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The availability of complete human genome sequences from populations across the 

world has given rise to new population genetic inference methods that explicitly model 

their ancestral relationship under recombination and mutation. So far, application of 

these methods to evolutionary history more recent than 20-30 thousand years ago and 

to population separations has been limited. Here we present a new method that 

overcomes these shortcomings. The Multiple Sequentially Markovian Coalescent 

(MSMC) analyses the observed pattern of mutations in multiple individuals, focusing on 

the first coalescence between any two individuals. Results from applying MSMC to 

genome sequences from nine populations across the world suggest that the genetic 

separation of non-African ancestors from African Yoruban ancestors started long 

before 50,000 years ago, and give information about human population history as 

recently as 2,000 years ago, including the bottleneck in the peopling of the Americas, 

and separations within Africa, East Asia and Europe. 

Human genome sequences are related to each other through common ancestors. Estimates of 

when these ancestors lived provide insight into ancestral population sizes and ancestral 

genetic separations as a function of time. In the case of non-recombining loci such as the 

maternally inherited mtDNA or the paternally inherited Y chromosome, the age of common 

ancestors can be estimated from the total number of differences between sequences [1-4]. For 

autosomal sequences, which account for the vast majority of heritable sequence, the 

reconstruction of genealogical relationships is more complicated due to ancestral 

recombinations which separate many different genealogical trees in different locations of the 

genome. While inferring this pattern is more challenging, it provides in principle much more 

information about our past than non-recombining loci, since only a few samples provide many 

effectively independent genealogies, allowing inference of an age distribution of common 

ancestors with high resolution. 

Reconstruction of the full underlying ancestral recombination graph is challenging, because 

the space of possible graphs is extremely large. A substantial simplification was proposed by 

McVean and Cardin who model the generating process of the genealogical trees as Markovian 

along the sequence [5, 6]. An application of this idea was presented by Li and Durbin in the 

Pairwise Sequential Markovian Coalescent (PSMC) model [7], a method which focuses on 

modeling the two genome sequences in one diploid individual. Because only two sequences 

are modeled, the coalescent event joining the sequences at the most recent common ancestor 

is almost always older than 20 thousand years ago (kya), so PSMC can only infer population 

size estimates beyond 20 kya. Also, with only two sequences there was only limited scope for 

the analysis of population separations. 
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For more than two sequences, extending PSMC in the natural way by enumerating all possible 

trees with their branch lengths along the sequences would be very computationally costly, 

even under the Markovian model. A recent simplification was suggested by Song and 

coworkers [8-10], which is based on approximating the conditional sampling process for 

adding an (n+1)th sequence to the distribution of genealogies connecting n sequences. In this 

paper we propose an alternative approach that we call Multiple Sequential Markovian 

Coalescent (MSMC), which overcomes the increase in complexity by introducing a different 

simplification. We characterize the relationship at a given location between multiple samples 

through a much reduced set of variables: i) the time to the most recent common ancestor of 

any two sequences, i.e. the first coalescence, along with the identities of the two sequences 

participating in the first coalescence (see Figure 1a), and ii) the total length of all singleton 

branches in the tree, i.e. branches which give rise to variants of minor allele count 1 if hit by a 

mutation. Given a demographic model we can keep track of the likelihood distribution for 

these variables based on the observed mutation data as we move along the sequences. As 

detailed in Online Methods, we derive approximate transition and emission rates using the 

Sequentially Markovian Coalescent (SMC’) [5, 6] framework. This approach allows efficient 

maximum likelihood estimation of the free parameters, which include the piecewise constant 

population size as a function of time. If sequences are sampled from different subpopulations, 

we use additional free parameters for coalescence rates within and across population 

boundaries, which allow us to infer how subpopulations separated over time.  We compare 

further the conditional sampling approach and our first coalescent approach in the 

Discussion. 

Because MSMC focuses on the first coalescence event between any pair of haplotypes, the 

inference limits are set by the distribution of first coalescence times, the mean of which scales 

inversely with the square of the sample size, ��� � 2/���� 	 1�� in units of 2�� generations 

(see Online Methods and Figure 1b). Here we demonstrate application of our model on up to 

eight haplotypes, which allows us to study population size changes as recent as 70 

generations ago. As a special case of MSMC for two haplotypes, we provide a new 

implementation of PSMC that we call PSMC’ because it uses the SMC’ model, which accounts 

for recombinations between segments with the same coalescent time [6]. PSMC’ accurately 

estimates the recombination rate (see Supplementary Figure 1), which is not the case for 

PSMC[7]. 

We apply our method to 34 individuals from 9 populations of European, Asian, African and 

Native American ancestry, sequenced using Complete Genomics technology [11]. Our results 

give detailed estimates of the population sizes and population separations over time between 

about 2kya and 200kya, including the out-of-Africa dispersal of modern humans, the split 

between Asian and European populations, and the migration into America. 

Like other inference methods based on coalescent theory, MSMC can only infer scaled times 

and population sizes. To convert them to real time and size, scaled results need to be divided 

by the mutation rate and scaled times in addition multiplied by the generation time. Here we 

will use a generation time of 30 years and a rate of 1.25×10-8 mutations per nucleotide per 

generation, as supported by recent publications [12-16]. Since there is current debate about 

these values [17-19] we consider alternate scalings in the Discussion. 

Results 

Testing the performance of MSMC with simulated data 

We implemented the MSMC model as described in Online Methods, with mathematical 

derivations given in Supplementary Note. To test the model, we used coalescent simulations 
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with different demographic scenarios (see Supplementary Note for the simulation protocols). 

We first tested whether MSMC can locally decode the time to the first coalescence. Figure 1b 

shows the posterior probability over the hidden state for two, four and eight haplotypes. As 

shown, the model recovers the true hidden state with good local resolution.  As also seen in 

Figure 1b, the typical length of segments of constant hidden state increases with the sample 

size, while the typical time to the first coalescence decreases as described above. 

We then tried to infer back the simulation parameters from the simulated sequence data, 

applying MSMC to two different demographic scenarios (Figure 2). First, we simulated a 

single population under a sequence of population growths and declines. As can be seen in 

Figure 2a, MSMC recovers the resulting zig-zag pattern with good resolution, where two 

haplotypes (similar to PSMC) yield good estimates between 50kya and 2,000kya, and eight 

haplotypes give estimates as recent as 2kya, with a small bias towards smaller population 

sizes in the more distant past. We were able to test a reduced data set with reduced 

parameters with 16 haplotypes, as shown in Supplementary Figure 2e, which suggests that the 

bias observed with 8 haplotypes in the distant past increases further with more haplotypes 

(see Discussion). We also tested other simulated histories with sharp changes in population 

size, shown in Supplementary Figures 2a,b. As expected from the experience with PSMC, very 

rapid population size changes are smoothed out over an interval around the true change time.  

Next, we simulated two population split scenarios, where a single ancestral population split 

into two equally sized populations 10kya and 100kya, respectively. For each population split 

scenario we inferred effective coalescence rates across the two populations and within 

populations, as a function of time (see Online Methods). We provide a measure for the genetic 

separation of populations as the ratio between the cross- and the within-coalescence rates, 

which we term the relative cross coalescence rate. This parameterization effectively models 

population separations and substructure in a simpler way than a standard forwards-in-time 

island-migration model, which would require a larger state space for structured genealogies, 

as shown in [10] (see also Supplementary Note, Chapter 10). Although not standard, we 

suggest that it is a more direct measurement of what can be derived about genetic exchange 

between historic populations from modern samples.  The relative cross coalescence rate 

should be close to one when the two populations are well mixed, and zero after they have fully 

split. As shown in Figure 2b for four and eight haplotypes, our MSMC estimates correctly show 

this, although the instantaneous split time in the simulation is spread out over an interval 

around the split time. As expected, eight haplotypes yield better estimates for the more recent 

split scenario at 10kya, while four haplotypes yield better estimates for the older split at 

100kya. 

We also tested a population split with subsequent migration (Supplementary Figure 2c), for 

which we infer a higher relative cross coalescence rate across the two populations after the 

split, as expected. We further tested the robustness of our method under population size 

changes before and after the split (Supplementary Figure 2d), the consequences of the 

approximation to the singleton branch length (Supplementary Note and Supplementary Figure 

3) and recombination rate heterogeneities (see Supplementary Figure 4 and Online Methods), 

with no substantial effect on our estimates. 

MSMC requires in principle fully phased haplotypes as input, although we can partially allow 

for unphased data at a subset of sites (see Online Methods for details). To test possibilities of 

extending our unphased approximation to entirely unphased samples, we simulated data sets 

with one or both individuals unphased. As shown in Supplementary Figure 5, population size 

estimates based on unphased data are still relatively accurate, although with biases at the two 

ends of the analyzed time range. Relative cross coalescence rate estimation based on partially 

or fully unphased data is less accurate and more biased in the distant past.  Because of this, 

when applying MSMC to real data we leave unphased sites in the population size estimate 
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analyses, but remove them from the population split analyses (see also Supplementary Figure 

6). 

Inference of population size from whole genome sequences 

We applied our model to the genomes from one, two and four individuals sampled from each 

of 9 extended HapMap populations [20]: YRI (Nigeria), MKK (Kenya), LWK (Kenya), CEU 

(Northern European ancestry), TSI (Italy), GIH (North Indian ancestry), CHB (China), JPT 

(Japan), MXL (Mexican ancestry admixed to European ancestry) (details in Supplementary 

Table 1). We statistically phased all genomes using a reference panel (see Online Methods) and 

tested the impact of potential switch errors by comparing with family-trio-phased sequences 

which are available for CEU and YRI (see Online Methods and Supplementary Figure 6) 

The results from two individuals (four haplotypes) are shown in Figure 3a. In all cases the 

inferred population history from four haplotypes matches the estimates from 2 haplotypes 

where their inference range overlaps (60kya-200kya, see thin lines for CEU and YRI in Figure 

3, and Supplementary Figure 7a). We find that all non-African populations that we analyzed 

show a remarkably similar history of population decline from 200kya until about 50kya, 

consistent with a single non-African ancestral population that underwent a bottleneck at the 

time of the exodus from Africa around 40-60kya [21-23]. The prior separation of non-African 

and African ancestral population size estimates begins much earlier at 150-200kya, clearly 

preceding this bottleneck, as already observed using PSMC [7]. We will quantify this further 

below by directly estimating the relative cross coalescence rate over time. In contrast, we see 

only a mild bottleneck in the African population histories with an extended period of 

relatively constant population size more recently than 100kya. Between 30kya and 10kya we 

see similar expansions in population size for the CEU, TSI, GIH, and CHB populations. For the 

Mexican ancestors we see an extended period of low population size following the out of 

Africa bottleneck, with the lowest value around 15kya, which is particularly pronounced 

when filtering out genomic regions of recent European ancestry due to admixture (dashed 

line in Figure 3, see Online Methods). This extended bottleneck is consistent with estimates of 

the time that the Native American ancestors crossed the Bering Strait and moved into 

America [21, 24-26]. We repeated all analyses based on four haplotypes on a replicate data 

set, based on different individuals, available for all populations except MXL. All results are 

well reproduced and show differences only in the most recent time intervals, shown in 

Supplementary Figure 8. 

Analyzing eight haplotypes from each population except from MXL and MKK (see Online 

Methods), we can see recent population size changes with higher resolution than with four 

haplotypes, as shown in Figure 3b. Results from eight haplotypes are compatible with those 

from four haplotypes beyond 10kya, with systematically slightly lower estimates in the range 

10-30kya as expected from Figure 2a (see Supplementary Figure 7b).  We get new insights 

more recently than 10kya, during the period of Neolithic expansion. Focusing first on Asian 

populations, we see that the ancestors of CHB increased rapidly from 10kya to effective 

population sizes of over a million 2kya. The GIH ancestors also increased early from around 

10kya, a little more slowly than CHB, then leveled out around 4kya until recently. The JPT 

ancestral population appears to have split from CHB by 9kya and only increased slowly up 

until 3kya, since when it also increased very rapidly. In Europe, Northern European ancestors 

(CEU) experience a relatively constant effective population size between 2kya and 10kya, only 

increasing rapidly since 2kya; Southern European ancestors (TSI) have a consistently higher 

effective ancestral population size, appearing to show a more complex history of increase and 

decrease between 10kya and 3kya, and then increasing earlier than the CEU. As discussed 

previously [7], such a pattern of increase and decrease can result from admixture of 

previously separated populations, consistent with multiple waves of peopling of Europe with 
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a substantial genetic component from earlier waves in Southern Europe [27]. In Africa, we see 

YRI (Yoruba) expanding earliest around 6kya, consistent with the introduction of agriculture 

and the Bantu expansion [28], followed by LWK (Luhya), in which prior to 6kya there is a long 

“hump” in ancestral population size extending back beyond 50kya, again possibly reflecting 

admixture within the last few thousand years between populations initially separated tens of 

thousands of years ago. 

Divergence from and within African populations 

MSMC lets us explicitly study the genetic separation between two populations as a function of 

time by modeling the relationship of multiple haplotypes, half of which are from one 

population, and half from the other. As shown in Figure 4a, from analyzing four haplotypes for 

each pair of populations, we find that all relative cross coalescence rates between any non-

African population and Yoruba are very similar and exhibit a slow gradual decline beginning 

earlier than 200kya and lasting until about 40kya. This similarity gives additional information 

beyond that from population size estimates, consistent with all non-African populations 

diverging as a single population from the Yoruban ancestors. 

To understand whether the gradual decline in relative cross coalescence rate between YRI 

and non-African ancestors is due to the inability of MSMC to detect rapid changes (see Figure 

2b) or due to true ongoing genetic exchange, we compared it with simulated clean split 

scenarios at three different time points in the past (see Figure 4c). This comparison reveals 

that no clean split can explain the inferred progressive decline of relative cross coalescence 

rate. In particular, the early beginning of the drop would be consistent with an initial 

formation of distinct populations prior to 150kya, while the late end of the decline would be 

consistent with a final split around 50kya. This suggests a long period of partial divergence 

with ongoing genetic exchange between Yoruban and Non-African ancestors that began 

beyond 150kya, with population structure within Africa, and lasted for over 100,000 years, 

with a median point around 60-80kya at which time there was still substantial genetic 

exchange, with half the coalescences between populations and half within (see Discussion). 

We also observe that the rate of genetic divergence is not uniform but can be roughly divided 

into two phases. First, up until about 100kya, the two populations separated more slowly, 

while after 100kya genetic exchange dropped faster. We note that the fact that the relative 

cross coalescence rate has not reached one even around 200kya (Figure 4c) may possibly be 

due to later admixture from archaic populations such as Neanderthals into the ancestors of 

CEU after their split from YRI [29]. 

In Figure 4a we also see extended divergence patterns based on eight haplotype analysis 

between the ancestors of the three African populations, with LWK and YRI closest, and MKK 

showing very slow increase in relative cross coalescence rate going back in time with YRI and 

LWK. These declines are all more gradual than those shown in Figure 4b between out-of-

Africa populations, to be discussed further below, suggesting that they also are not clean splits 

but reflect gradual separation and perhaps complex ancestral structure with admixture. In 

addition, we see a different history between MKK and CEU compared to LWK and CEU, which 

in turn is very similar to the YRI/CEU estimates. Our results suggest that Maasai ancestors 

were well mixing with Non-African ancestors until about 80kya, much later than the YRI/Non-

African separation. This is consistent with a model where Maasai ancestors and Non-African 

ancestors formed sister groups, which together separated from West African ancestors and 

stayed well mixing until much closer to the actual out-of-Africa migration. Non-zero estimates 

of relative cross coalescence rate between MKK and CEU after 50kya are probably confounded 

by more recent admixture from Non-African populations back into East African populations 

including Maasai [30, 31]. 
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Divergences outside Africa 

As expected, the oldest split amongst out-of-Africa populations is between European and East 

Asian (CHB and MXL) populations, most of which occurs between 20-40kya (Figure 4b).  

Intriguingly there may be a small component (10% or less) of this separation extending much 

further back towards 100kya, not compatible with a single out-of-Africa event around 50kya. 

Next oldest is a separation between Asian (CHB and GIH) and American (MXL) populations 

around 20kya.  This is the most rapid separation we see, compatible with a clean split.  

Passing over the GIH separations for now, we see from eight haplotype analyses separations 

between JPT and CHB around 8-9kya compatible with the divergence in population size 

history described above, and between CEU and TSI around 5-6kya, both also relatively sharp. 

Supplementary Figure 9 shows four haplotype analyses of the same separations. 

The pattern of divergence of the North Indian ancestors (GIH) from East Asian and European 

ancestors is more complex.  We observe continued genetic exchange between GIH ancestors 

and both of these groups until about 15kya, suggesting that even though East Asians and 

Europeans separated earlier, there was contact between both of these and the ancestors of 

GIH after this separation, or equivalently that there was ancient admixture in the ancestry of 

Northern India. This deviation from a tree-like separation pattern is independently confirmed 

by D statistics from an ABBA-BABA test [32](see Online Methods and Supplementary Table 2), 

which also indicate that GIH is genetically closer to CEU than to CHB and MXL.  This is 

consistent with the slower and later decline in relative cross coalescence rate between CEU 

and GIH compared to between CEU and CHB (Figure 4b). These findings suggest that the GIH 

ancestors remained in close contact with CEU ancestors until about 10kya, but received some 

historic admixture component from East Asian populations, part of which is old enough to 

have occurred before the split of MXL.  

Discussion 

We have presented here both a new method MSMC, and new insight into the demographic 

history of human populations as they separated across the globe. We have shown that MSMC 

can give accurate information about the time dependence of demographic processes within 

and between populations from a small number of individual genome sequences.  Like PSMC it 

does this without requiring a simplified model with specific bottlenecks, hard population 

splits and fixed population sizes as do previous methods based on allele frequencies [33-35] 

or more general summary statistics [36-39].  However, MSMC extends PSMC to an order of 

magnitude more recent times and also allows us to explicitly model the history of genetic 

separations between populations. Because MSMC explicitly models the first coalescence 

between all possible pairs of haplotypes, it changes the time period considered in a quadratic 

fashion. This should be compared with the more naive approach of combining data from 

PSMC run on different individuals, which would increase information at most linearly, since 

individuals’ histories are not independent. 

While MSMC substantially advances the methodology from PSMC to multiple samples and 

much more recent times we have also seen that its practical application appears to be limited 

to about eight haploid sequences, both because of the approximations involved as well as 

because of computational complexity (see Supplementary Figure 2e for estimates based on 16 

haplotypes). It is intriguing, however, to imagine that larger numbers of samples in principle 

contain information about even more recent population history, potentially up until a few 

generations ago. The basic idea of looking at first coalescence events, as presented here, may 

lead to new developments that complement MSMC in this direction, e.g. by focusing on rare 

mutations such as doubletons in large samples [40]. 
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The alternative conditional sampling approach mentioned in the introduction [9, 10], 

implemented in the software diCal also allows for higher resolution at more recent times. 

However, when we applied diCal to our zig-zag population size simulation it did not appear to 

infer population history more recently than about 20kya (see Supplementary Figure 10). Also 

there is currently no way to address the relationship between populations as done by MSMC 

as relative cross coalescence rate. Both of these points may improve in future developments 

of that method. 

Applied to 34 whole genome sequences from nine populations, MSMC gives a picture of 

human demographic history within the last 200,000 years, beginning with the genetic 

separations of Yoruban from Non-African ancestors and extending well into the Neolithic 

(Figure 4d).  We find strong evidence that the Yoruban/Non-African separation took place 

over a long time period of about 100,000 years, starting long before the known spatial 

dispersal into Eurasia around 50kya. Because we model directly an arbitrary history over 

time of relative cross coalescence rate between populations, we can see more clearly a 

progressive separation than earlier analyses based on a single separation time with some 

subsequent migration [7, 17, 33, 41].  However Yoruba does not represent all of Africa. We 

now see that the Maasai separation from the out-of-Africa populations occurred within the 

last 100,000 years. The older part of the separation from Yoruba may therefore be a 

consequence of ancient population structure within Africa, though the direct picture of 

relationships between African populations is complicated by extensive more recent exchange 

that we see between all three of Yoruba, Maasai and Luhya within the last 100,000 years. This 

scenario still does not rule out a possible contribution from an intermediate modern human 

population that dispersed out of Africa into the Middle-East or the Arabian peninsula but 

continued extensive genetic exchange with its African ancestors until about 50kya [17, 42, 

43].  

Our results are scaled to real times using a mutation rate of 1.25×10-8 per nucleotide per 

generation, as proposed recently [16] and supported by several direct mutation studies [14-

16]. Using a value of 2.5×10-8 as was common previously [44, 45] would halve the times. This 

would bring the midpoint of the out-of-Africa separation to an uncomfortably recent 30-

40kya, but more concerningly it would bring the separation of Native American ancestors 

(MXL) from East-Asian populations to 5-10kya, inconsistent with the paleontological record  

[25, 26]. We suggest that the establishment and spread of the Native American populations 

may provide a good time point for calibrating population genetic demographic models. We 

note that the extended period of divergence between African and non-African ancestors that 

we observe reconciles the timing of the most recent common ancestor of African and Non-

African mtDNA around 70kya [1, 18] with the lower autosomal nuclear mutation rate used 

here, which in simple split models would suggest a separation around 90-130kya [7, 17, 33, 

41, 46].  Given that we observe extensive cross-coalescence at nuclear loci around 60-80kya, 

sharing a common ancestor during that time for mtDNA, which acts as a single locus with 

reduced effective population size, is entirely likely. 
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Figures 

 

Figure 1: MSMC locally infers branch lengths and coalescence times from observed 

mutations. 

(a) A schematic representation of the model. Local genealogies change along the sequences by 

recombination events that rejoin branches of the tree, according to the SMC’ model [5, 6]. The 

pattern of mutations depends on the genealogy, with few mutations on branches with recent 

coalescences and more mutations in deeper branches. The hidden states of the model are the 

time to the first coalescence, along with the identity of the two sequences participating in the 

first coalescence (dark blue). (c) MSMC can locally infer its hidden states, shown by the 

posterior probability in color shading. In black, we plot the first coalescence time as generated

by the simulation. This local inference works well for two, four and eight haplotypes. The 

more haplotypes, the more recent is the typical time to the first coalescence event, while the 

typical segment length increases. 
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Figure 2: Testing MSMC on simulated data 

(a) To test the resolution of MSMC applied to two, four and eight haplotypes, we simulated a 

series of exponential population growths and declines, each changing the population size by a 

factor 10. MSMC recovers the resulting zig-zag-pattern (on a double-logarithmic plot) in 

different times, depending on the number of haplotypes. With two haplotypes, MSMC infers 

the population history from 40kya to 3mya, with four haplotypes from 8kya to 300kya, and 

with eight haplotypes from 2kya to 50kya. (b) Model estimates from two simulated 

population splits 10kya and 100kya. The dashed lines plot the expected relative cross 

coalescence rate between the two populations before and after the splits. Maximum likelihood 

estimates are shown in red (four haplotypes) and purple (eight haplotypes). As expected, four 

haplotypes yield good estimates for the older split, while eight haplotypes give better 

estimates for the recent split. 
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Figure 3: Population Size Inference from whole genome sequences 

(a) Population size estimates from four haplotypes (two phased individuals) from each of 9 

populations. The dashed line was generated from a reduced data set of only the Native 

American components of the MXL genomes. Estimates from two haplotypes for CEU and YRI 

are shown for comparison as dotted lines. (b) Population size estimates from eight haplotypes 

(four phased individuals) from the same populations as above except MXL and MKK. In 

contrast to four haplotypes, estimates are more recent. For comparison, we show the result 

from four haplotypes for CEU, CHB and YRI as dotted lines. Data for this Figure is available via 

Supplementary Table 5. 
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Figure 4: Genetic Separation between population pairs 

(a) Relative cross coalescence rates in and out of Africa. African/Non-African pairs are shown 

in red colors, pairs within Africa in Purple colors. (b) Relative cross coalescence rates 

between populations outside Africa. European/East-Asian pairs in blue colors, Asian/MXL 

pairs in green colors, and other non-African pairs in other colors as indicated. The pairs that 

include MXL are masked to include only the putative Native American components. The most 

recent population separations are inferred from eight haplotypes, i.e. four haplotypes from 

each population, as indicated in the legend. (c) Comparison of the African/Non-African split 

with simulations of clean splits. We simulated three scenarios, at split times 50kya, 100kya 

and 150kya. The comparison demonstrates that the history of relative cross coalescence rate 

between African and Non-African ancestors is incompatible with a clean split model, and 

suggests it progressively decreased from beyond 150kya to approximately 50kya. (d) 

Schematic representation of population separations. Timings of splits, population separations, 

gene flow and bottlenecks are schematically shown along a logarithmic axis of time. Data for 

this Figure is available via Supplementary Table 5. 
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Online Methods 

Sequence Data 

Whole genome sequences were generated by Complete Genomics [11] and are freely available 

on their website (The “69 genomes” public data set). Homozygous and heterozygous 

consensus calls are taken directly from Complete Genomics’ tabular format file “masterVar” 

within the ASM directory of each sample. All regions with a quality tag less than “VQHIGH” 

were marked as missing data. Furthermore, sites for which more than 17 out of the 35 

overlapping 35mers from the reference sequence can be mapped elsewhere with zero or one 

mismatch were marked as missing (this is similar to the filtering in [7]). The anonymous 

names of all individuals are summarized in Supplementary Table 1. The number of called sites 

and the diversity in each population is summarized in Supplementary Table 3. In the MKK 

samples, we detected cryptic relatedness (see Supplementary Table 4), by comparing the 

heterozygosity within and between samples. We find that this is due to a factor ¼ lower 

mutual heterozygosity between the two individuals NA21732 and NA21737. We therefore 

removed that population from the 8 haplotype analysis. We find that MXL individuals have a 

higher heterozygosity across than within samples, which may be due to different ancestry 

proportions. 

Phasing 

All segregating sites that are present in the 1000 Genomes integrated variant call set were 

phased with the SHAPEIT2 software [47] using the 1000 Genomes reference panel [48]. In 

addition we generated full chromosomal haplotype phases from available trio data for YRI 

and CEU to assess the impact of the accuracy of the population phasing method vs. trio 

phasing. Current switch error rates when phasing against a 1000 Genomes reference panel 

are estimated to be about 500kb-1Mb (J. Marchini, personal communication), which limits the 

possibility to detect IBD-segments to times older than a few thousand years ago, which is at 

the lower limit of our analysis based on eight haplotypes.  

As shown in Supplementary Figure 5, unphased sites affect population size estimates and 

relative cross coalescence rate estimates differently. From a direct comparison with trio-

phased data we find that population size estimates are better if unphased sites are included in 

the analysis (taken as multiple observations in the HMM, see below) while for relative cross 

coalescence rate estimates, unphased sites generate severe artifacts in recent time intervals 

(see Supplementary Figure 6). The reason for this is the high sensitivity on shared long 

haplotypes between individuals, which are not detected if unphased sites are scattered across 

the sequence. We therefore removed unphased sites for the population split analysis, which in 

particular improves recent population divergence estimates after 50kya. In order to remove 

unphased sites in an unbiased way, we also removed all blocks of homozygous calls which end 

in an unphased heterozygous site, marking them as missing data. This is necessary because 

otherwise the removal of unphased sites would generate long segments of homozygous calls 

which are interpreted as long IBD segments of very recent tMRCA. 

Admixture masks for MXL 

Admixture masks for NA19735 were downloaded from the 1000 Genomes project website as 

part of the phase I analysis results. Admixture tracts for the remaining MXL individuals were 

generated by J. Kidd and Coworkers [49] and kindly made available to us. For our population 

split analysis with four haplotypes we only used the two individual with the highest Native 

American component as MXL representative, NA19735 and NA19670. We then filtered out all 

segments in the genome that were not annotated as homozygous Native American. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2014. ; https://doi.org/10.1101/005348doi: bioRxiv preprint 

https://doi.org/10.1101/005348
http://creativecommons.org/licenses/by-nc-nd/4.0/


Schiffels and Durbin 14 

D Statistics (ABBA-BABA test) 

We used the following samples: NA20845 (GIH), NA12891 (CEU), NA18526 (CHB) NA19735 

(MXL), NA19238 (YRI). For the D statistic, we count sites at which YRI is homozygous and 

define the respective allele as “ancestral” (A). We then require that the individual specified in 

the third column carries at least one derived allele (B). We also require that of the individuals 

specified in the first and second column one is homozygous for allele A, and the other carries 

at least one derived allele (B). This leaves two configurations per setup named ABBA and 

BABA, respectively, see Supplementary Table 2. The D-statistic is then: D = (#(ABBA)-

#(BABA)) / (#(ABBA) + #(BABA)). We compute p-values based on a two-tailed binomial test 

(see Supplementary Table 2). We performed this test for the two triples CEU/GIH/CHB and 

CEU/GIH/MXL, using YRI as outgroup. For the reversed scenarios, treating CEU as donor 

population and CHB or MXL as first population in the test, D scores are higher, suggesting that 

GIH is genetically closer to CEU than to CHB and MXL. 

MSMC Model 

The Multiple Sequential Markovian Coalescent (MSMC) is a Hidden Markov model along 

multiple phased haplotypes. Its hidden state is a triple ��, �, ��, where � is the first coalescence 

time of any two lineages, and � and � are the labels of the two lineages participating in the first 

coalescence. As detailed in Supplementary Note, we need additional local information about 

the genealogical tree, namely the singleton branch length �� , which sums the lengths of all 

branches that give rise to variants of minor allele count 1 if mutations occur on these 

branches. The singleton branch length can be estimated in a separate step before the main 

inference. We neglect the dependency of the transition rate on the singleton branch length, 

which is an approximation that is validated by simulations, see Supplementary Figure 3. 

Transition Rate 

We use the Sequential Markovian Coalescent framework [5, 6, 50], SMC’, to derive transition 

rates between hidden states. As shown in Supplementary Note with help of additional 

illustrations, the transition probability to state ��, �, �� from state ��, �, �� can be derived 

relatively straightforwardly, and separated into the probability that no change of the first 

coalescence time occurs, either because no recombination event happened, or because the 

recombination event does not affect the first coalescence: 

����� � ����� � �1 	 ������ 1� 1� � 1 � �� 	 3�exp �	� � ����d��

�

 d!�

�

   if    ��, �, �� � ��, �, �� 

and the probability to change from time s to time t due to a recombination event: 

�	��|�� � �1 	 ������ 1� 1� 2����
&'(
') � exp �	� � ����d��

�

 d!�

�

if � * �
exp �	 +�2 , � ����d��

�

 � exp �	� � ����d��

�

 d!�

�

if � - �
. 

Here, M denotes the number of haplotypes, ρ is the scaled recombination rate and λ(t) is the 

scaled inverse population size as a function of time. When samples from different 

subpopulations are analyzed, the transition rate can be modified to allow for different 

coalescence rates within and across populations, see Supplementary Note. 

For only two haplotypes, MSMC is very similar to PSMC [7], with subtle differences due to the 

different underlying model SMC’ [6] versus SMC [5]. We therefore call our special case of two 

haplotypes PSMC’ to distinguish it from PSMC. 
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Emission Rate 

For the emission rate we assume that we are given local estimates of the singleton branch 

length of the tree , �� (see Supplementary Note), which is treated as a “soft” constraint, that is 

we always consider  max ��� , ��� when we write �� For more than 2 haplotypes, an 

observation of alleles given some state (t, i, j) can be classified into the following categories, 

each of which has its own emission probability ���; �
�, derived in Supplementary Note: 

1. No mutation:  ���; �
� � 1 	 μ��  

2. Singleton within the pair 3�, �4: ���; �
� � μ� 

3. Singletone outside the pair 3�, �4:  ���; �
� � μ� 

4. Higher frequency variant: ���; �
� � 1 	 μ��  

5. Double mutation: ���; �
� � 0 

6. Missing data: ���; �
� � 1 

If sites have multiple observations from ambiguous phasing results, we average the emission 

probability over those observations. 

Parameter Inference 

To infer parameters with MSMC, we discretize time into segments, following the quantiles of 

the exponential distribution. The boundaries of the segments are 

�� � 	 log 91 	 �:�

; / +�2 ,, 
where :�  is the number of segments, and M is the number of haplotypes, which determines 

the expected time to first coalescence. All times are given in units of 2�� generations, where 2�� is fixed from Watterson’s estimator. The number of segments used in the population size 

analysis was :� � 40, and in the estimation of relative cross coalescence rate :� � 30. The 

denominator reflects the quadratically decreased time to first coalescence with increased 

sample size M. The limits on the inference are given by the second and the second-last 

boundary, which correspond to the 2.5%- and the 97.5%-quantile boundary of the 

distribution of first coalescence times. 

As in PSMC, we join segments to reduce the parameter search space. The segmentation we 

used was 10*1+15*2 for the population size inference, i.e. the 30 rightmost segments where 

joined to pairs of 2. For the relative cross coalescence rate estimates we used a pattern of 

8*1+11*2. For plots on a logarithmic time axis we chose the left cutoff to be at ��/4 and 

omitted the last time interval, as its value is shown also by the joined second last time 

interval. 

In each segment, the coalescence rate is kept constant. If all samples are from the same 

population, we have one parameter per segment, which is the scaled inverse population size, 

λi where i enumerates the segments in time. If samples from two populations are analyzed, we 

have three parameters per segment: λ1
i, λ12

i, and λ2
i. Here, λ1

i and λ2
i denote the coalescence 

rates within the two populations, and λ12
i denotes the coalescence rate across populations. In 

principle, there are two further free parameters: the scaled recombination rate ρ and the 

scaled mutation rate θ. In practice, we fix θ from Watterson’s estimator for θ. The 

recombination rate can be inferred relatively well from PSMC’, see Supplementary Figure 1, 
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and we fix it to that estimate for more than two haplotypes to reduce the parameter search 

space. We note that inference results on the coalescence rates are relatively independent of 

the recombination rate. 

Maximum likelihood estimates of all free parameters are generated iteratively by means of 

the Baum-Welch algorithm [51, 52] with a coarse-grained Q-function and numerical 

maximizations using Powell’s Direction-set method. For the coarse-graining of the Q-function, 

we use precomputed transition-emission matrices and evaluate the local variables only every 

1000bp. This optimization makes it possible to analyze whole human genomes without the 

need to first bin the data into windows of 100bp, as in [7].  

For only one population analyzed, an estimate of the scaled population size in time interval i is 

directly given as the inverse of the coalescence rate: Ni/N0=1/λi. The scaling parameter N0 is 

fixed from the scaled mutation rate (see above): N0= θ/(4µ), where µ=1.25×10-8 is the per site 

per generation mutation rate. Relative cross coalescence rate estimates are obtained by 

dividing the cross-population coalescence rate by the average within-population coalescence 

rate: γ i= 2λ12
i / (λ1

i + λ2
i). In the maximization step of the Baum-Welch algorithm we 

constrained the optimization to γ i≤1. 

Implementation 

We implemented the model and inference algorithm in the D programming language (see URL 

below). The source code together with executables for common platforms is freely available 

from Github (see URL below). We also provide additional information on the input file format 

and necessary pre-processing in the Supplementary Note. 

URLs 

D Programming language: http://www.dlang.org 

Github: https://github.com/stschiff/msmc 
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