methods available for testing gene-based association tests. In 
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particular, power is close to a likelihood ratio test based on a logistic regression model alone. In 

contrast, for models dominated by interactions, the ensemble learning approach can be 

considerably more powerful than the alternate approaches considered here. Thus, for genes or 

pathways or phenotypes where epistatic effects are important, our approach is more likely to 

detect associations than other approaches that don’t consider such effects. By using a collection 

of diverse multi-variate models with interactions, the method developed here can complement 

the existing set of multi-marker association tests and can find novel correlations in existing 

GWAS datasets that are not visible through alternate approaches.  

 

Computation can be a possible limiting factor when applying  ensemble learning algorithm based 

associations tests to thousands of genes in genome wide datasets. For genome wide data, we 

suggest using a multi-stage approach to obtain results within a reasonable time. We can start by 

testing with a computationally efficient method like GATES to identify a smaller subset of likely 

candidate genes (e.g. top 100 or genes with p values below a threshold). Then, the machine 

learning based multi-marker association test (and generalizations described before) can then be 

applied to these high priority genes to obtained highly refined gene-based p values. We note that 

it should be trivial to split large datasets into gene regions and parallelize such tests when many 

computer nodes are available.  

 

In summary, ensemble learning algorithms provide a general and flexible framework for 

conducting association analysis. We have shown that phenotype predictions made by such 

algorithms can be used for many common tasks encountered in association analysis  such as 

testing of multi-marker associations, adjusting for multiple non-genetic (and possibly genetic) 

covariates and testing for interactions at a gene-level. Because machine learning is a highly 
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developed area of study, prediction of response from many input variables is a well-studied 

problem and numerous well-established algorithms are already available which can be readily 

incorporated as components in an ensemble learning framework to maximize prediction accuracy 

and construct powerful tests of association.      
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Table 1. Comparison of empirical power and Type 1 error rates of gene-based association 

tests for simulated datasets assuming linkage equilibrium. 

 #SNP 

(#DSL) 

Logistic 

Regression 

Fisher Vegas-

Sum 

Original

-Simes 

Vegas-

Max 

GATES Machine-

Learning 

Ensemble 

Linkage Equilibrium 

Type 1 Error 3(0) 4.66 4.67 4.70 4.61 4.62 4.61 4.90 

Type 1 Error 10(0) 5.10 5.00 5.04 5.06 5.07 5.06 4.80 

Type 1 Error 30(0) 5.26 4.96 4.97 4.97 5.04 4.97 5.60 

Power 

Additive 
3(1) 43.71 41.79 42.67 45.28 45.22 45.28 56.00 

Power 

Additive 
10(2) 56.88 53.32 54.56 54.76 54.00 54.76 57.60 

Power 

Additive 
30(6) 65.32 61.5 63.28 47.18 45.62 47.18 69.00 

Power 

Multiplicative 
3(1) 46.61 44.72 45.54 48.39 48.3 48.39 53.00 

Power 

Multiplicative 
10(2) 69.00 65.25 66.88 67.00 66.26 67.00 69.00 

Power 

Multiplicative 
30(6) 93.45 91.44 92.28 82.21 80.18 82.21 94.60 

DSL denotes the number of disease susceptibility markers. 
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Table 2. Comparison of empirical power and Type 1 error rates of gene-based association 

tests in simulated datasets for moderate Linkage Disequilibrium. 

 #SNP 

(#DSL) 

Logistic 

Regression 

Fisher Vegas-

Sum 

Original

-Simes 

Vegas-

Max 

GATES Machine-

Learning 

Ensemble 

Linkage Disequilibrium 

Type 1 Error 3(0) 4.86 7.17 4.91 4.54 4.81 4.98 5.20 

Type 1 Error 10(0) 4.88 9.8 4.83 4.55 4.92 5.00 5.60 

Type 1 Error 30(0) 5.63 11.09 5.03 4.97 5.29 5.56 5.70 

Power 

Additive 
3(1) 44.59 55.8 49.36 49.71 50.51 51.23 55.20 

Power 

Additive 
10(2) 56.25 72.38 61.36 58.39 59.12 60.72 63.80 

Power 

Additive 
30(6) 65.47 83.04 71.96 53.29 52.24 55.65 68.00 

Power 

Multiplicative 
3(1) 46.52 57.5 50.98 51.19 52.00 52.65 53.40 

Power 

Multiplicative 
10(2) 68.42 81.73 72.48 70.66 70.9 72.4 70.20 

Power 

Multiplicative 
30(6) 93.68 98.04 95.59 86.07 84.34 87.52 94.70 

DSL denotes the number of disease susceptibility markers. 
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Table 3. Comparison of empirical power and Type 1 error rates of gene-based association 

tests on simulated datasets for strong Linkage Disequilibrium. 

 #SNP 

(#DSL) 

Logistic 

Regression 

Fisher Vegas-

Sum 

Original

-Simes 

Vegas-

Max 

GATES Machine-

Learning 

Ensemble 

Linkage Disequilibrium 

Type 1 Error 3(0) 4.96 11.49 5.23 3.88 5.22 5.35 6.00 

Type 1 Error 10(0) 5.33 15.68 4.84 3.37 4.88 5.34 5.70 

Type 1 Error 30(0) 5.57 17.9 4.89 3.38 4.89 5.64 5.90 

Power 

Additive 
3(1) 45.03 72.29 58.81 53.88 58.2 60.43 61.00 

Power 

Additive 
10(2) 57.20 89.82 75.74 66.39 71.71 74.3 59.00 

Power 

Additive 
30(6) 65.56 96.04 86.3 62.84 66.80 72.75 65.80 

Power 

Multiplicative 
3(1) 47.13 74.28 60.88 56.28 60.74 62.77 65.00 

Power 

Multiplicative 
10(2) 68.45 94.41 84.89 77.14 80.59 83.00 74.40 

Power 

Multiplicative 
30(6) 93.4 99.92 99.2 91.42 92.24 95.38 94.00 

DSL denotes the number of disease susceptibility markers. 
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Table 4. Comparison of empirical power and type 1 error rates of gene-based association 

tests for a quantitative trait simulated under a model with interactions. 

Value Phenotype distribution #SNP 

(#DSL) 

Linear 

Regression 

GATES Machine 

learning 

Ensemble 

Type 1 

error 

P ~ N(0,1) 5(0) 5.66 4.00 5.00 

Type 1 

error 

P ~ N(0,1) 10(0) 5.30 6.00 5.66 

Power P~N(0,1)+0.20*snp1*snp2*snp9*snp10 10(4) 40.0 36.0 44.0 

Power P~N(0,1)+0.002*snp1 +0.002*snp2 

+0.12*snp1*snp2 + 0.18*snp3*snp4 

5(4) 84.0 66.0 87.0 

Power P~N(0,1)+0.25*snp1*snp2*snp3 5(3) 38.0 34.0 56.0 

Power P ~N(0,1)+0.3*snp1*snp2*snp3 5(3) 49.0 36.0 64.0 

Power P~N(0,1)+0.35*snp2*snp3*snp4 5(3) 64.0 55.0 87.0 

Power P~N(0,1)+0.65*snp1*snp2*snp3*snp8*snp9*

snp10 

10(6) 58.0 47.0 85.0 

Power P~N(0,1)+0.002*snp1 +0.002*snp2 + 

[0.2*(1+snp1)/(1+snp2)] + 0.3*snp4*snp5 

5(4) 66.0 50.0 80.0 

Power P~N(0,1)+0.002*snp1 +0.002*snp2 

+0.3*snp1*snp2 + 0.2*snp3*snp4 

5(4) 61.0 49.0 96.0 

DSL denotes the number of trait associated SNPs. 
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Table 5. Empirical Power and Type 1 error rate of a gene-based test of interactions for a 

simulated quantitative trait.  

Value Phenotype distribution #SNP 

(#DSL) 

Machine  

learning 

Ensemble 

Type 1 

error 

P ~ N(0,1) 5(0) 6.10 

Type 1 

error 

P ~ N(0,1) 10(0) 5.10 

Power P~N(0,1)+0.20*snp1*snp2*snp9*snp10 10(4) 55.5 

Power P~N(0,1)+0.002*snp1 +0.002*snp2 

+0.12*snp1*snp2 + 0.18*snp3*snp4 

5(4) 52.5 

Power P~N(0,1)+0.25*snp1*snp2*snp3 5(3) 64.6 

Power P ~N(0,1)+0.3*snp1*snp2*snp3 5(3) 78.2 

Power P~N(0,1)+0.35*snp2*snp3*snp4 5(3) 87.5 

Power P~N(0,1)+0.65*snp1*snp2*snp3*snp8*snp9*snp1

0 

10(6) 87.4 

Power P~N(0,1)+0.002*snp1 +0.002*snp2 + 

[0.2*(1+snp1)/(1+snp2)] + 0.3*snp4*snp5 

5(4) 53.5 

Power P~N(0,1)+0.002*snp1 +0.002*snp2 

+0.3*snp1*snp2 + 0.2*snp3*snp4 

5(4) 83.6 

DSL denotes the number of trait associated SNPs. 
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Table 6. Gene-based p values for previously reported asthma-related genes in 1,401 African 

American individuals from the SAPPHIRE cohort. 

Chromosome Gene Length in 

base pairs 

Number of 

SNPs 

tested 

Gene-based  

p value  

from  

Ensemble 

Learning 

Gene-based 

p value 

from 

Logistic 

Regression 

Gene-based 

p value 

from 

GATES 

1 PYHIN1 45513 13 0.198 0.230 0.130 

2 IL1RL1 7466 6 0.982 0.982 0.832 

5 TSLP 6333 5 0.063 0.064 0.533 

9 IL33 42198 12 0.408 0.180 0.130 

17 GSDMB 14056 15 0.401 0.401 0.870 

5 IL13 2937 3 0.156 0.164 0.387 

15 SMAD3 57175 23 0.323 0.323 0.359 

5 SLC22A5 25906 15 0.0095 0.162 0.0076 

5 RAD50 87698 34 0.010 0.010 0.367 
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Table 7. Gene-based p values for previously reported asthma-related genes in 3,772 Latino 

individuals from the GALA study. 

Chromosome Gene Length  

in  

base pairs 

Number 

of SNPs 

tested 

Gene-based  

p value  

from  

Ensemble 

Learning 

Gene-based 

p value 

from 

Logistic 

Regression 

Gene-based 

p value 

from 

GATES 

1 PYHIN1 45513 15 0.320 0.320 0.530 

2 IL1RL1 7466 16 0.038 0.038 0.046 

5 TSLP 6333 7 0.270 0.270 0.250 

9 IL33 42198 14 0.0014 0.095 0.069 

17 GSDMB 14056 13 2.33E-09 4.20E-08 6.24E-11 

5 IL13 2937 10 0.280 0.280 0.100 

15 SMAD3 57175 28 0.464 0.464 0.063 

5 SLC22A5 25906 12 0.838 0.838 0.956 

5 RAD50 87698 33 0.217 0.217 0.050 
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