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Abstract

The Swofford-Olsen-Waddell-Hillis (SOWH) test is a method to evaluate incongruent phylogenetic topolo-

gies. It is used, for example, when an investigator wishes to know if the maximum likelihood tree recovered

in their analysis is significantly different than an alternative phylogenetic hypothesis. The SOWH test

compares the observed difference in likelihood between the topologies to a null distribution of differences

in likelihood generated by parametric resampling. The SOWH test is a well-established and important

phylogenetic method, but it can be difficult to implement and its sensitivity to various factors is not

well understood. We wrote SOWHAT, a program that automates the SOWH test. In test analyses, we

find that variation in parameter estimation as well as the use of a more complex model of parameter

estimation have little impact on results, but that results can be inconsistent when an insufficient number

of replicates are used to estimate the null distribution. We provide methods of analyzing the sampling as

well as a simple stopping criteria for sufficient bootstrap replicates, which increase the overall reliability of

the approach. Applications of the SOWH test should include explicit evaluations of sampling adequacy.

SOWHAT is available for download from https://github.com/josephryan/SOWHAT.

Introduction

A phylogenetic topology test evaluates whether the difference in optimality criteria between incongru-

ent hypotheses is significant. In some cases, the test is used to determine whether a dataset provides
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significantly more support for one of several previously proposed relationships. In other cases, the test

is used to compare a novel or unexpected phylogenetic result to a previously proposed hypothesis. In

each case, the observed difference in optimality criteria between trees is compared to an estimated null

distribution of differences in optimality criteria. Phylogenetic topology tests differ largely in how this

null distribution is created. The Approximately Unbiased test (AU) [1] and the Kishino-Hasegawa test

(KH) [2] create a null distribution by analyzing datasets created by sampling with replacements from the

original dataset [3]. However, this approach can lead to selection bias and is only appropriate for tests

of hypotheses selected a priori, such as the comparison of two alternative hypotheses from the literature.

In cases where hypotheses are not determined a priori, as when comparing a topology to the maximum

likelihood tree produced from the same data, parametric tests like the SOWH test are more appropri-

ate [3]. The SOWH test compares differences in likelihood to a distribution of differences in likelihood

generated from datasets simulated under the null hypothesis [4].

Though the SOWH test is more appropriate than other tests for many of the questions that biologists

routinely face, there are multiple technical barriers to its routine use. The SOWH test has been shown to

produce erroneous results when the model is misspecified, which can lead to type I error [3] [5]. Several

helpful step-by-step instructions are available [6] [7], but these manual approaches require extensive

hands-on time and make it difficult to systematically examine the behavior of the test under different

conditions. It can be especially difficult to manually conduct a SOWH test on a large dataset which

includes additional complexities such as a partitioning scheme or undetermined sites. Performing such a

test requires an investigator to make multiple decisions, and without clear evaluation of the behavior of

the test these decisions may not be informed.

To address these challenges, we developed SOWHAT (as in, ”The maximum likelihood tree differs

from my hypothesized phylogeny, so what?”), a program that automates the SOWH test (Fig 1) and is

applicable to partitioned datasets. SOWHAT also provides convenient tools for assessing various aspects

of its performance. Using SOWHAT, we examine the performance of the SOWH test on three datasets

to better understand its strengths and limitations in typical applications. We specifically examine the

sensitivity of the test to the number of replicate simulations, model selection, variability in parameter

and likelihood estimation, and incorporation of undetermined sites.
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Materials and Methods

Implementation of the SOWH test

SOWHAT, our implementation of the SOWH test, is available at https://github.com/josephryan/SOWHAT.

This tool compares the maximum likelihood tree to an alternative topology specified by the user (Fig

1). The user specifies the model of evolution and the parameters under which the maximum likelihood

tree will be evaluated, and provides as input an alignment file (in phylip format) as well as the topology

to be tested against the maximum likelihood tree. Two phylogenetic maximum likelihood trees are then

inferred with RAxML [8] - an unconstrained tree, and a tree constrained according to the topology to

be tested. The difference between the likelihood scores of these trees is the test statistic that will be

evaluated.

New alignments are simulated by Seq-Gen [9]. The alignments are generated using the topology,

branch lengths, and model parameters (i.e., state frequencies, rates, and the alpha parameter for the

gamma rate heterogeneity approximation) from the constrained analysis as inferred by RAxML. If the

original dataset is partitioned, parameters are estimated separately for each partition and the alignments

are generated following the partitioning scheme. Each of the simulated alignments is then evaluated using

RAxML, again using both an unconstrained search and a constrained search. The difference in likelihood

of these two searches is calculated for each simulated dataset, and the set of these differences make up

the null distribution.

The test statistic is then compared against the null distribution in a one-tailed test. With each

new value added to the null distribution, the program recalculates the statistical measures, including

the cumulative mean and the relative standard error of the null distribution, as well as the z-score and

p-value of the test statistic against this distribution. The p-value of the sample statistic represents the

chance that such a difference would be observed under the null hypothesis. Plots of the relative standard

error and cumulative mean are created after each iteration to aid in evaluating the sample size.

SOWHAT can be used to evaluate a hypothesized topology given datasets of nucleotide, amino acid,

or binary characters. The model options recognized by the program are a subset of those accepted by

RAxML. SOWHAT also allows for the parameters to be estimated and the sequences to be generated

using the CAT-GTR model and the program PhyloBayes (Fig 2). Methods of model specification are

discussed below.
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Stopping Criteria

SOWHAT provides multiple methods of determining sufficient sample size, including a simple stopping

criterion based on the convergence. This stopping criteria is adapted from criteria established for non-

parametric bootstrap analyses [10].

For each new dataset simulated, the z-score is calculated. As the test is increased by one more

simulation the ratio between this score and the previous is calculated. This ratio represents the similarity

of the two one-tailed tests as the sample size is increased by one. As the ratio converges to 1, the value

of 1−ratio of the ratio will approach 0. SOWHAT calculates the percentage of resampling events which

return values of 1−ratio below a certain threshold (default is 0.01). A percentage in excess of 50% is

strong evidence of convergence and subsequent sampling is unlikely to change the result of the test. For

increased reliability, the option is available to extend the test for some number of resampling events (i.e.,

50) beyond this point.

SOWHAT also allows multiple independent runs of the test to be executed simultaneously, each with

multiple replicate simulations. These runs can be compared to each other to evaluate consistency. A plot

is generated showing the mean value of the null distribution of each run as the sample size increases. As

the sample size increases, the mean values of the distribution will converge, reflecting the similarity of

the independent tests. This method was used to explore the efficacy of the stopping criteria proposed

above.

Additional modifications to the SOWH test

In the standard SOWH test, the test statistic and model parameters are estimated once at the outset

of the run. These same model parameters are then used to simulate all the replicates. SOWHAT can

optionally recalculate the test statistic and parameters for each replicate (Fig 3). Rather than produce

a single test statistic, this creates a distribution of test statistics that can then be summarized (e.g., by

taking the mean) and compared to the null distribution.

For datasets which contain undetermined sites (gaps), SOWHAT can be instructed to propagate

these gaps into each simulated alignment. This guarantees that the same number and pattern of gaps

are present in each simulated alignment.
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Examined datasets

We selected three datasets for examination. They are included with SOWHAT so that users can test their

installation and easily reproduce the results presented here. The results presented here were prepared

with the version of SOWHAT available at:

https://github.com/josephryan/sowhat/tree/88d8dbc403a67d8c41ef4ec97df377ea968a0e81.

ATGC dataset (amino acid): This dataset was generated by the ATGC group [11] to test of the

program PHYML. Previous analyses recovered relationships that are well established and others that are

more tentative. The matrix contains 11 taxa and 391 amino acid characters. The topology t1 differs from

the most likely tree in the relationship of one taxon, referred to as taxon8.

Rodent 12S dataset (nucleotide): This dataset of mitochondrial ribosomal RNA was originally

assembled by Sullivan and coworkers [12]. Analysis of this alignment produces a topology of sigmodontine

Rodents, which differs from the topology produced by analysis of morphological, chromosomal, allozyme,

and other DNA datasets. The topology t1 represents the accepted species topology [5]. This set was used

in an extensive analysis of the SOWH test [5]. The dataset contains eight taxa and 791 characters.

Reptile 13 gene dataset (nucleotide): This dataset, assembled by Castoe et al [13], contains all 13

protein coding mitochondrial genes for 34 squamate reptiles and 6 tetrapod outgroup species. Analyses

of this dataset strongly contradicts analyses of morphological and nuclear data [13]. The topology t1

represents the species topology inferred from the morphology and nuclear genetic information [5].

Analysis of the behavior of the SOWH test

SOWHAT was initially run multiple times over each dataset with 100 parametric bootstraps calculated

for each run, which is an arbitrary yet commonly used sample size. SOWHAT was then run multiple

times for each dataset using the stopping criteria described above. The distribution of p-values was

examined and compared to the previous tests (Fig 4; Table 1). For the Rodent dataset, the test was

again run multiple times with a sample size of 500 and the p-values were compared .

GTR+Γ was used as the model for evaluating the likelihood as well as for estimating the parameters

used in simulating the datasets for the Rodent and Reptile datasets. For the ATGC dataset, the LG

model of protein evolution was used for evaluating the likelihood [14]. For protein datasets, SOWHAT

runs RAxML additionally using the GTR+unlinked model to optimize the free parameters.
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For all datasets, a single SOWH test was performed using the CAT-GTR model and the program

PhyloBayes to estimate the parameters and simulate the datasets for the null distribution (likelihood

evaluation was still performed using the specified model and RAxML).

Each of these tests used the stopping criteria to determine sufficient sampling. For the Reptile dataset,

using PhyloBayes to simulate the datasets required that we used a matrix with no fully undetermined

columns. To account for this difference, we also ran a test using GTR+ with RAxML and Seq-Gen. For

the Reptile dataset, SOWH tests were performed without the partitioning scheme under both the GTR+

and the CAT-GTR model with PhyloBayes. Finally, for the Reptile analysis, a single SOWH test was

performed which propagated the number and location of the undetermined sites, or gaps, present in the

real-world dataset into the simulated datasets.

Each of these analyses is included with the SOWHAT package as an executable file (analysis.sh). This

file will produce the distribution of p-values as well as the plots like those in Figures 5.

Results and Discussion

The impact of replicate number

One of the greatest challenges to applying and interpreting the SOWH test is deciding how many replicate

simulations to sample when building the null distribution. It is critical that a sufficient number of replicate

samples are simulated in a run. Without adequate sampling, stochastic sampling error can lead to poor

estimates of the null distribution and inconsistent evaluation of the p-value.

To explore the effects of sample size, we ran multiple SOWH tests and compared the results (Fig 4;

Table 1). For two of the datasets analyzed here (the ATGC and the Reptile datasets) the SOWH test

returned consistent p-values across multiple tests with a sample size of 100. For the ATGC dataset, the

the test statistic was −2.2 ∗ 10−5 and the p-value was from 0.998 to 0.999. For the Reptile dataset, the

the test statistic was 175.6375 and the p-value was very close to 0. However, for the Rodent dataset,

multiple independent SOWH tests returned inconsistent p-values when the sample size was set to 100.

The p-values ranged from 4.980209 ∗ 10−07 to 0.707524 , and 33% of runs fell above the significance

threshold of 0.05.

These results indicate that a single run of the SOWH test with an arbitrary number of replicates

is not sufficient to merit confidence in the results. When reporting the results of any SOWH test, the
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chosen sample size should be justified. The stopping criteria outlined in the methods suggests sampling

until it becomes increasingly likely that the subsequent parametric resamples will not significantly alter

the null distribution, therefore the p-value is unlikely to change with greater sampling.

For the ATGC and Reptile matrices, using the stopping criteria returned very similar results to using

an arbitrary sample size. For the ATGC matrix, the stopping criteria found that 100 is a sufficient

number of resamples, so the test was unchanged. For the Reptile dataset, the stopping criteria suggested

a sample size of 183, at which the p-values of all tests remained close to 0. For the Rodent data, the

stopping criteria suggested increasing the sample size to 437. At this sample size, the p-values across

runs were all below the significance level, ranging from ranging from 0.00394 to 1.281568 ∗ 10−14.

SOWHAT also provides further methods to evaluate the sufficiency of the sample size, including

reporting the relative standard error and variance of the null distribution, and plotting the inverse ratio

of z-scores and cumulative mean as the sample size is increased (Fig 4). From these plots, it is clear that

an arbitrary value of 100 is not always sufficient to ensure that the null distribution is well sampled.

The stopping criteria outlined above was successful in each of the subsequent tests outlined in this

paper. With the exception of one, all tests suggested a sample size between 100 and 500, which is

consistent with stopping criteria for bootstrap tests [10]. One test on the Reptile dataset, which tested

the effects of model selection as described below, was unable to converge until above 900. The SOWH

test is not universally informative for all datasets. When the stopping criteria suggests a sample size

at a very high value such as this one, it is likely because the test statistic falls very close to the line of

significance at even large sample sizes. In such a case, it might be concluded that the SOWH test is not

capable, given the data, of producing an informative results on the validity of the hypothesis.

The impact of model specification

Model selection has previously been shown to have an impact on the outcome of the SOWH test [3] [5].

In order to minimize Type I errors associated with model misspecification, it has been suggested that the

SOWH test be run with more complex substitution models.

To provide more flexibility in model specification, SOWHAT provides the option to use the more

complex sequence evolution models generated by PhyloBayes for estimating the parameters used in sim-

ulation [15]. In this context, PhyloBayes is used only for estimating the parameters for simulating the

datasets and not for estimating likelihood values (Fig 2).
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Previous explorations of model selection in the SOWH test have focused on analyses which used the

same model for parameter estimation and likelihood evaluation [5], and have also suggested that this may

lead to Type I error or overconfidence in the hypothesized topology. Using a different model to optimize

parameters for simulation may lead to a more robust test overall.

To test the impact of model complexity, we analyzed all datasets using both the GTR+ model as

implemented in RAxML and the more complex CAT-GTR model as implemented in PhyloBayes. In no

case did the SOWH tests run with more complex models return a p-value that differed in interpretation

from the p-values calculated using the less complex model of substitution.

For the ATGC dataset the p-value was completely consistent with the values returned using GTR+Γ

under RAxML. The mean values of the null distributions are slightly greater when evaluated with Phy-

lobayes, which results in p-values closer to 1 than those calculated using the less complex LG model

(Table 1).

For the Rodent dataset, Buckley (2002) reported that the most likely tree differs from the accepted

species tree and that SOWH incorrectly refutes the true species tree, which is a case of Type I error. Using

the CAT-GTR model, the mean of the null distribution was much lower and the distribution converged

much faster than with a less complex model of substitution. This test also rejects the hypothesis with a

p-value of 2.34 ∗ 10−256,GTR+Γ. This is not consistent with the prediction that a more complex model

of substitution would result in a lower rate of type 1 error. If the t1 constraint specified here is in fact

the true evolutionary tree and not a product of convergent evolution, than a more complex model also

produces the erroneous result. The null distribution had a lower mean using the more complex model,

which also violates the hypothesis that using the same model for estimation and optimization will result

in the likelihood engine more easily finding the hypothesized topology and returning a null distribution

closer to 0 than otherwise.

For the Reptile dataset, the CAT-GTR model also returned a p-value with the same interpretation as

the p-values using the less complex model. The mean value of the null distribution, however, was much

larger and resulted in a p-value which approached 0 only after many resamples were calculated. The fact

that the sample size must be very large, and that the test statistic is so close to the null distribution, leads

us to believe that this test may not be able to return a reliable answer on the validity of the hypothesis.
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The impact of partitioning

Partitioning schemes are a key part of many phylogenetic analyses. SOWHAT allows for the datasets to

be simulated using simple partitioning schemes, which allows the SOWH test to be applied to datasets

which have previously been virtually impossible.

To test the impact of the partitioning scheme, we compared SOWH tests which used no partitioning

scheme using both the GTR+Γ and the CAT-GTR models and the Reptile dataset. Without multiple

partitions, the test statistic is changed slightly, which is not unexpected. The p-values returned by these

tests, however, are consistent with the partitioned tests. The mean value of the null distribution generated

is somewhat different in both cases, though not enough to alter the outcome of the test. This shows that

SOWHAT can be reliably used on datasets which are partitioned, though in this singular dataset there

was no impact on results

The impact of parameter estimation

Another possible source of unreliable results is variability in the calculations of test statistic and estimation

of the parameter values. This can be caused by the heuristic phylogenetic searches not always finding

the same tree when presented with the same data.

We provide an option in SOWHAT that allows the initial trees, parameters, and test statistics to

be recalculated. Recalculating these values creates a distribution of test statistics, the mean of which is

tested against the null distribution to calculate the p-value (Figure 3). Any variation in the parameters

and topologies, as well as the test statistic, is accounted for using this method.

Similar p-values are observed using this adjustment (Table 1). This indicates that variation in pa-

rameter estimation and the calculation of the test statistic are not a source of inconsistency in these

analyses.

The impact of gaps

Many datasets include undetermined sites, yet these are not commonly a component of SOWH tests. The

purpose of simulating datasets under parametric conditions is to recreate the situation under which the

real-world data was generated. In order to simulate datasets which more closely reflect the nature of the

real-world data, SOWHAT can propagate the gaps present in the real data into all simulated datasets.
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We tested the effects of this feature using the Reptile dataset under the GTR+Γ model, and found

that there was little impact. The mean distribution was somewhat smaller, resulting in a p-value which

approached 0 more quickly (Table 1).

Conclusion

Performing a SOWH test on a large, multilocus dataset requires many decisions to be made, all of which

have the potential to change the effectiveness of the test. We find that the most impactful choice an

investigator must make is that of sample size. Though the primary concern with the application of the

SOWH test has been model specification, the analyses presented here were robust to model specifica-

tion. The test was also robust to the incorporation of a partitioning scheme, parameter estimation and

calculation of the test statistic, and the presence or absence of gaps in simulated datasets. In future

applications of the SOWH test, investigators should explicitly justify the number of replicates. Our new

tool, SOWHAT, makes it much simpler for investigators to examine the adequacy of replicate number

and to explore the sensitivity of the test to other factors.
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Figure Legends
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Figure 1. Program flow of SOWHAT The sample size of the distribution is the number of
alignments generated based on the estimated parameters.
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Figure 2. SOWHAT using the CAT-GTR model for parameter estimation The sample size of
the distribution is the number of alignments generated by PhyloBayes based on the estimated
parameters.
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Figure 3. SOWHAT with the test statistic recalculated The entire analysis is independently
repeated at each iteration and two distributions are generated. The sample size is the number of
repeated analyses performed.
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Figure 4. P-values across multiple tests at variable sample sizes A. P-values from 20 tests of
the ATGC dataset using a sample size of 100. No test runs reject the hypothesis B. P-values from 20
tests using the stopping criteria. C. P-values from 20 tests of the Reptile dataset using a sample size of
100. All tests reject the null hypothesis. D. P-values of 20 tests using the stopping criteria. E. P-values
from 100 tests of the Rodent dataset using a sample size of 100. The tests return inconsistent p-values.
F. P-values from 100 tests using the stopping criteria. All tests consistently reject the null hypothesis.
G. P-values from 100 tests with a sample size of 500. Past the stopping critieria, more sampling does
not change the outcome of the test.
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Figure 5. Convergence of tests on the Rodent dataset as sample size increases A.
Cumulative mean value of the null distribution of 100 Rodent tests using the GTR+Γ model. B. 1− the
ratio of z-scores of one test as the sample size is increased by 1. As the sample size increases, the null
distributions of each test converge. This is reflected in the inverse of the ratio of z-scores, which is more
likely to be closer to 0 as sample size is increased. At a sample size of 100, it is clear that the null
distribution is not well sampled, resulting in inconsistent results across SOWH tests.
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