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Abstract 

Background: Efficient industrial processes for converting plant lignocellulosic materials 

into biofuels are a key challenge in global efforts to use alternative energy sources to 

fossil fuels. Novel cellulolytic enzymes have been discovered from microbial genomes 

and metagenomes of microbial communities. However, the identification of relevant 

genes without known homologs, and elucidation of the lignocellulolytic pathways and 

protein complexes for different microorganisms remain a challenge.  

Results: We describe a new computational method for the targeted discovery of 

functional modules of plant biomass-degrading protein families based on their co-

occurrence patterns across genomes and metagenome datasets, and the strength of 

association of these modules with the genomes of known degraders. From more than 

6.4 million family annotations for 2884 microbial genomes and 332 taxonomic bins from 

18 metagenomes, we identified five functional modules that are distinctive for plant 

biomass degraders, which we call plant biomass degradation modules (PDMs). These 

modules incorporated protein families involved in the degradation of cellulose, 

hemicelluloses and pectins, structural components of the cellulosome and additional 

families with potential functions in plant biomass degradation. The PDMs could be 

linked to 81 gene clusters in genomes of known lignocellulose degraders, including 

previously described clusters of lignocellulolytic genes. On average, 70% of the families 

of each PDM mapped to gene clusters in known degraders, which served as an 

additional confirmation of their functional relationships. The presence of a PDM in a 

genome or taxonomic metagenome bin allowed us to predict an organism’s ability for 

plant biomass degradation accurately. For 15 draft genomes of a cow rumen 

metagenome, we validated by cross-linking with confirmed cellulolytic enzymes that the 

PDMs identified plant biomass degraders within a complex microbial community. 

Conclusions: Functional modules of protein families that realize different aspects of 

plant cell wall degradation can be inferred from co-occurrence patterns across (meta-

)genomes with a probabilistic topic model. The PDMs represent a new resource of 
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protein families and candidate genes implicated in microbial plant biomass degradation. 

They can be used to predict the ability to degrade plant biomass for a genome or 

taxonomic bin. The method would also be suitable for characterizing other microbial 

phenotypes. 

 

Keywords: Latent Dirichlet Allocation, LDA, probabilistic topic models, (ligno)cellulose 

degradation, plant biomass degradation, phenotype-based identification of functional 

modules, pectin degradation, probabilistic topic models, feature ranking, polysaccharide 

utilization loci, gene clusters. 
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Background 
 

Lignocellulose is an integral part of plant cell walls and is responsible for the structural 

integrity and robustness of crops, grasses and trees. The high energy content and 

renewability of lignocellulosic plant material make it a promising alternative energy 

resource, particularly for the production of biofuels [1, 2]. Industrial methods of 

degrading recalcitrant plant cell wall material remain inefficient [3], which has created 

great interest in lignocellulolytic microbial communities and their member organisms [4]. 

The genes of lignocellulolytic organisms represent a promising source of potential 

enzymes for improving the industrial degradation processes [4, 5]. Plant cell walls 

consist of cellulose and hemicelluloses (e.g. xylan, xyloglucan, β-glucan), which are 

cross-linked by lignin, and pectins [6, 7]. Cellulose is a macromolecule of β-(1,4)-linked 

D-glucose molecules. Xylans and β-glucans are homopolysaccharides composed of 

either xylose or β-1,3, β-1,4-linked D-glucose, respectively, and are commonly found in 

plant cell walls of grasses. Xyloglucan is a hemicellulose occurring in the plant cell wall 

of flowering plants and consists of a glucose homopolysaccharide backbone with xylose 

side chains, which are occasionally linked to galactose and fucose residues. Pectin is a 

heteropolysaccharide that represents a major component of the middle lamella of plant 

cell walls. Finally, lignin is a strongly cross-linked polymer of different aromatic 

compounds.  

The degradation of lignocellulosic plant material requires the concerted action of 

different carbohydrate-binding modules (CBMs) and catalytic enzymes, such as 

cellulases, xylanases, pectin lyases and peroxidases [8-10]. The CAZy database [11] 

distinguishes four important subclasses of carbohydrate-active enzymes (‘CAZymes’); 

glycoside hydrolases (GHs), glycosyltransferases (GTs), polysaccharide lyases (PLs) 

and carbohydrate esterases (CEs). Carbohydrate-active proteins often have a modular 

composition, i.e. they possess a multi-domain architecture. Several multifunctional 

enzymes that combine different catalytic domains as well as one or more CBMs are 

found to be active in lignocellulose degradation [12]. Microorganisms use different 

strategies to degrade recalcitrant plant material. The ‘free enzyme’ and cellulosome 
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strategies are the most widely used by known microbial plant biomass degraders [12, 

13]. The ‘free enzyme’ paradigm is frequently employed by aerobic bacteria and 

involves the secretion of cellulolytic enzymes to degrade lignocellulose in the external 

medium. The cellulosome-based strategy has so far only been described for anaerobic 

bacteria [13]. Cellulosomes are large protein complexes that incorporate cellulolytic 

enzymes as well as CBMs for localized lignocellulose degradation [14]. The cellulosome 

includes a scaffoldin backbone to which cellulases and hemicellulases attach via 

cohesin–dockerin interactions. The corresponding (hemi)cellulases contain the dockerin 

domains, one or more catalytic domains (e.g. glycoside hydrolase enzymes) and non-

catalytic CBMs [14]. More recently, two additional strategies for (hemi)cellulose 

degradation have been outlined. Sus-like protein systems rely on mechanisms that are 

similar to the starch utilization (Sus) system in Bacteroides thetaiotaomicron  [15, 16], 

which are mediated by enzymes located in the outer membrane [17]. The second one 

involves the oxidative cleavage of cellulose by copper mono-oxygenases, a mechanism 

that increases the efficiency of the hydrolytic enzymes [18]. However, certain cellulolytic 

organisms, such as Fibrobacter succinogenes and Cytophaga hutchinsonii, do not 

seem to use any of the known mechanisms [13]. Additional insights into microbial 

degradation processes have been generated in studies of microbial communities using 

metagenomics. This has led to the identification of thousands of putative carbohydrate-

active genes [19, 20] and several novel genes encoding proteins with cellulolytic 

activities from uncultured organisms [21-23]. Overall, more than 1000 cellulase genes 

have been discovered by genomic and functional screens [24]; however, important 

details about their microbial degradation mechanisms still remain unresolved [13, 25]. 

Therefore, the discovery of novel protein families that are involved in plant biomass 

degradation is still an ongoing effort.  

The CAZYmes Analysis Toolkit (CAT) can be used to assign protein families from the 

CAZy database to protein sequences that have been annotated with Pfam, based on a 

set of pairwise association rules between CAZy and Pfam families [26]. CAT deduces 

its rules from the frequencies of modular proteins with Pfam and CAZy assignments in 

the CAZy database. However, this implies limitations for its application to families that 
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have not yet occurred in the CAZy database. An alternative approach for determining 

protein families that participate in a particular process but have no homologs with known 

activities is to use genomic information in combination with other information sources. A 

functional context can be assigned to a new family by determining its association with a 

phenotype across a set of genomes. Depending on the granularity of the assigned 

context, this approach allows to narrow down the set of possible functions for an 

uncharacterized protein family. Applied to thousands of families on a large scale, this 

allows the de novo discovery of phenotype-defining protein families, genes or entire 

functional modules [27]. Several methods for ranking genes or pathways by their 

assumed relevance for a certain phenotype have been described [28-36]. These 

methods measure the association of individual protein families, known pathways or 

single nucleotide polymorphisms [34] with the presence or absence of phenotypes 

across a set of genomes. In some examples, the search space is limited to proteins in 

predicted operon structures [36] or pairs of functionally coupled proteins [35]. We have 

previously described a family-centric method for the identification of protein families 

involved in lignocellulose degradation [28]. This method uses an ensemble of linear L1-

regularized Support Vector Machine classifiers trained with the genome annotations of 

known lignocellulose- and non-lignocellulose-degrading species. Other methods apply 

similar ranking approaches which are followed by a clustering step, where phenotype-

associated families are grouped into modules based on their co-occurrence patterns 

across organisms, which are likely to indicate functional dependencies [29, 30]. 

However, we suggest that the order of steps should be reversed, because methods 

based on individual families have limitations: Proteins may have multiple functions 

(which is called ‘moonlighting’ [37]) and some families perform different functions within 

multiple functional modules (‘the patchwork hypothesis’ [38]). Consequently, proteins 

that are involved in lignocellulose degradation might also be active in other processes in 

non-lignocellulose-degrading organisms, which would reduce the global correlation 

pattern of their absence/presence profiles with the organisms’ ability to degrade 

lignocellulose. Moonlighting proteins might thus be missed. In contrast to approaches 

that focus primarily on single proteins, methods that target functional modules, i.e. sets 
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of functionally related proteins that are jointly involved in a biological process such as 

lignocellulose degradation, have better chances of identifying moonlighting proteins, 

due to the functional dependencies between the families involved in the process. 

Pathway-centric methods search for sets of functionally coupled protein families related 

to a specific phenotype. Often they use prior information about pathways from, for 

example, the KEGG [31] or BioPath [32] databases in the form of organism-specific 

enzyme reaction networks based on enzyme classification (EC) numbers. NIBBS 

(Network Instance-Based Biased Subgraph Search) searches for phenotype-associated 

edges in order to identify phenotype-related enzyme reactions in a KEGG-based 

network [33]. Similarly, MetaPath identifies subgraphs of a KEGG-derived network by 

assessing the statistical support of phenotype associations for every edge [31]. To date, 

there has been no application of pathway-centric methods to the study of lignocellulose 

degradation. Moreover, because of their focus on well-defined reaction networks, these 

methods have limitations for the analysis of metagenome samples, which often allow 

only partial metabolic reconstructions. Furthermore, species from newly sequenced 

microbial communities are likely to have a distinct metabolism from well-studied model 

species, and the latter have been the basis for most of the currently described reaction 

networks. We are not aware of a method for inferring phenotype-associated functional 

modules that is applicable to metagenomes and does not require prior knowledge about 

the underlying enzyme reaction networks or the target pathways. However, such a 

method would represent an important addition to computational metagenome analysis 

methods [39]. 

An indication of the functional context for a protein family can be obtained by clustering 

families by their co-occurrences across genomes [40, 41]. We have previously used 

Latent Dirichlet Allocation (LDA) [42], a Bayesian method, to infer 200 functional 

modules of protein families from 575 prokaryotic genomes [43]. The modules cover a 

broad range of biochemical activities, including several known protein complexes, 

metabolic pathways and parts of signal transduction processes. They show significant 
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functional coherence according to high-confidence protein–protein interactions from the 

STRING database [44]. 

Here, we describe a method for determining the functional modules associated with 

microbial plant biomass degradation that uses LDA and, subsequently, selection of the 

relevant functional modules by the strength of their associations with the plant biomass 

degradation phenotype. The modules were learned from a large dataset of nearly 3000 

sequenced bacterial and archaeal genomes and taxonomic bins of 18 metagenomes. 

Based on abundance estimates reported by Medie et al. [45] and Berlemont et al. [46], 

the relative abundance of species possessing plant biomass degradation capabilities 

within the sequenced genomes could exceed 20–25%; however, only a small set of 

species have been confirmed to date to possess such capabilities [4]. With our method, 

genomes of both known and unknown degraders could be included in the inference 

process and used to identify distinct sets of protein families that are specific for 

microbial plant biomass degraders. The use of metagenome data allows us to 

incorporate information from environmental communities into the inference process.  

We identified five functional modules for plant biomass degradation, which we call 

PDMs. The PDMs included many protein families that are known to be involved in plant 

biomass degradation, and a substantial number of families that have not previously 

been linked to microbial plant biomass degradation. To verify the relevance of these 

newly identified PDMs and candidate families, we searched for gene clusters including 

the families of the PDMs. Several of the identified clusters are known to be active in the 

degradation of lignocellulose. Furthermore, the PDMs had a predictive value for 

identifying plant biomass degraders from the genomes of sequenced isolates or of plant 

biomass-degrading microbial communities.  

  

Results and discussion 

We generated ~6.4 million protein annotations with Pfam and CAZy families for 2884 

bacterial and archaeal genomes from the Integrated Microbial Genomes database 
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(IMG) and 332 taxonomic bins from 18 metagenomes (Methods). We then used a two-

step approach to identify functional modules that are distinctive for microbial 

lignocellulose degraders: First, the annotated dataset was processed with LDA and 400 

potential functional modules were inferred, where each corresponded to a set of Pfam 

and/or CAZy families (Figure 1, Steps 1 and 2). The modules were learned in an 

unsupervised fashion without consideration of the organisms’ phenotypes, as in [43]. In 

the second step, we ranked the 400 functional modules according to their strength of 

association with the genomes of plant biomass degraders across a subset of the 

genomes consisting of 38 known lignocellulose degraders and 82 non-degraders 

(Figure 1, Step 3). For this, we defined ‘genome-specific’ module weights, which 

corresponded to the fraction of a module’s protein families that were annotated for a 

certain genome or taxonomic bin (‘completeness scores’). Functional modules were 

considered to be present in a genome or bin if their completeness score reached a 

certain threshold. For each module, we determined the best setting for this threshold, 

corresponding to the one which optimally separated the genomes of degraders and 

non-degraders according to the F-measure (the weighted harmonic mean of precision 

and recall, Methods). The modules with the largest F-scores were strongly associated 

with the genomes of lignocellulose degraders, as indicated by an average F-score of 

87.45% for the top ten modules.  

 

Identification of stable plant biomass degradation modules (PDMs) 

We used LDA based on Gibbs sampling for the inference of the modules, a Markov 

Chain Monte Carlo (MCMC) method which efficiently estimates parameters for complex 

models such as LDA. In agreement with the recommended procedures for MCMC 

sampling [47], we repeated the analysis multiple times (18 LDA runs) to ensure the 

stability of the results. We thus repeated the two central steps of our method, i.e. the 

inference of modules and their subsequent ranking by phenotype association (Figure 1, 

Steps 2 and 3), 18 times to identify stable, high-ranking modules. We summarized the 

information from stable, high-ranking modules found in different runs by constructing 
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‘consensus modules’ which contained all the protein families that were found in similar 

modules in at least nine LDA runs (Figure 1, Step 4; Methods). 

We identified five consensus modules (M1–M5), which we refer to as plant biomass 

degradation modules (PDMs) (Table 1, Additional File 3). We mapped the CAZy 

families of these PDMs to essential activities in the degradation of plant cell wall 

material based on their EC numbers (Table 2). All PDMs included protein families with 

cellulase- or hemicellulase activities, which supports the modules’ relevance for plant 

biomass degradation. M1–M5 were functionally distinct, with only a moderate overlap 

(12.6%) of their protein family content, including the broadly defined families GH5 and 

GH43 [48]. Isofunctional Pfam and CAZy terms, such as PF00150 and GH5, were 

grouped together into the same PDMs in most cases. The modules also included 20 

Pfam families without a direct link to plant biomass degradation, such as ‘domains of 

unknown function’ (DUFs), ‘ricin-type β-trefoil lectin-like domains’ and ‘GDSL-like 

lipase/acylhydrolase’ (Table 3, Section 1 of Supplementary Note in Additional File 2). 

Some of these domains could encode novel functions that are important for plant 

biomass degradation.  

 

Gene clusters with PDM protein families 

To confirm a functional context for the protein families assigned to the same PDM, we 

searched for gene clusters annotated with multiple families of a PDM in the 38 genomes 

of known degraders, as the proximity of genes within a genome indicates a shared 

functional context [49, 50] (Figure 1, Step 5). For each PDM, we identified gene clusters 

of four or more neighboring genes, with intergenic distances of ≤ 2 kb between 

consecutive genes. Overall, 81 gene clusters were found for the five PDMs, which 

represented 51 distinct, non-overlapping clusters. On average, 70.7% of the family 

content of each PDM could be mapped to gene clusters in known degraders. Some of 

the gene clusters discovered have been described as being active in lignocellulose 

degradation (see following sections), whereas the novel ones are candidates for further 

experimental investigation. Notably, eleven of the 20 protein families that have no direct 
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link to lignocellulose degradation (Table 3) appeared in at least one gene cluster 

identified in known degrading species, which supports their potential role in the 

degradation process.  

 

Assessment of the PDMs’ potentials to predict unknown lignocellulose degraders 

The completeness of a PDM in a genome was predictive for the ability of an organism to 

degrade lignocellulosic plant biomass. We determined the predictive value for each 

PDM in standard evaluation protocols with leave-one-out (LOO) and tenfold cross-

validation experiments (Methods). In these experiments, genomes from the learning set 

of 120 known lignocellulose degraders and non-degraders were successively left out of 

the process of determining the completeness threshold. Subsequently, PDMs were 

predicted to be present in the omitted genomes if their completeness score for the 

genome was equal to or above the inferred threshold. This procedure was used to 

assess the generalization error of a PDM-based classifier to avoid overly optimistic 

performance estimates [51, 52]. We observed high F-scores for the PDMs in the LOO 

setting (82.1–96.2%) and lower bounds for the cross-validation estimates of prediction 

accuracy between 76.57% and 91.69% (Table 4). 

The top-ranking PDMs, M1 and M2, predicted the ability to degrade lignocellulose with 

cross-validation accuracies of more than 93%. Four genomes were misclassified by 

both M1 and M2 (figure in Additional File 4, Tables in Additional File 7): Bryantella 

formatexigens (false negative (FN)), Xylanimonas cellulosilytica (FN), Thermonospora 

curvata 43183 (FN) and Actinosynnema mirum (false positive (FP)). Interestingly, A. 

mirum and T. curvata might have been mischaracterized before [53], supporting the 

predictions by the two PDMs (Section 2 of Supplementary Note). All PDMs showed a 

precision of more than 82% for lignocellulose degraders, with few occurrences predicted 

for non-degraders. M3 and M5 were found only in a subset of the known degraders 

(Table 4: the lowest recall was 57.9%), suggesting that they might represent specific 

aspects of degradation strategies. However, looking at the presence/absence profiles of 
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the PDMs across the degrading species, none of the PDMs showed an exclusive 

association with a known degradation paradigm (Figure 2). 

 

Protein families of the PDMs 

The highest-scoring PDM M1 (F-measure: 96.2%) incorporated various key families for 

the degradation of cellulose and hemicelluloses (Table 2), namely GH5, GH9, GH10, 

GH26, GH43 and CBM6 [48]. The GH5 and GH9 families together cover three classes 

of important cellulases [8]: Endoglucanases, cellobiohydrolases and β-glucosidases. 

Both are large families of cellulases which have been studied in many lignocellulolytic 

organisms (Section 3 of Supplementary Note). In addition to their cellulase activities, 

some members of these families are also hemicellulases with characterized activity on 

β-glucans, xyloglucans and heteroxylans [11]. The GH10 and GH43 families include 

xylanases and arabinases. M1 was present almost exclusively in lignocellulose-

degrading bacteria (97.2% precision) and in almost all of them (92.1% recall). Similarly, 

also the individual modules used for creating the M1 consensus PDM showed strong 

associations with plant biomass degradation: M1 was always among the top three 

modules and was the top-ranked module in 14 of 18 LDA runs. 

 

M2 (F-measure: 94.1%) contained families that bind and degrade xylan, xyloglucan and 

β-glucan (Table 2), such as GH30 (β-xylosidases), GH16 (β-glucanases, 

xyloglucanases) [9], CBM61 (which is often found with GH16) and the fucose-binding 

module CBM47. In addition, M2 included the xylan-binding domains CBM6, CBM35 and 

PF02018, which were also present in hemicellulolytic gene clusters with M2 families of 

Clostridium cellulolyticum and Fibrobacter succinogenes (Figure 3B, figure in Additional 

File 5). In Streptomyces lividans, several small gene clusters of two or three genes with 

M2 member families might be linked to a xylan-binding mechanism involving CBM13 

(also known as the ‘ricin superfamily’ or ‘R-type lectins’) [54]. CBM13 and two ‘ricin-

type-β-trefoil lectin’ domains (PF14200 and PF00652 in Table 3) belonged to M2 and 

occurred in the clusters. Interestingly, the two different functional aspects of M2, i.e. 
12 
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xyloglucan degradation and xylan binding, were reflected by a split of the M2 module 

into two modules in some LDA runs.  

 

M3 (F-measure: 89.6%) included cellulose-degrading, hemicellulose-degrading and 

multiple pectinolytic enzymes (Table 2), such as pectin methyl esterase (CE8), pectin 

lyases PL1, PL9 and PF12708 (PL3) and endopolygalacturonase (GH28) (Table 2). M3 

also included GH106 (α-L-rhamnosidase), which catalyzes the release of L-rhamnose 

from pectin (rhamnogalacturonan) molecules, and GH105, an unsaturated 

rhamnogalacturonyl hydrolase. Moreover, three acetyl xylan esterases (CE6, CE7 and 

CE12) were assigned to M3, as well as the uncharacterized domain PF03629 

(DUF303), which may be an acetyl xylan esterase-related enzyme (InterPro accession: 

IPR005181). As CE12 has both acetyl xylan esterase (EC 3.1.1.72) and pectin 

acetylesterase (EC 3.1.1.-) activities assigned in CAZy, the other families are possibly 

also relevant for pectin degradation. Overall, the presence of multiple families involved 

in cellulose, hemicellulose and pectin degradation confirmed M3’s relevance for plant 

biomass degradation. 

 

Module M4 (F-measure: 82.5%) contained the GH5, GH43, GH2 and GH3 families, as 

well as some associated Pfam domains, such as a GH2 sugar-binding domain 

(PF02837), and C- and N-terminal domains of GH3 (PF01915, PF00933). M4 also 

included GH35 and GH42, which are both β-galactosidases, and three members of a 

superfamily of α-galactosidases. D-galactose is an abundant component of the side 

chains of pectin, heteromannan and xyloglucan [7]. Activities in the degradation of 

pectins have been described for several β-galactosidases from plants [55]. Furthermore, 

M4 seemed to be linked to xyloglucan degradation in B. cellulosilyticus and C. japonicus 

(Section 4 of Supplementary Note). In conclusion, M4 comprised functionally diverse 

glycan degradation families, in line with the heterogeneous nature of hemicellulose 

polysaccharides [7] and their widely varying constituent sugars.  
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M5 (F-measure: 82.1%) included structural components of the cellulosome complex 

(cohesin and dockerin domains), the endoglucanase family GH124, and CBMs targeting 

cellulose (CBM3) and hemicellulose (CBM36). CBM3 is frequently found as a domain of 

cellulosome scaffoldin proteins [14]. The S-layer homology domain (PF00395), which 

anchors cellulosomes to the bacterial cell surface [14], was not associated with M5. It 

was consistently grouped into modules without significant scores in our rankings, 

indicating that the S-layer homology domain could perform other functions in non-

degraders. M5 included five more Pfam domains of unknown relevance which are 

interesting candidates for novel functional activities (Table 3). PF13186, a domain of 

unknown function in our dataset, was annotated for the gene Cthe_3076 in C. 

thermocellum, which lies directly upstream of a gene cluster (Cthe_3077–3080) that is 

responsible for the structural organization of the cellulosome [56]. However, PF13186 

was also annotated for non-degrading genomes (Figure 4) and was referred to as an 

‘iron-sulfur cluster-binding domain’ in a recently updated version of the Pfam database. 

The protein families of the consensus PDMs are given in Additional File 3. The file also 

lists all the less strongly associated PDM families that were found in fewer than nine 

similar modules of the 18 LDA runs and were thus not included in the consensus PDMs. 

 

Absence of the cellulase families GH6 and GH48 

Interestingly, none of the PDMs contained the cellulase families GH6 or GH48. Both 

play an important role in cellulose degradation in some bacteria, but are not universally 

found in known lignocellulose degraders. They were not identified in Fibrobacter 

succinogenes, Cytophaga hutchinsonii or several gut and rumen metagenomes with 

lignocellulose-degrading capabilities [17, 20, 24, 57]. In line with these findings, we 

found GH6 and GH48 to be annotated in less than 5% of the samples of our input 

collection, and only a single GH6 annotation (no GH48) in the metagenome bins. This 

rarity in our dataset caused weak co-occurrence signals and is likely the cause why 

both families were not assigned to the stable, high ranking modules (Section 5 of 

Supplementary Note). Despite of this, GH48 was among the top 50 protein families of 
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ten functional modules used to derive the M5 consensus module. This association with 

M5 is in line with the fact that many bacterial cellulosomes include proteins from the 

GH48 family [58]. However, the probabilities for GH48 were less than the threshold 

value C = 0.01 that we required for inclusion into modules. This is also evident from a 

weaker co-occurrence of GH48 with the M5 protein families in lignocellulose degraders 

(Figure 4). Another family with rare occurrences was GH44 (endoglucanases and 

xyloglucanases [59]), which appeared in less than 2% of our data samples and was not 

grouped into any module. This family does not seem to be essential for all lignocellulose 

degraders, as its catalytic activities are also covered by the CAZy families GH5, GH9 

and GH16 (Table 2) [11]. Overall, the observed rarity of GH6, GH44 and GH48 might 

indicate their non-universal nature across lignocellulose-degrading species. However, it 

might be possible that more remote homologs exist that were not identified with the 

current Pfam and CAZy models. 

 

PDMs mapping to known gene clusters of essential lignocellulose degradation 
genes 

The gene clusters in known degrader genomes that were identified based on the protein 

families of the individual PDMs included well-characterized clusters of lignocellulolytic 

genes. For example, the modules M1 and M5 mapped to the cip-cel operon and the xyl-

doc gene cluster in Clostridium cellulolyticum H10 (Figure 3). Cip-cel encodes genes 

that are essential for cellulose degradation; xyl-doc encodes hemicellulose degradation 

genes [60]. The genes from both clusters have a multi-domain architecture with catalytic 

and carbohydrate-binding domains [60]. Within M1, GH5, GH9 and CBM4 occurred in 

cip-cel, while CBM6, CBM35, GH10, GH43, PF00756 and PF02018 have been 

annotated for xyl-doc. Genes from both clusters also include the cohesin and dockerin 

domains, which reflects the cellulosome-based degradation paradigm used by C. 

cellulolyticum H10. 
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Interestingly, LDA assigned the cohesin and dockerin domains to the M5 module, 

despite of their co-occurrence with the M1 families in cip-cel and xyl-doc. This is 

probably due to the existence of M1 families in the genomes of organisms that do not 

have cellulosomes, such as Thermobifida fusca, which is a model organism for the ‘free 

enzyme’ paradigm (Section 6 of Supplementary Note). M1 also mapped to a 

hemicellulolytic gene cluster in Fibrobacter succinogenes, an organism without 

cellulosomes that uses an unknown degradation strategy [61, 62] (figure in Additional 

File 5). Despite the evidence for a link between M5 and the cellulosome strategy, none 

of the PDMs proved to be exclusive for a particular degradation paradigm (Figure 2). As 

described above, the M5 module also contained five Pfam families whose functional 

descriptions have no known link to lignocellulose degradation (Table 3). These shared 

co-occurrence patterns with the cohesin and dockerin domains, but in contrast to these 

they also occurred in organisms using free cellulolytic enzymes, such as some 

Caldicellulosiruptor species (Figure 4). Thus, M5 also covered non-cellulosome related 

functionalities (Section 7 of Supplementary Note). 

 

Predicting the ability for plant biomass degradation 

We predicted the presence of PDMs for the 3096 remaining genomes and taxonomic 

metagenome bins if their completeness was equal to or above the threshold determined 

for each PDM (Methods). Overall, the presence of one or more PDMs was predicted for 

8.4% (28/332) of the taxonomic bins and 24.7% (683/2764) of the genomes (tables in 

Additional File 8). Most genomes and bins to which M1 was assigned also had M2 

assigned to them (82% of 132 M1 assignments occur jointly with M2 assignments). This 

agreed with the cellulose- and hemicellulose-degrading (M1) and hemicellulose-

targeting (M2) enzymatic activities we determined for these modules, which are both 

essential for lignocellulose degradation [45]. The majority of all predictions, i.e. 52.5%, 

were exclusive to M4 (Venn diagram in Additional File 9). As M4 included functionally 

diverse glycan degradation families and had the lowest precision (82.1%) of all modules 

16 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2014. ; https://doi.org/10.1101/005355doi: bioRxiv preprint 

https://doi.org/10.1101/005355


for lignocellulose degraders, these assignments likely reflect a general ability of the 

respective organisms to degrade carbohydrate substrates of plant origin.  

In a previous study [45], Medie et al. analyzed the distributions of CAZy families 

representing cellulases, hemicellulases and pectinases across ~1500 complete 

bacterial genomes. They have classified almost 20% of these organisms as saprophytic 

bacteria, based on the presence of at least one cellulase and three or more 

hemicellulases or pectinases. Saprophytes feed on dead organic matter of plant origin 

and thus are likely to include lignocellulose-degrading species. Based on the same 

CAZy families and criteria as described in [45], we determined potential saprophytes in 

our dataset (Methods). In total, about one quarter (27.2%) of all 3216 genomes and 

metagenome bins fulfilled these. The genomes and metagenome bins with predicted 

PDM occurrences were enriched with potential saprophytes (75% of all predictions). 

This enrichment was particularly large for M1 (99%), M2 (91%) and M3 (100%). These 

results further support the notion that the ability to degrade plant biomass is a frequent 

trait of Bacteria and Archaea species. 

 

The metagenome bins that were assigned PDMs came from cow rumen, reindeer 

rumen, manatee gut, Tammar wallaby gut and termite hindgut samples, and samples of 

a methylotrophic and a terephthalate-degrading community. Most of these communities, 

except the methylotrophic/terephthalate-degrading ones, are known to include 

lignocellulose-degrading community members; however, their taxonomic affiliations are 

only partly known [19, 63, 64]. The coverage and quality of protein coding sequences 

was heterogeneous across the 332 bins, which resulted in low numbers of protein family 

annotations for some of the bins. Sixty-three bins were annotated with less than ten 

protein family annotations, while the remaining bins contained 276 different protein 

families per bin on average. This probably explains why PDMs were predicted to be 

present in only 28 bins covering five major taxonomic clades (Figure 5). PDMs occurring 

in metagenome bins of Bacteroides, Prevotella and Lachnospiraceae (Clostridiales) 

were in line with the taxonomic affiliations of cellulose degraders found in mammalian 
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gut and rumen microbial communities [65]. Furthermore, the PDMs accurately identified 

Bacteroidales and Treponema bins that have been shown to be involved in 

lignocellulose degradation in recent metagenome studies of the cow rumen [66] and 

termite hindgut [57], thus indicating the benefit of our method to guide the discovery of 

uncultured microbial taxa with lignocellulolytic activities. Our results also implied two 

archaeal extremophile species that have plant biomass degradation capabilities 

(Section 8 of Supplementary Note). 

 

Identification of gene clusters and PULs in the predicted (meta)genomes 

To identify new candidate clusters of genes encoding the ability to degrade 

lignocellulosic plant biomass, we searched for gene clusters encoding PDM protein 

families in the 711 genomes and taxonomic bins with PDMs, using the same criterion as 

before. We found 379 gene clusters of four or more genes for individual PDMs, which 

mapped to 342 distinct gene clusters in 168 genomes and six taxonomic bins. Genome 

fragmentation caused by incomplete assembly of bacterial draft genomes from IMG and 

taxonomic bins in our dataset may have decreased the number of detected clusters. 

Most of the gene clusters occurred in Bacteroidetes (54.3%); 22.4% and 12.7% 

occurred in Firmicutes and Actinobacteria, respectively. The first two phyla are 

predominant in gut and rumen environmental communities with lignocellulose-degrading 

abilities [65, 67]. Some of the newly identified gene clusters may cover polysaccharide 

utilization loci (PULs) targeting various kinds of polysaccharides. We found gene 

clusters in 39 isolate Bacteroides species, which are generally known to possess PULs 

[63]. As an example, the pectin-related PDM M3 identified gene clusters in Bacteroides 

thetaiotaomicron that represent parts of two regions that have been shown to be active 

in rhamnogalacturonan degradation in a PUL-targeted study [68]. Moreover, LDA 

inferred a stable functional module related to PULs which included a suite of outer 

membrane proteins as well as the two core proteins which are known to define PULs, 

namely SusD- and SusC(TonB)-like membrane proteins (Additional File 3). This module 

was not part of the high-ranking modules, which can be explained by the broad 
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substrate specificity of PULs for various polysaccharides, including starch in particular 

[15, 69]. While analyzing gene clusters of PDM protein families, we found hybrid gene 

clusters linking the PUL module to the glycoside hydrolases involved in lignocellulose 

degradation. For example, we identified gene clusters corresponding to previously 

characterized Sus-like PULs from Bacteroides ovatus targeting xyloglucan and xylan 

[68] (Section 9 of Supplementary Note). 

 

Predicting the ability for plant biomass degradation in a cow rumen microbial 
community  

Hess et al. [19] reconstructed 15 draft genomes from the metagenome of a switchgrass-

degrading microbial community from a cow rumen. Earlier, we cross-linked data from 

the cellulolytic enzyme screens of the original study with annotations of these draft 

genomes to identify plant biomass degraders [28]. Strikingly, the (hemi-)cellulolytic 

enzymes of the cow rumen bins with degradation abilities confirmed by activity screens 

(GH5, GH9, GH10 and GH26) were all part of M1 (Table 3 in [28]). We investigated 

whether PDM assignments allowed the identification of the plant biomass-degrading 

community members in the cow rumen metagenome (Table 5). The presence of M1 or 

M2 identified all degraders, in agreement with the enzyme screen results and our 

previous assignments with a family-centric SVM classifier [28]. M1 was also present in 

the draft genome ‘APb’, for which no lignocellulolytic enzymes were identified, but which 

is closely related to a known plant biomass-degrading species (Butyrivibrio fibrisolvens). 

The PDMs mapped to six gene clusters with four or more genes and several shorter 

clusters in the draft genomes. We investigated these and found an interesting cluster in 

the Bacteroidales-associated draft genome ‘AGa' containing genes annotated with GH5, 

GH94 and two unannotated gene sequences (Section 10 of Supplementary Note).  
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Conclusions 

The degradation of lignocellulosic plant biomass is a complex biological process with 

mechanisms across different microbial species that are currently only partially 

understood. We describe functional modules of protein families linked to plant biomass 

degradation, which we identified based on co-occurrence patterns and partial 

phenotype information. Using LDA, a state-of-the-art Bayesian inference method, we 

inferred 400 potential modules from a set of 2884 genomes and 332 taxonomic bins 

from 18 metagenomes. Such modules represent sets of functionally coupled protein 

families and cover a broad range of biochemical processes, as shown in [43]. We then 

determined the presence of modules in genomes of known lignocellulose-degrading 

species and non-degraders to calculate a ranking of the modules that reflected the 

strength of their association with the plant biomass degradation phenotype. We 

analyzed the stability of the top ranking modules across several executions of the LDA 

method and determined five consensus functional modules (PDMs) involved in plant 

biomass degradation.  

Our approach allowed us to include genomes and taxonomic metagenome bins lacking 

phenotype information in the inference step, which largely expanded the dataset in 

comparison to our previous study, where we linked individual protein families to plant 

biomass degradation [28]. We included the learning set of 19 known bacterial 

lignocellulose degraders from that study and expanded it to 38 species overall. Despite 

this, the fraction of confirmed degrader species is still small, compared to the estimated 

abundance of potential plant biomass-degrading species reported in two other studies 

[45, 46]. Based on these estimates, 20–25% of our genome collection could possess 

plant biomass degradation capabilities. Our approach allowed us to also include data 

from these potential degraders into the inference of functional modules, together with 

metagenome data from plant biomass-degrading communities. To our knowledge, this 

was the first study that globally analyzed the available genome sequence and 

phenotype data to determine the functional modules of the protein families that are 

linked to plant biomass degradation. 
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Overall, the PDMs included many known protein families for the degradation of 

cellulose, xylan, xyloglucan and pectins, which are the main components of plant cell 

walls, with families targeting the same macromolecules being grouped together. In 

addition to those known families, our results indicate that 20% of the PDMs’ member 

families seem to be linked to plant biomass degradation, although their individual 

functions are less clear or unknown (Table 3). Even more potentially interesting families 

were found in the high-ranking modules but were not included in the consensus 

modules because they occurred in less than half of the modules used to construct the 

consensus. Some of these families might be interesting for further investigation. The 

functional coherence of PDM member families was also supported by their localization 

in gene clusters in lignocellulolytic microbes. This included several known clusters of 

lignocellulolytic enzymes, such as cip-cel and xyl-doc from Clostridium cellulolyticum 

H10. Based on the modules, we overall identified more than 400 gene clusters in our 

dataset, some of which covered known PULs targeting different kinds of 

polysaccharides.  

Moreover, we investigated whether certain modules were specific to different 

degradation paradigms, as the module M5, for example, contained cellulosome-related 

families, such as cohesin, dockerin and CBM3. None of the modules was exclusive for a 

specific degradation strategy, and the modules instead spanned different paradigms. 

We believe that the granularity of the modules could be further improved in the future if 

more and better curated phenotype information becomes available, which would allow 

us to enrich the set of genomes with species with different confirmed paradigms. For 

instance, the identification of genes from Sus-like cellulose-interacting protein 

complexes, as reported by Pope and Mackenzie [63], and Naas et al. [66], would likely 

require more accurate profile hidden Markov models for susD-like genes. For these, one 

would need to know the sequences of relevant genes in more organisms that use the 

Sus-like paradigm. Within our learning set, only Bacteroides cellulolyticus uses a Sus-

like strategy on hemicellulosic polysaccharides [70]. 
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The PDMs allowed us to predict the ability of lignocellulose degradation with cross-

validation accuracies of up to 96.7%, which we used to predict the ability to degrade 

plant biomass for all genomes and taxonomic bins with unknown degradation status in 

our dataset. The predicted degraders were clearly enriched with organisms that were 

likely to have a saprophytic lifestyle. For 15 draft genomes of a microbial community 

from a cow rumen, we confirmed the predictions by cross-linking to enzymes with 

demonstrated lignocellulolytic activities. In addition, the PDMs identified cellulolytic 

metagenome bins for several cellulolytic metagenome communities. 

The PDMs contained many of the protein families that we had previously identified with 

a family-centric approach in a smaller set of 19 known lignocellulose degraders and 

three metagenomes, including CBM3, CBM4, CBM_4_9, CBM6, GH5, GH10, GH26, 

GH43, GH55, GH88 and GH95 [28]. Apart from that, differences in the results existed. 

For example, in [28], only a few pectin-related families were identified, i.e. PL1, GH88 

and GH106; however, here, we identified an entire module of pectin-degrading families 

(PDM M3), which included these three families together with PL3, PL9, GH28, GH105, 

CE12 and additional related ones. Differences were also found for individual families. 

For example, the PDMs were linked to GH9, GH48, cohesin and dockerin, as well as 

elements of xylan binding, such as the CBM13 and lectin domains, which were not 

identified with the family-centric approach. On the other hand, GH6 and GH44 were not 

associated with the PDMs. These families occurred in less than 5% of the input 

genomes and metagenome bins and their co-occurrence patterns with other families 

were more subtle in our large data collection than in the smaller dataset analyzed 

previously, which suggests their lower relevance on a global scale. Both families appear 

to be non-essential, as GH6 has been noted to be absent in several known degraders 

as described, and the catalytic activities of GH44 are also represented by the families 

GH5, GH9 and GH16 (Table 2). In addition to differences in dataset sizes and 

composition, methodological differences between the two approaches were likely to be 

responsible for the differences observed and the additional relevant families that were 

included in the PDMs. Neither approach identified any gene families related to lignin 

degradation. This may be because lignin-related protein domains, except for the broadly 
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defined peroxidase family PF00141, were largely missing from the Pfam and 

CAZy/dbCAN databases. Furthermore, reports of lignin decomposition have been 

dominated by fungi [71], and thus the corresponding mechanisms might have been 

under-represented in our bacterial and archaeal dataset. 

We showed evidence for functional links of the protein families in the PDMs with each 

other and the plant biomass degradation phenotype, which includes the co-occurrences 

of these families across genomes, co-occurrences with known relevant families, 

clustering within the genomes of known degraders and the predictive value of the PDMs 

for identifying plant biomass degraders. Given this extensive support, an experimental 

characterization of the PDMs’ protein families with unknown relevance for plant biomass 

degradation and their respective gene clusters is likely to reveal new biochemical 

functionalities for plant biomass degradation. With the method we have described, other 

phenotypes such as nitrogen fixation or antibiotic resistance could be studied from 

existing genome datasets in a similar fashion.  

 

Methods 
 

Latent Dirichlet Allocation  

LDA is a text-mining method for extracting semantic concepts (i.e. topics) from a 

collection of text documents [42]. The topics reflect groups of semantically related words 

supported by co-occurrence signals across the document collection. LDA is a 

generative probabilistic model assuming a well-defined process as the source of the 

observed documents. With Bayesian inference and MCMC methods such as Gibbs 

sampling, the generative process can be inversed [72, 73]. This corresponds to 

increasing the model’s probability by fitting latent variables such that the outcome of the 

process matches the observed documents as closely as possible. Here, we are 

interested in inferring the latent variables, not the outcome of the process itself.  
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The input for LDA is a collection of N  documents, where each document is a collection 

of words stemming from a controlled vocabulary V . The order of words in a document 

is not important, which is called the ‘bag of words’ assumption. LDA assumes the 

existence of T  latent topics, and each topic is represented as a discrete multinomial 

distribution over V . 

One variable of the model with central meaning is the vector z , which contains a 

random variable z  for each word of the text collection that models the word’s latent 

origin with respect to the T  topics. According to the model, the probability of observing 

word w  in document d  of the collection is given by: 

∑
=

⋅==
T

t tw dt

dtPtzwPdwP
1 )()(

)|()|()|(

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Here, )(wtφ  defines the multinomial distribution representing topic t  and )(tdθ  

corresponds to a multinomial distribution describing the document-specific prior 

probabilities of the topics. The parameters z , )(wtφ  and )(tdθ  for all documents and 

topics are latent variables of the hidden generative process, which can be estimated 

quite efficiently with MCMC sampling methods. 

 

Genome and metagenome annotation 

Protein sequences for bacterial and archaeal species were downloaded from IMG 

(version 3.4) and metagenomic protein sequences were obtained from ‘IMG with 

microbiome samples’ (IMG/M, version 3.3). In addition, samples of microbial 

communities from the Svalbard reindeer rumen [63], termite hindgut [57], manatee gut 

and the forestomach of the Tammar wallaby [64], as well as draft genomes 

reconstructed from a metagenome sample of a switchgrass-degrading microbial 

community in a cow rumen were included [19]. If no protein coding sequences were 

available, genes were predicted with MetaGeneMark [74]. Taxonomic bins from IMG/M 

or the original publications, or generated in-house, were used for all metagenome 
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samples and were inferred with either PhyloPythia [75] or PhyloPythiaS [76] using 

sample-specific training sequences and taxonomic models constructed with taxa that 

represent the more abundant community populations. Overall, we worked with protein-

coding sequences from 2884 prokaryotic genome sequences and 332 taxonomic bins 

derived from 18 metagenome samples. Protein sequences were annotated with protein 

families from Pfam (Pfam-A 26.0), CAZy [11] and dbCAN [77] using HMMER 3.0 [78]. 

Multiple matches of different domains per protein were allowed. Matches were required 

to have an e-value of at least 1e-02 and a bit score of 25 or more. Matches to the 

hidden Markov models of the CAZy families from dbCAN aligning for more than 100 bp 

with an e-value >1e-04 were excluded. We then converted the protein domain 

annotations for the genomes and taxonomic metagenome bins into a suitable input 

collection for LDA (Section 1 of Supplementary Methods in Additional File 1). 

 

Functional module inference with LDA 

We used the protein family collection of the (meta-)genomes as input for the LDA 

inference procedure to predict potential functional modules, as demonstrated in [43]. 

Because of the larger input collection, we increased the number of topics from 200 to 

400. Despite the increased number of documents compared to our previous work (3216 

vs. 575), there was a slight decrease in the vocabulary size (8413 vs. 10,431), due to 

differences in coverage between the Pfam-A and eggNOG databases. As in [43], we 

used the parameter value C = 0.01 to convert topic probability distributions into discrete 

sets of protein domains, which represented our potential functional modules. Thus 

module tM  for topic t  was defined as })(|{: CwVwM tt ≥∈= φ  and contained the 

protein family identifiers that were most strongly related to topic t . The families 

assigned to tM  share common co-occurrence patterns and were therefore likely to be 

functionally coupled due to the ‘guilt by association’ principle [79]. 
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Phenotype annotation 

We assigned the lignocellulose-degrading phenotype to genomes by manually curating 

the annotations of ‘(ligno)cellulose degradation’ or ‘(plant) biomass degradation’ from 

IMG, the Genomes Online Database (GOLD) [80] and the German Collection of 

Microorganisms and Cell Cultures (DSMZ) (http://www.dsmz.de) based on information 

from the literature. Removal of ambiguous or inconsistent phenotype annotations 

resulted in 38 confirmed lignocellulose degraders (phenotype(+) genomes) which 

degraded some or all components of lignocellulose (table in Additional file 11). The set 

of phenotype(+) genomes is a superset of the 19 lignocellulose-degrading microbes 

(except Postia placenta) from our previous work [28]. We adapted the set of 82 

phenotype(-) genomes from the same study, which were also manually curated using 

information from the literature. There was less certainty in phenotype(-) annotations, as 

it may be that a particular phenotype has not been discussed in the literature; however, 

we used statistical methods to determine PDMs from these datasets that can tolerate a 

certain amount of error.  

 

Definition of module weights 

The inference of a topic model with LDA from a collection of N  input documents results 

in T  potential functional modules. We extracted 400 modules from 3216 genomes and 

metagenome bins. We then applied an attribute ranking approach to sort the modules 

according to their relevance for lignocellulose degradation. As attributes to be used in 

the ranking procedure, we defined ‘module weights’. A weight, )(dweightt , should reflect 

how likely the module tM  is to be contained in the genome or metagenome bin 

encoded as document d  of the input collection. Given N  genomes or bins as input and 

T  modules, we can summarize the weights in a weight matrix ∈W  ℝNxT with entries 

)(: dweightw tdt = . 
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Two different definitions of weights (probability weights and ‘completeness scores’) 

were tested (Section 2 of Supplementary Methods). We decided to use completeness 

scores, as they produced more relevant results, though the rankings obtained with both 

choices of weights largely agreed (Section 11 of Supplementary Note). The 

‘completeness score’ of a module is the percentage of a module’s protein families that 

occurred in a specific genome or taxonomic bin. More precisely, we defined the weight 

of module tM  in document d  of the (meta-)genome collection based on completeness 

as: 

%100
||

||:)( ⋅
∩

=
t

t
t M

dMdweight  

 

Identification of phenotype-defining functional modules 

To identify phenotype-associated modules, we used the weights of the modules in the 

input documents that corresponded to our manually curated phenotype(+) and 

phenotype(-) genomes. We refer to these genomes as the learning set. The selected 

weights were used to predict the phenotypes of these genomes and we scored each of 

the 400 modules according to its ability to distinguish between the two phenotype 

classes. More precisely, the classification of the learning set with respect to module tM

was done by applying a threshold value tγ  to the weights of the module, i.e. genomes 

were predicted to be phenotype(+) if the respective weights satisfied the threshold or 

phenotype(-) otherwise. 

The ranking procedure optimized independent thresholds for all modules by finding the 

threshold that maximized a criterion function. We used the F-measure [67] with the 

parameter 5.0=β  for scoring (Section 3 of Supplementary Methods), which can be 

computed using the following confusion matrix: 

tM  Document d is 
phenotype(+)  

Document d is 
phenotype(-)  
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tt dweight γ≥)(  TP FP 

tt dweight γ<)(  FN TN 

 

Finally, we obtained the ranking of the modules by sorting them in decreasing order 

based on their F-measure scores. 

 

Mapping of modules between Gibbs samples and runs 

Finding the optimal assignments of protein families to functional modules, such that the 

observed data can be explained in the best possible way, is a combinatorially 

challenging task. We used Gibbs sampling to derive statistical estimates for the latent 

topic (functional module) distributions of the LDA model, from which we derived the 

potential functional modules as described. We then searched for similar modules across 

several LDA runs to identify stable modules, because with the MCMC inference 

technique used there is variance in the derived estimates across different runs. We 

used the Kullback–Leibler divergence [43] and the Jaccard distance [81] to calculate 

pairwise distances between topics (probability distributions) or modules (discrete protein 

family sets), respectively. As expected, we observed a good agreement between the 

results with both distance measures. Given the matrix of pairwise distances for the 

modules of two LDA runs, we used the Hungarian algorithm [82] to find an optimal 

global mapping between these. The Bron–Kerbosch algorithm [83] was used to find 

cliques of similar modules efficiently across multiple LDA runs (requiring pairwise KL-

distances ≤ 5 or Jaccard distances ≤ 0.75, respectively). 

 

Consensus modules 

In theory, Gibbs sampling efficiently estimates the posterior distribution of the model 

parameters and converges to a global optimum given a sufficient number of iterations 

[47]. However, in practice, we observe variance in the results of individual LDA runs and 
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a common approach to derive a stable solution is to repeat the inference multiple times 

and to compare the results from a number of runs [72]. Therefore, we repeated the 

steps of our analysis several times with the same input data. In comparison to our 

previous study [43], we doubled the number of LDA runs to 18. In each run, we inferred 

400 potential functional modules. As described in the previous section, we tracked the 

identities of the modules across all runs based on pairwise module distances and thus 

characterized the stability of the modules. Next, we applied the described attribute-

ranking scheme based on the completeness scores to each of the 18 sets of 400 

inferred modules and determined the top 15 modules for each run. Among these highly 

ranked modules from different runs, we searched for similar modules that occurred in at 

least 75% of the 18 runs. From these re-occurring modules we derived ‘consensus 

modules’ of protein families (Additional File 3) as follows: Given a set of similar modules 

from different LDA runs, which were identified as representing a stable module across 

75% or more of the 18 runs, the corresponding consensus module contains all protein 

families that occur in at least nine modules of this set.  

 

Leave-one-out analysis and tenfold cross-validation 

For the consensus PDMs, we performed leave-one-out and tenfold cross-validation 

experiments to assess their predictive accuracy. In a loop, we successively left out each 

individual genome (or 10% of the genomes) of the learning set and optimized the weight 

threshold of a module on the remaining learning set with the F-measure. For the omitted 

genomes, the PDM was predicted to be present if the genome-specific module weight 

was equal to or above the inferred threshold. In both settings, we obtained exactly one 

prediction for each genome of the learning set, based on which we calculated 

performance measures such as precision and recall, the F-measure, the cross-

validation accuracy and the cross-validation macro-accuracy. For the tenfold cross-

validation experiments, we randomly split the data to create the different folds. The 

procedure was repeated ten times and the results were averaged. For a more accurate 

estimate of the test error, we also calculated 95% confidence intervals for the modules’ 

cross-validation accuracies. We used the Clopper–Pearson bound [52], which is an 
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estimate based on the binomial distribution and the observed error rate on the omitted 

test samples. Note that the number of available test samples (120 in our case) is an 

important parameter of the binomial and determines the sizes of the intervals. With a 

larger set, one would obtain narrower bounds. 

 

Prediction of module occurrences in genomes and metagenome bins 

We optimized the cutoff thresholds for module prediction by maximizing the F-measure 

using the weights of the consensus modules for all genomes with a known phenotype. 

We then considered the module weights in the genomes and metagenome bins of 

unknown phenotype to predict occurrences of the modules. We applied the following 

prediction rule to predict the presence of a module tM  in the genome or metagenome 

bin dG  that corresponds to document d  in the input of LDA:  



 ≥

=
otherwise

dweightif
MGpredict tt

ttd 0
)(1

),,(
γ

γ  

 

Comparison of PDM occurrences in the taxonomic bins of metagenomes and 
isolate genomes of the corresponding clades 

We constructed a tree based on the NCBI taxonomy tree with iTOL [84] for the taxa 

represented by the metagenome bins in the dataset. Metagenome bins with less than 

ten protein families were excluded from consideration. We used taxonomic assignments 

inferred by the binning methods PhyloPythia [75] and PhyloPythiaS [76], but not for the 

high-ranking bins, such as bacteria. To visualize the common occurrences of the PDMs 

at the leaf nodes of the tree, we collapsed some of the original leaf nodes to new leaf 

nodes of higher ranks. This was done if two or more of the PDMs were predicted to 

occur in taxa of the same clade, but with different ranks. In these cases, the PDMs 

involved were displayed for the highest common rank that was observed. The PDMs 

were predicted to occur in the bins of only five major taxa across the different 
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metagenomes (Figure 5). In addition, we also mapped isolate genomes of the 

corresponding taxa with predicted occurrences of the PDMs to the leaf nodes of the 

tree. 

 

Identification of saprophytic genomes and taxonomic bins 

As described by Medie et al. [45], we classified a genome or metagenome bin as 

belonging to a ‘cellulase- and hemicellulase containing saprophyte’ if the corresponding 

annotation set contained at least one cellulase and three or more hemicellulases or 

pectinases from the following families: 

• Cellulase families: GH5, GH6, GH8, GH9, GH12, GH44, GH45, GH48, GH74 

and GH124;  

• Hemicellulase and pectinase families: GH10, GH11, GH26, GH28, GH30, GH43, 

GH53, GH67, GH78, PL1, PL2, PL9, PL10, PL11 and PL22. 

 

Implementation and parameter settings 

We used the LDA implementation from the topic modeling toolbox 

(http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm). The LDA model 

depends on two hyperparameters, α  and β , which control the Dirichlet priors of the 

multinomial distributions. We used the default values of the topic modeling toolbox, i.e. 

T/50=α  and 01.0=β . 

 

List of abbreviations 
 

CAZy - Carbohydrate-active enzyme 

CBM - Carbohydrate-binding module 
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CE - Carbohydrate esterase 

DUF - Domain of unknown function (in the Pfam database) 

GH - Glycoside hydrolase 

LDA - Latent Dirichlet Allocation 

PDM - Plant biomass degradation module 

PL - Polysaccharide lyase 

PUL - Polysaccharide utilization locus 

Sus - Starch utilization system 
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Figures 
 

Figure 1: Identifying phenotype-related functional modules 

We used protein sequences from 2884 prokaryotic isolate species and 18 microbial 

communities, some of which are known to be active in lignocellulose degradation. 

Known lignocellulose degradation abilities are indicated by phenotype labels (+/-). For 

the metagenomes, we only considered protein coding sequences with predicted 

taxonomic origins assigned by a taxonomic binning method (PhyloPythia or 

PhyloPythiaS). We used HMMER to assign protein family annotations from Pfam and 

CAZy to all input sequences, and summarized the set of (meta-)genome annotations as 

a document collection for LDA (1). Each document is composed of protein family 

identifiers from a controlled vocabulary (Pfam, CAZy). We then inferred a probabilistic 

topic model (2). The topic variables of the model can be interpreted as potential 

functional modules, i.e. sets of functionally coupled protein families [43]. We obtained 

400 modules with diverse biochemical functions. Next, we defined ‘genome-specific’ 

weights of the modules and used these weights in conjunction with the phenotype labels 

to rank the modules according to their estimated relevance for the phenotype of 

lignocellulose degradation (3). As weights, we used the fraction of protein families in a 

module that were present in a certain genome or metagenome bin (‘completeness 

scores’). We identified stable, high-ranking modules from independent repetitions of the 

analysis and constructed consensus modules, which we named plant biomass 

degradation modules (PDMs) (4). These PDMs were found to cover different aspects of 

plant biomass degradation, such as cellulose, hemicellulose and pectin degradation. 

Moreover, the weights of the PDMs could be used to predict the biomass degradation 

abilities of organisms, and we were able to identify specific gene clusters in the input set 

of (meta-)genomes which reflected the protein family content of individual modules (5). 
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The clusters thus provided evidence for the functional coherence of the modules by 

gene neighborhood.  

 

Figure 2: Occurrences of PDMs in organisms using different degradation 
paradigms 

The predicted occurrences of the PDMs M1–M5 in the genomes of 38 known 

lignocellulose degraders are indicated by different colors. Each PDM was predicted to 

be present or absent from a genome, depending on its ‘genome-specific’ weight, i.e. the 

degree of completeness for its protein families. Two major cellulose degradation 

paradigms, the free enzyme and cellulosome-based strategies, were assigned to the 

organisms according to the literature. Assignments can be ambiguous; for example, C. 

thermocellum seems to be able to use mixed strategies [48]. No PDM was exclusively 

associated with these two paradigms, including M5, which, in addition to the cohesin 

and dockerin domains of cellulosomes, also included non-cellulosomal protein families 

(Table 3). 

 

Figure 3: PDMs mapping to the cel-cip and xyl-doc gene clusters in Clostridium 
cellulolyticus H10 

Blouzard et al. described two clusters of genes that are involved in cellulose and 

hemicellulose degradation [60]. Their domain architecture was adopted. Abbreviations 

used for the carbohydrate-binding module (CBM) and glycoside hydrolase (GH) 

architecture are: S: signal sequence; DOC1: dockerin type-I module; COH: cohesin 

type-I module; LNK: linker sequence; UNK: unknown function. We marked additional 

predicted domains as part of our in-house annotation sets using [+ family X]. Some 

dockerin annotations were filtered out by our bit score criterion. 

Panel A:  Genes from the cel-cip operon (Ccel_0728 to Ccel_0740) are essential for the 

cellulose degradation ability of the organism C. cellulolyticus H10, which uses the 

cellulosome strategy. The cluster includes multiple protein families of the PDMs M1 and 
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M5. Although the consensus modules of M1 and M5 did not directly include the two 

endoglucanase families GH8 and GH48, associations between M1 and GH8, and 

between M5 and GH48 existed (topic-word probabilities ≥0.005). 

Panel B: Genes from the 32-kb xyl-doc gene cluster (Ccel_1229 to Ccel_1242) encode 

functionalities for hemicellulose degradation. The cluster includes multiple protein 

families of the PDMs M1, M2 and M5, which together cover most of the cluster. Some 

additional protein families originate from M3 and M4 (purple). The following 

correspondences were used: CE1 ~ PF00756 (esterase); CBM22 ~ PF02018, and 

COG3533 (an uncharacterized protein in bacteria) ~ PF07944 (a putative glycosyl 

hydrolase of unknown function, DUF1680). The xyl-doc cluster contains a 

xylosidase/arabinofuranosidase gene (Ccel_1233), which is characterized as a ‘putative 

β-xylosidase’ in IMG. The gene corresponds to β-xylosidase genes in 

Caldicellulosiruptor saccharolyticus (Csac_2411), Bacteroides cellulosilyticus 

(BACCELL_02584 and BACCELL_00858), and Fibrobacter succinogenes (FSU_2269/ 

Fisuc_1769). Clusters containing M1 protein families were also detected around these 

genes. 

 

Figure 4: Co-occurrences of the M5 protein families and GH6, GH48 across known 
degraders and non-degraders 

Combined co-occurrence profiles for the M5 protein families and two additional 

cellulases, GH6 and GH48, across the known sets of the phenotype(+) and phenotype(-

) genomes, respectively. GH6 and GH48 were not assigned into the PDM M5; in case of 

GH48 only because of our strict cutoff criteria. However, GH48 was weakly associated 

with M5 and belonged to the top 50 families of the majority of M5 modules that were 

used to construct the consensus module. The colors of the heat map cells represent the 

number of instances of each family in the respective genomes of the organisms (see 

legends and note that the counted number of instances was limited to a maximum of ten 

per genome, as described in the Methods). The phylogenetic relationships of the 

genomes are indicated by dendrograms alongside the rows of the heat maps. 
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Figure 5: Comparison of PDM occurrences in metagenome bins and isolate 
genomes of corresponding taxa 

The colored circles at the leaf nodes of the tree denote the predicted occurrences of the 

different PDMs in the respective taxa or their subclades. The tree was constructed from 

the taxonomic assignments of the metagenome bins in our input set (Methods). We 

then mapped the predicted occurrences of the PDMs in 28 different metagenome bins 

to the leaf nodes of the tree. If PDMs were identified in two or more bins, with one being 

a parental taxon to the other, the parent taxon is displayed. For example, predictions for 

Prevotella ruminicola were summarized with other predictions for the genus Prevotella. 

In addition, PDM occurrences in 403 isolate genomes of corresponding taxa were also 

mapped to the leaf nodes. The area of the colored circles for the isolate genomes was 

made proportional to the number of genomes for which the respective PDM was 

identified. The PDM predictions for the metagenome bins covered only five major 

taxonomic clades. The majority of PDMs in the metagenome bins were assigned to the 

orders Bacteroidales and Clostridiales. For the genomes, PDMs were identified from a 

broader range of taxa, including Actinobacteria, Firmicutes, Bacteroidetes and 

Proteobacteria, in agreement with the estimated taxonomic range of potential cellulose-

degrading species reported in [46]. The differences in the identified PDMs and their 

taxonomic affiliations between genomes and metagenome bins may partly reflect the 

abundance of Bacteroidales and Clostridiales degraders in plant biomass-degrading 

communities, but some PDMs were likely also not identified in the metagenome bins 

due to the partial nature of the genomic information recovered.  
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Tables 
 
 

Table 1: Functional characterization of the consensus plant biomass degradation 
modules M1–M5 
 

We characterized each module based on the set of protein families contained in it. 

Additional File 3 shows each consensus module as a list of Pfam/CAZy terms. 

Name Description 
M1 Lignocellulose degradation (cellulose and hemicellulose degradation) 
M2 Xylan binding and xyloglucan degradation (hemicellulose degradation) 
M3 Pectin degradation 
M4 Degradation of glycan compounds 
M5 Structural components of the cellulosome-based degradation paradigm 

(dockerin and cohesin) 
 

 
Table 2: CAZy families in the PDMs M1–M5 with key functions for plant cell wall 
degradation  

Module  M1 M2 M3 M4 M5 
Type Subtype      
Cellulases [8] Endoglucanases 

(EC 3.2.1.4) 
GH5, 
GH9 

 GH5 GH5 GH124 

Cellobiohydrolases 
(EC 3.2.1.91) 

GH5, 
GH9 

 GH5 GH5  

β-glucosidases 
(EC 3.2.1.21) 

GH9 GH30  GH3  

Hemicellulases 
[8, 9] 

Endo-1,4-β-xylanase  
(1,4-β-d-xylan 
xylanohydrolases,  
EC 3.2.1.8) 

GH5, 
GH10, 
GH43 

 GH5, 
GH43 

GH5, 
GH43 

 

β-xylosidase  
(1,4-β-d-xylan 
xylohydrolase,  
EC 3.2.1.37) 

GH43 GH30 GH43 GH3, 
GH43 
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α-arabinofuranosidase  
(EC 3.2.1.55) 

GH43  GH43 GH3, 
GH43 

 

α-glucuronidase  
(EC 3.2.1.139) 

     

Acetyl xylan esterase  
(EC 3.1.1.72) 

  CE6,  
CE7, 
CE12 

  

Ferulic acid esterase  
(EC 3.1.1.73) 

     
 

Xyloglucanase  
(EC 3.2.1.151);  
Xyloglucosyltrans-
ferase (EC 2.4.1.207) 

 GH16    

Carbohydrate-
binding 
modules 
[69, 87] 

Targeting cellulose CBM4    CBM3 

Targeting xylan CBM4 
CBM6 
CBM35 

CBM6 
CBM13 
CBM35 

  CBM36 

Cellulosomes 
[14] 

Structural components     cohesin, 
dockerin 

Pectinolytic 
enzymes [10] 

Pectin methyl esterase  
(EC 3.1.1.11) 

  CE8   

Endopolygalacturonase 
(EC 3.2.1.15); 
Exopolygalacturonase  
(EC 3.2.1.67) 

  GH28   

Endopolygalacturonase  
lyase (EC 4.2.2.2); 
Exopolygalacturonase  
lyase (EC 4.2.2.9) 

  PL1, 
PL9 

  
 
 

Pectin lyase 
(EC 4.2.2.10) 

  PL1   

 
 
 
Table 3: Protein families of the PDMs M1–M5 with potential functions in plant 
biomass degradation 
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Protein families that appeared in the gene clusters identified by mapping the PDMs to 

the phenotype(+) genomes are marked in bold. 
 
 Family ID Description 

M1 PF13472 
PF00756 

GDSL-like lipase/acylhydrolase family 
Putative esterase 

M2 PF14200 
PF00652 
PF00754 
PF00041 
PF02311 
PF13483 

Ricin-type beta-trefoil lectin domain-like 
Ricin-type beta-trefoil lectin domain 
F5/8 type C domain 
Fibronectin type III domain 
AraC-like ligand-binding domain 
Beta-lactamase superfamily domain 

M3 PF03629 
PF00657 
PF13472 
PF13229 

Domain of unknown function (DUF303) 
GDSL-like lipase/acylhydrolase 
GDSL-like lipase/acylhydrolase family 
Right-handed beta helix region 

M4 PF14310 
PF07859 
PF00135 
PF13802 

Fibronectin type III-like domain 
Alpha/beta hydrolase fold 
Carboxylesterase family 
Galactose mutarotase-like 

M5 PF13186 
PF05593 
PF07591 
PF07238 
PF13403 

Domain of unknown function (DUF4008) 
RHS repeat 
Pretoxin Hint domain 
PilZ domain 
Hint domain 

 
 
 

Table 4: Association with lignocellulose degradation based on different 
performance measures for the consensus PDMs M1–M5 
 
Each consensus PDM represents a set of re-occurring modules from 18 independent 

repetitions of our analysis (Figure 1) and contains all families that occurred in at least 

nine of these modules. The modules used to build the PDMs were identified by finding 

modules having minimal pairwise distances from each other (Methods). We report the 
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average rank and average F-score of these module sets. ‘Size’ gives the number of 

Pfam and/or CAZy families that are contained in a PDM. We computed recall, precision 

and the F-measure scores for the individual PDMs in leave-one out (LOO) validation. In 

addition, accuracies and estimated confidence intervals for tenfold cross-validation (CV) 

are given to assess the generalization error more accurately. Following [28] , we 

computed the cross-validation macro-accuracy (CV-MAC) as the average of the true 

positive and true negative rates.  
 
 M1 M2 M3 M4 M5 
Set of re-
occurring 
modules 
(18 repetitions 
of analyses) 

Number of modules in 
set 18 18 18 18 16 

Average F-score in 
rankings (%) 

95.2   
(±1.7) 

92.5   
(±1.1) 

88.9  
(±2.1) 

85.8  
(±1.3) 

84.9  
(±5.3) 

Average rank 1.3  
(±0.57) 

2.4  
(±0.61) 

4.2  
(±1.5) 

6  
(±1.6) 

7.5  
(±3.4) 

Consensus 
PDM 

Size 18 22 23 25 13 
Weight threshold used 
for classification (%) 66.67 50.00 73.91 72.00 38.46 

Performance 
evaluation 

LOO F-score (%) 96.2 94.1 89.6 82.5 82.1 
LOO recall (%) 92.1 84.2 63.2 84.2 57.9 
LOO precision (%) 97.2 97.0 100.0 82.1 91.7 
CV accuracy (%) 96.7 93.8 87.7 89.6 84.3 
Estimated 95% 
confidence interval for 
CV accuracy 

[91.69,  
99.08] 

[87.82, 
97.35] 

[80.42, 
92.96] 

[82.68, 
94.42] 

[76.57, 
90.32] 

CV-MAC (%) 95.4 91.3 81.2 88.2 77.2 
 
 
Table 5: PDM assignments to draft genomes with the ability to degrade plant 
biomass within the cow rumen metagenome sample  

 

Draft genomes with evidence for lignocellulolytic activity according to carbohydrolytic 

activity tests are indicated in green [19]. ‘APb’ was mapped using 16S RNA marker 

genes to the known lignocellulose-degrading organism Butyrivibrio fibrisolvens [19]. The 

draft genomes marked in bold were also predicted by a Support Vector Machine-based 
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method for predicting lignocellulose degraders (counting only the unambiguous 

predictions of the SVM-classifier) [28]. 
 

 
 
  

Draft genome Taxonomic affiliation M1 M2 M3 M4 M5 
AJ Bacteroidales √ √ √ √  

AGa Bacteroidales √     
AC2a Bacteroidales  √    
AIa Clostridiales √   √  
APb Clostridiales √   √  
AH Bacteroidales √   √  
AFa Spirochaetales    √  
AN Clostridiales    √  

AWa Clostridiales    √  
ATa Clostridiales     √ 
ADa Myxococcales      
AMa Spirochaetales      
AQ Bacteroidales      

AS1a Clostridiales      
BOa Clostridiales      
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Additional files 

 

Additional File 1 

Title:  Supplementary Methods 

Format: PDF 

Description: Additional details about the methods and preparation of the input data. 

 

Additional File 2 

Title:  Supplementary Note 

Format: PDF 

Description: Additional details about the results of the main manuscript. 

 

Additional File 3 

Title:  Protein families of the PDM consensus modules 

Format: PDF 

Description: The tables show each consensus module as a list of Pfam/CAZy terms. 

The consensus modules summarize highly similar modules from the 18 

LDA runs and contain all elements that occurred in nine runs or more. The 

tables also contain information about all additional Pfam/CAZy families 

that occurred in the similar modules in less than nine runs. 

 

Additional File 4 

Title:  PDM assignments to genomes of the learning set 

Format: PDF 

Description: PDM assignments to the genomes of known plant biomass degraders and 

non-degraders obtained by leave-one-out classification. 
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Additional File 5 

Title:  Hemicellulolytic gene cluster in Fibrobacter succinogenes S85 

Format: PDF 

Description:  This gene cluster encodes more than ten hemicellulose-targeting enzymes 

in the genome of F. succinogenes S85. The protein domain architecture of 

the cluster genes has been described by Yoshida et al. [61, 62]. F. 

succinogenes does not use a cellulosome-based degradation strategy but 

uses a degradation paradigm that is still uncharacterized [85, 86]. 

 

Additional File 6 

Title: Co-occurrence profiles of the M1 protein families and GH6/GH48 across 

the learning set 

Format: PDF 

Description: Two heat maps display the combined co-occurrence profiles of the M1 

protein families and two additional cellulases, GH6 and GH48, across the 

sets of the known phenotype(+) and phenotype(-) genomes, respectively. 

GH6 and GH48 were not assigned to module M1. The colors of the heat 

map cells encode the number of instances of each family in the respective 

genomes of the organisms (see legends and note that the counted 

number of instances was limited to a maximum of ten per genome, as 

described in the Methods). The phylogenetic relationships of the genomes 

are indicated by dendrograms alongside the rows of the heat maps. 

 

Additional File 7 

Title: Single predictions of the consensus modules on the learning set of 

genomes 

Format: Microsoft Excel (.xlsx) 
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Description: Each sheet of the Excel file lists the predictions of one of the consensus 

modules with respect to the learning set of genomes. We used different 

colors to mark true positive (TP), true negative (TN), false positive (FP) 

and false negative (FN) predictions (a description of the color coding is 

contained in the first sheet of the file). For each classified sample, we 

have provided several details (e.g. name and phylum), as well as the 

genome-specific module weight (‘completeness score’) of the respective 

consensus module. 

 

Additional File 8 

Title: Single predictions of the consensus modules on the remaining set of 

genomes and metagenome bins 

Format: Microsoft Excel (.xlsx) 

Description: Each sheet of the Excel file lists the predictions of one of the consensus 

modules with respect to all genomes and metagenome bins, except for the 

120 known (non-)degraders used for learning. For each classified sample, 

we provide several details (e.g. name and phylum), as well as the 

genome-specific module weight (‘completeness score’) of the respective 

consensus module. 

 

Additional File 9 

Title:  Venn diagram of the predicted occurrences of the modules M1 – M4 

Format: PNG 

Description: The diagram displays the overlap between the genomes and metagenome 

bins with predicted occurrences of the modules M1, M2, M3 and M4. 

Genomes from the learning set were excluded. 

 

Additional File 10 
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Title:  Gene cluster in the cow rumen draft genome AGa 

Format: PDF 

Description: The red box marks a gene cluster (NODE_457020_ORF_01660 to 

NODE_457020_ORF_01710), which was identified based on the families 

assigned to the highest scoring module, M1. The cluster is located on a 

97,191-bp contig of the draft genome AGa (Bacteroidales) from the cow 

rumen metagenome [19]. The cluster includes three cellulases, based on 

assignments of the GH5 family, and a cellobiose phosphorylase (GH94; 

EC 2.4.1.20) with an attached ‘putative carbohydrate binding domain’ 

(PF06204). The GH94 family was not assigned to the consensus module 

of M1 but it was contained in the M1 modules in seven out of 18 LDA runs. 

Depending on the presence or absence of GH94 in the M1 modules of 

different runs, the gene cluster was identified either partly or completely. 

The cluster includes two genes (genes 01680 and 01690 – green 

rectangle) without any annotated functional domains; these might be 

previously uncharacterized genes that may be relevant for the degradation 

of lignocellulose. The presence of two Pfam families related to the major 

facilitator superfamily in gene 01640 (marked by the yellow box) indicates 

a link between the (hemi)cellulases of the GH5 and GH94 families, and 

sugar-binding or transport proteins located in the outer membrane (figure 

in Additional File 10 and Section 10 of Supplementary Note). 

 

Additional File 11 

Title: Microbial isolate strains (lignocellulose degraders and non-degraders) that 

were used as the learning set 

Format: PDF 

Description: A manually curated list of 120 phenotype(+) or phenotype(-) prokaryotic 

genomes, including references. 
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Additional File 12 

Title: Protein sequences of the identified gene cluster in the draft genome AGa 

from the cow rumen metagenome 

Format: Fasta file (.faa) 

Description: Protein sequences (NODE_457020_ORF_01620 to 

NODE_457020_ORF_01740) from the cow rumen metagenome 

representing a gene cluster in the draft genome AGa, which was 

discussed in the main manuscript, as well as its surrounding genes. 
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M1 M2 M3 M4 M5 Free enzymes Oxygen requirement Name Reference
1 0 Anaerobe
1 0 Anaerobe
1 0 Anaerobe
1 0 Anaerobe
1 0 Anaerobe
1 0 Anaerobe
1 0 Anaerobe
1 0 Anaerobe
1 0 Anaerobe
1 0 Anaerobe
0 1 Anaerobe
0 1 Anaerobe
0 1 Anaerobe
0 1 Anaerobe
0 1 Anaerobe
0 1 Anaerobe
0 1 Anaerobe
0 1 Anaerobe
0 1 Anaerobe
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 0 Anaerobe Wilson (2011)
0 0 Wilson (2011)
0 0 Anaerobe
0 ? Anaerobe
? ? Anaerobe not described
? ? Anaerobe not described
? ? Anaerobe not described
? ? not described
? ? not described
? ? not described
? ? Anaerobe not described

Cellulosome
Butyrivibrio fibrisolvens 16/4 Doi, Kosugi (2004)
Clostridium papyrosolvens DSM 2782 Doi, Kosugi (2004)
Clostridium thermocellum ATCC 27405 Doi, Kosugi (2004)
Ruminococcus flavefaciens FD-1 Doi, Kosugi (2004)
Clostridium cellulovorans 743B, ATCC 35296 Doi, Kosugi (2004)
Ruminococcus albus 7 Suen, Stevenson et al. (2011)
Acetivibrio cellulolyticus CD2, DSM 1870 Doi, Kosugi (2004)
Clostridium cellulolyticum H10 Doi, Kosugi (2004)
Ruminococcus albus 8 Doi, Kosugi (2004)
Clostridium acetobutylicum ATCC 824 Doi, Kosugi (2004)
Caldicellulosiruptor hydrothermalis 108 Blumer-Schuette, Lewis et al. (2010)
Caldicellulosiruptor bescii Z-1320, DSM 6725 Blumer-Schuette, Lewis et al. (2010)
Caldicellulosiruptor obsidiansis OB47 Blumer-Schuette, Lewis et al. (2010)
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