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ABSTRACT
Summary: We present a tool, diCal-IBD, for detecting identity-by-
descent (IBD) tracts between pairs of genomic sequences. Our
method builds on a recent demographic inference method based
on the coalescent with recombination, and is able to incorporate
demographic information as a prior. Simulation study shows that
diCal-IBD has significantly higher recall and precision than that of
existing IBD detection methods, while retaining reasonable accuracy
for IBD tracts as small as 0.1 cM.
Availability: http://sourceforge.net/p/dical-ibd
Contact: yss@eecs.berkeley.edu

1 INTRODUCTION
The notion of identity-by-descent (IBD) between distantly related
individuals is playing an increasing role in a variety of genetic
analyses, including association mapping (Browning and Thompson,
2012), inferring past demographic history (Palamara et al., 2012;
Ralph and Coop, 2013), and detecting signals of natural selection
(Albrechtsen et al., 2010). Currently there exist several useful
methods for detecting IBD tracts. These methods are based on
characterizing similar haplotypes [e.g., GERMLINE (Gusev et al.,
2009)] or considering patterns of linkage disequilibrium [e.g.,
fastIBD and Refined IBD (Browning and Browning, 2011, 2013)],
but they do not explicitly model genealogical relationships between
genomic sequences. Here, we present a new IBD detection tool,
diCal-IBD, which is based on a well-used genealogical process
in population genetics, namely the coalescent with recombination.
Another feature that distinguishes our method from previous
approaches is that we can incorporate demographic information as
a prior.

There seems to be no universally accepted definition of IBD.
The definition we adopt is the same as that in Palamara et al.
(2012) and Ralph and Coop (2013). Specifically, an IBD tract is
defined as a maximally contiguous genomic region that is wholly
descended from a common ancestor without any recombination
occurring within the region. In contrast to other methods, we allow
IBD tracts to contain point mutations, which are likely to occur in
humans due to comparable mutation and recombination rates.

∗To whom correspondence should be addressed.
† These authors contributed equally to this work.

diCal-IBD is able to detect IBD tracts with high accuracy in
unrelated individuals, between whom the vast majority of shared
tracts are below 1 cM. Existing methods are successful in detecting
tracts longer than 2 cM, but have low power for shorter tracts,
whereas diCal-IBD maintains reasonable accuracy for tracts as
small as 0.1 cM.

2 METHOD
diCal-IBD utilizes a recently developed demographic inference
method called diCal (Sheehan et al., 2013). diCal was originally
developed for estimating variable effective population sizes, but it
is being extended to handle more complex demographic models,
incorporating multiple populations, population splits, migration,
and admixture. diCal-IBD will be updated in parallel with diCal and
hence will be able to use a complex demographic model as a prior.

diCal is formulated as a hidden Markov model, a decoding
of which returns the time to the most recent common ancestor
(TMRCA) for each site when analyzing only a pair of sequences. A
change in TMRCA requires a recombination event and diCal-IBD
uses the posterior decoding of TMRCA to call IBD tracts above a
user-specified length, optionally trimming the ends of the tracts that
have low posterior probabilities.

diCal requires discretizing time by partitioning it into non-
overlapping intervals. The user has the option of specifying any
discretization scheme. The default setting implemented in diCal-
IBD distributes the pair-wise coalescence probability uniformly
over the intervals, similarly as in PSMC (Li and Durbin, 2011),
under a constant population size model. An alternative scheme
concentrates the intervals in the time period that is most likely to
give rise to tracts that are long enough to be detected accurately.
This is done by uniformly distributing the coalescence probability
conditioned on a random locus being spanned by a tract longer than
a user-specified length. Given a variable population size history, we
approximate it with a piecewise constant population size.

As an application of IBD prediction, we provide a framework
for detecting natural selection. Using the average IBD sharing
and posterior probability along the sequence, diCal-IBD identifies
regions which exhibit high sharing relative to the background
average, indicating possible influence of positive selection.

We refer the reader to the online Supplementary Information
for details on data processing, options used in calling diCal, post-
processing of posterior decoding, and identification of selection.
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3 IMPLEMENTATION
diCal-IBD is written in Python 2.7, is platform independent, and
has a command line interface which allows the user to completely
specify its behavior. The implementation allows for parallel
runs of diCal on different sequence pairs. diCal-IBD provides a
visualization of the predicted tracts, their posterior probabilities
and the corresponding TMRCAs, and sequence-wide average IBD
sharing and posterior probability. Accuracy information is also
provided if the true IBD tracts are known.

4 PERFORMANCE
We carried out a simulation study to compare diCal-IBD with the
state-of-the-art IBD detection methods. We used the program ms
(Hudson, 2002) to simulate full ancestral recombination graphs
(ARGs) for 50 sequences of 10 Mb each. We used a constant
recombination rate of 10−8, and the African and European
demographic histories inferred by Tennessen et al. (2012). We
simulated sequence data on the ARGs with a constant mutation
rate of 1.25× 10−8 per base per generation. From the simulated
ARGs, we reconstructed the true pairwise IBD tracts by finding
maximally consecutive sites that have the same TMRCA for the pair
in question. We only considered the tracts of length > 0.1 cM.

To run GERMLINE, fastIBD and Refined IBD, we generated
SNP data with approximately 1 marker per 0.2 kb. We assumed
perfectly phased data. For further details on running the programs,
see Supplementary Information.

Table 1 shows the recall (percentage of true tracts which were
correctly recovered), precision (percentage of predicted tracts which
were correctly predicted), and F-score (harmonic mean of recall
and precision) for each method. See Supplementary Information
for other measures of accuracy as a function of the true tract
length, as well as the effects of errors in the data, demography,
discretization, and trimming based on posterior probabilities. As the
table shows, diCal-IBD recalls significantly more tracts with greater
precision than other methods, leading to a much higher F-score.
diCal-IBD was run assuming a constant population size, but its
accuracy performance for the examples considered did not seem to
be affected much by using this incorrect prior. This suggests that the
posterior distribution inferred by diCal is robust to mis-specification

Table 1. Comparison of IBD detection accuracy

African demography Recall Precision F-score
diCal-IBD 0.839 ± 0.074 0.747 ± 0.080 0.767 ± 0.065
GERMLINE 0.145 ± 0.064 0.311 ± 0.210 0.186 ± 0.090
fastIBD 0.316 ± 0.117 0.525 ± 0.226 0.374 ± 0.135
Refined IBD 0.241 ± 0.100 0.430 ± 0.225 0.290 ± 0.121

European demography Recall Precision F-score
diCal-IBD 0.636 ± 0.022 0.688 ± 0.019 0.651 ± 0.015
GERMLINE 0.102 ± 0.008 0.588 ± 0.163 0.168 ± 0.019
fastIBD 0.162 ± 0.010 0.635 ± 0.111 0.245 ± 0.024
Refined IBD 0.153 ± 0.012 0.625 ± 0.113 0.234 ± 0.023

diCal-IBD was run with bin size 100, constant population size, time discretized in 10

intervals according to unconditional coalescence probability, minimum tract length of
0.1 cM, and trimming of tracts with a threshold of 0.4. Entries contain means ± variances.

Fig. 1. Detection of high sharing using diCal-IBD, on a 4Mb genomic
segment (46.0 Mb – 50.0 Mb) on chromosome 15 from Complete Genomics
data (Drmanac et al., 2010). This region contains a gene thought to be under
positive selection in the European population (CEU), located at 48.41 –
48.43 Mb, corresponding with the observed peak in the plot. Dotted lines
indicate the thresholds for considering that a region exhibits high sharing.

of population sizes; whether this trend persists for more complex
demographies deserves further investigation.

Figure 1 illustrates the potential of applying diCal-IBD to
identify regions under positive selection. We refer the reader to
Supplementary Information for further details.
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1 Running diCal

1.1 Time discretization

diCal (Sheehan et al., 2013) is formulated as a hidden Markov model based on the coalescent with
recombination. For a sample of size 2, hidden states represent the time to the most recent common
ancestor (TMRCA) scaled relative to a given haploid reference population size 2Nref. To apply the
standard HMM algorithms, we discretize time into d non-overlapping intervals t0 = 0 < t1 < · · · <
td =∞, with ti = gi/(2Nref), where gi is the number of generations back in time. In diCal-IBD, the
user has the option of specifying any discretization scheme. Additionally, we offer two discretization
procedures.

Consider the coalescent process in discrete time, with a known population size history, where
N(j) is the size at generation j. The probability of two sequences coalescing at generation g—that
is, the probability that the generation of the most recent common ancestor (GMRCA) is g—is given
by

P(gMRCA = g) =
1

N(g)

g−1∏

j=1

(
1− 1

N(j)

)
.

The probability Pi of the GMRCA being placed in a specific interval [gi, gi+1) is

Pi = P(gi ≤ gMRCA < gi+1) =

gi+1−1∑

g=gi

P(gMRCA = g) = P i ·
gi+1−1∑

g=gi

1

N(g)

g−1∏

j=gi

(
1− 1

N(j)

)
,

where

P i :=

gi−1∏

j=1

(
1− 1

N(j)

)

denotes the probability of the GMRCA being older than gi − 1.

Unconditional discretization

This discretization procedure distributes the coalescence probability uniformly over the time in-
tervals by setting Pi = 1

d for all i = 0, . . . , d − 1. The corresponding values gi can be determined
numerically for increasing values of i. When assuming a constant population size, this discretiza-
tion is similar to the one used in PSMC (Li and Durbin, 2011). The main difference arises from
the last time interval. In PSMC, td is chosen manually, while here td =∞.

Conditional discretization

The goal of this discretization procedure is to have more time intervals in the period where the
GMRCA of tracts longer than m cM are expected to be found. Such a discretization scheme should
be useful when one is interested in tracts above a certain length while very short tracts (tracts with
large GMRCA) are disregarded. To implement this procedure, we need to calculate the coalescence
probability at a random locus conditioned on being spanned by a tract longer than m cM. Define
the following quantities:

• q(g, l), the joint density that a random locus has GMRCA g and is spanned by a tract of
length l;
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• p(g,m), the joint probability that a random locus has GMRCA g and is spanned by a tract
of length at least m;

• p(m), the probability of a random locus being spanned by a tract of length at least m.

These quantities are related by

p(g,m) =

∫ ∞

m
q(g, l) dl, p(m) =

∞∑

g=1

p(g,m).

Palamara et al. (2012) showed

q(g, l) = P(gMRCA = g) · Erl2

(
l;
g

50

)
,

from which we obtain

p(g,m) = P(gMRCA = g) ·
∫ ∞

m
Erl2

(
l;
g

50

)
dl = P(gMRCA = g) · e− g·m

50

(
1 +

g ·m
50

)
.

We discretize the time such that

gi+1−1∑

g=gi

p(g | m) =
P i

p(m)
·



gi+1−1∑

g=gi

e−
g·m
50

(
1 +

g ·m
50

)
· 1

N(g)

g−1∏

j=gi

(
1− 1

N(j)

)
 =

1

d
.

As before, we numerically solve for gi for increasing values of i.

1.2 Population size approximation

If the user specifies an arbitrary population size history, diCal-IBD approximates it by a piecewise
constant function and uses the approximation in running diCal. The approximation preserves the
coalescence probability within each time interval. Let Ñi be the approximation of the population
size for the time interval [gi, gi+1). Then, the coalescence probability in interval i is given by

Pi = P i

gi+1−1∑

g=gi

1

Ñi

(
1− 1

Ñi

)g−gi
= P i

1

Ñi

gi+1−gi−1∑

g=0

(
1− 1

Ñi

)g

= P i
1

Ñi

1−
(

1− 1

Ñi

)gi+1−gi

1−
(

1− 1

Ñi

) = P i

[
1−

(
1− 1

Ñi

)gi+1−gi
]
,

which yields

1

Ñi

=

[
1−

(
1− Pi

P i

) 1
gi+1−gi

]
,

where Pi and P i are calculated using the given true population size history.
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A constant population size is assumed if no demographic information is provided. Specifically,
if the per-generation per-site mutation rate µ for a locus is known and the locus consists of l sites,
diCal-IBD uses N(j) = NW for j > 0, where

NW =
number of segregating sites

4µl
n−1∑

i=1

1

i

.

1.3 Data binning

As in PSMC (Li and Durbin, 2011), for speed and memory considerations, we group consecutive sites
using a user-specified bin size prior to calling diCal. We allow for presence of missing nucleotides
(marked as ‘N’) in the data. A bin is marked as ‘missing’ if more than 90% of the nucleotides in
the bin are missing, as heterozygous if the bin is not ‘missing’ and at least one base within the bin
is heterozygous, and homozygous otherwise. For the analysis described here, we used a bin size of
100.

1.4 Other options

When running diCal, we assume that the mutation and recombination rates are given. Before
passing on the rates provided by the user, diCal-IBD scales them by multiplying with 4Nref. We
note that due to binning of the input sequences, the mutation and recombination rates are also
adjusted by multiplying by the bin size.

Missing heterozygotes (false negatives) can occur due to insufficient read depth. If provided a
false negative rate, diCal-IBD lowers the mutation rate to account for missing heterozygotes, as in
PSMC (Li and Durbin, 2011).

In addition to mutation and recombination rates, diCal also requires a mutation matrix. Our
binning method results in only two types of bins in the data, which we mark as “A” for homozygous
bins and “C” for heterozygous bins. Therefore in the mutation matrix, all rates are set to 0, except
A↔ C, which are set to 1.

Together with the required input to diCal (the fasta file, using command option -F and the
parameters file, using command option -I), we provide the previously described discretization and
population size history. As we do not require estimation of the history, we set the number of EM
iterations to 0 (using the command option -N 0), the pattern of parameters spanning the time
intervals to 1 + 1 + · · ·+ 1, where the number of 1’s corresponds to a given d (using the command
option -p), and request the posterior decoding (using the command option -d 5).

For the presented analysis we ran diCal v1.2.

2 Processing diCal output

2.1 Identification of tracts

We call IBD tracts using the posterior decoding from diCal, as maximally consecutive sites that
have the same TMRCA for the pair in question. We disregard the tracts for which the TMRCA is
placed in the last time interval, as this could be an artifact resulting from the lack of finer intervals.
Provided that there are enough time intervals, this removal should not change the performance of
diCal-IBD drastically, as tracts with old TMRCA are expected to be very short.

As we run diCal on binned data, we recalculate the position of the detected tracts to correspond
to the original sequence length.
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For reporting and accuracy calculation purposes, we only consider tracts above a user-defined
length. For the presented analysis, we used a minimum length of 0.1 cM.

2.2 Trimming of tracts

In addition to the inferred TMRCA for each predicted tract, we also obtain the corresponding
posterior probabilities, which can be used as a measure of confidence for our prediction along the
tract. We optionally use this extra information by discarding bins and tracts whose posterior
probabilities are too low. To trim a tract, we discount bins at both ends if the corresponding
posterior probability is below a given threshold. After trimming, we keep the tract only if the
average posterior probability of the remaining bins is above the threshold. Reporting of tracts is
contingent only on the original length; that is, we still report trimmed tracts even if they are shorter
than the specified minimum length. However, for our accuracy calculations we do not count the
contribution of tracts which do not meet the minimum length requirement after trimming.

3 Simulations

3.1 Simulation of ARGs

We used the program ms (Hudson, 2002) to simulate full ancestral recombination graphs (ARGs)
with a per-base recombination rate of 10−8 for 50 sequences of 10 Mb each. We used two different
population histories, corresponding to the African (AF) and European (EA) demographic histories
inferred by Tennessen et al. (2012). As shown in Figure 1a, both histories contain an ancient
bottleneck and periods of rapid population expansion in the recent past. The European population
contains the out-of Africa bottleneck and a more recent bottleneck and, as well as two different
epochs of rapid expansion.

To calculate the scaled recombination rate and the corresponding population sizes, we used an
Nref of 1861. The ms commands used for simulating the ARGs for the AF and EA demographies
are

ms 50 1 -T -t 9.305e2 -r 744.39992556 10000000

-eN 0 227.8345 -eG 0 122.63987

-eN 2.7539e-2 7.77754 -eN 7.9527e-1 3.927996

ms 50 1 -T -t 9.305e2 -r 744.39992556 10000000

-eN 0 275.1209 -eG 0 145.55032 -eG 2.7539e-2 22.889

-eN 1.2359e-1 1 -eN 2.7405e-1 7.77754 -eN 7.9527e-1 3.927996

We note that the -t option is only used for later recovery of the mutation rate.
Figure 1b shows scatter plots of the simulated tracts. Due to the low number of simulated

sequences, very few tracts are above 1 cM. The higher number of tracts above 0.1 cM in the EA
dataset is a result of the reduced population size after the out-of-Africa bottleneck. This event left
a strong signal in the data, creating a clear separation between the tracts that are older and the
ones that are younger than the bottleneck.

3.2 Simulation of sequences

We generated sequence data on the ARGs using a per-base mutation rate of 1.25 × 10−8 (Kong
et al., 2010, 2012). In real data, errors in base calling can lead to non-existent variants being
called (false positives) or to true variants being overlooked (false negatives). To account for this,
we superimposed sequencing errors, adding variants with rate 6× 10−6 and removing variants with
rate 0.02, in accordance with reported false positive and false negative rates (Illumina, 2011) and
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(a)

(b)

Figure 1: Population histories used for simulating data: African (AF) and European (EA) as
inferred by Tennessen et al. (2012). (a) Population size histories used. AF and EA share a common
history until almost 2000 generations ago. (b) Simulated pairwise tracts as a function of their
length and GMRCA. The black dots correspond to the tracts longer than 0.1 cM, which are used
in the presented analysis, out of which only 4 (AF) and 5 (EA) are above 1 cM.

previous studies (Browning and Browning, 2013). To remove variants, we paired the sequences (to
mimic diploids) and, for each heterozygous position, we changed one of the two alleles so that the
site became homozygous. Due to our pairing of the sequence, we added errors with probability
twice the false negative rate. To add false positives, we chose the number of false SNPs from a
Poisson distribution with mean equal to the false positive rate × sequence length × number of
sequences. These additional SNPs were then distributed uniformly over the sequences.

To run other programs, we generated SNP data from the simulated sequence according to the
SNP density (15 million SNPs genome wide) reported by the 1000 Genomes Project Consortium
(2010). After inclusion of all segregating sites, we randomly selected additional sites such that the
resulting marker density is approximately 1 marker per 0.2kb.

Table 1 shows the summary of the simulated sequence data. The removed variants were not
necessarily from different SNPs, so the total number of SNPs affected by the false negative errors
is lower than the number of removed variants. Some of the SNPs could be present in very low
frequency, so a removed variant could lead to the complete loss of the SNP. The EA dataset had
an overall lower number of SNPs, most likely a consequence of the out-of-Africa bottleneck.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 12, 2014. ; https://doi.org/10.1101/005082doi: bioRxiv preprint 

https://doi.org/10.1101/005082
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: Summary of the simulated sequences under the two population histories.

Simulated SNPs Removed variants Affected SNPs Removed SNPs Added SNPs

AF 24370 4368 3809 164 3059
EA 12678 3088 2624 80 3077

4 Accuracy measures

From the simulated ARGs, we reconstructed the true pairwise IBD tracts by finding maximally
consecutive sites that have the same TMRCA for the pair in question. We note that this excludes
recombinations which do not affect the coalescence time, an event which occurs only rarely. We
only considered the tracts of length > 0.1 cM.

To calculate the accuracy, we use the percentage overlap between true and predicted tracts,
rather than their lengths. Doing so, all tracts, regardless of their length, contribute equally to the
accuracy measures. We require a minimum percentage overlap a (here set to 0.5) for a prediction
to be considered as a true positive. Let truei be a true tract, predi∗ be its best prediction (the
predicted tract with highest overlap) and predj be a predicted tract. The accuracy measures that
we calculate are

• true positive: overlap between truei and predi∗ if the percent overlap (with respect to the
length of both the true and the predicted tract) is greater than a;

• false negative: any part of truei that does not overlap with any predicted tract;

• false positive: any part of predj that does not overlap with any true tract;

• power, all overlaps between true and predicted tracts;

• under-prediction: the part of truei that does not overlap with predi∗ ;

• over-prediction: the part of predi∗ that does not overlap with truei.

All measures listed above are calculated as a function of the length of the true tract, except the
false positive, which is a function of the length of the predicted tract. In addition to the above
measures, we report recall (the percentage of true tracts which were correctly recovered), precision
(the percentage of predicted tracts which were correctly predicted), and F-score (the harmonic
mean of recall and precision). Together, these provide an overall measure of accuracy.

Let 1 be the indicator function. Then we can define mathematically the accuracy measures as
follows. We note that truei represents both the tract and its length.

true positivei =
truei ∩ predi∗

truei
· 1
(

truei ∩ predi∗

max(truei, predi∗)
≥ a

)
,

false negativei =
truei −

∑
j truei ∩ predj

truei
,

false positivej =
predj −

∑
i predj ∩ truei

predj

,

poweri =

∑
j truei ∩ predj

truei
,

under-predictioni =
truei − truei ∩ predi∗

truei
,
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Figure 2: Types of overlaps. Regions in both true and predicted tracts are coloured such that:
green indicates overlap between true and predicted tracts and blue (red) indicate regions in true
(predicted) tracts that to not overlap with other predicted (true) tracts. Horizontal lines (both
gray and black) mark, for each true tract, the best overlap with a predicted tract. Black horizontal
lines indicate that the overlap in percentage is above the required threshold a. For details, see main
text.

over-predictioni =
predi∗ − truei ∩ predi∗

truei
.

Figure 2 gives an overview of the different types of overlaps. Both true and predicted tracts are
numbered, while for the predicted tract, the corresponding i∗ index is given after the equal sign.
A predicted tract can be the best prediction for several true tracts. The overall average accuracy
for the example in the figure is then given by

true positive =
1

6

(
true1 ∩ pred1

true1
+

true3 ∩ pred2

true2
+

true6 ∩ pred6

true6

)
,

false negative =
1

6

(
true1 − true1 ∩ pred1

true1
+

true2
true2

+
true3 − true3 ∩ pred2

true3

+
true5 − true5 ∩ pred3

true5
+

true6 − true6 ∩ pred5 − true6 ∩ pred6

true6

)
,

false positive =
1

6

(
pred1 − pred1 ∩ true1

pred1

+
pred2 − pred2 ∩ true3 − pred2 ∩ true4

pred2

+
pred4

pred4

+
pred6 − pred6 ∩ true6

pred6

)
,

power =
1

6

(
true1 ∩ pred1

true1
+

true3 ∩ pred2

true3
+

true4 ∩ pred2

true4
+

true5 ∩ pred3

true4

+
true6 ∩ pred5 + true6 ∩ pred6

true6

)
,

under-prediction =
1

6

(
true1 − true1 ∩ pred1

true1
+

true2
true2

+
true3 − true3 ∩ pred2

true3

+
true5 − true5 ∩ pred3

true5
+

true6 − true6 ∩ pred6

true6

)
,

over-prediction =
1

6

(
pred1 − pred1 ∩ true1

true1
+

pred2 − pred2 ∩ true3
true3

+
pred6 − pred6 ∩ true6

true6

)
.
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5 Detecting selection

Positive selection has been shown to result in an increase in IBD sharing (Albrechtsen et al., 2010;
Han and Abney, 2013). We provide a framework within diCal-IBD to identify genomic regions
with high sharing relative to the background average. We calculate the sharing for non-overlapping
windows as the total length of the tracts spanning each window, divided by the number of pairwise
comparisons. We consider a window to have increased sharing if it is greater than three standard
deviations from the average sharing across all sites. Similarly, we calculate the average posterior
probability by considering the total average posterior of the tracts spanning the windows, divided
by the number of tracts per window. In the presented analysis we used a window size of 0.1 cM.

6 diCal-IBD implementation

diCal-IBD is implemented in Python 2.7, using Python packages by Hunter (2007); Jones et al.
(2001); Mailund (2006). diCal-IBD is freely available at http://sourceforge.net/p/dical-ibd

and is accompanied by an instruction manual.

7 Running other programs

We compare the performance of diCal-IBD on the simulated data with three IBD detection softwares

• GERMLINE version 1.5.1 (Gusev et al., 2009);

• fastIBD, packaged with BEAGLE version 3.3.1 (Browning and Browning, 2011);

• Refined IBD, packaged with BEAGLE version 4 (Browning and Browning, 2013).

In the following we describe the options we used while running these programs. We note that
this improved the performance compared to the default settings. Only GERMLINE allows for
correcting errors in the data. To create diploid input for these programs, we replicated and paired
together each sequence to generate “diploid” data which was homozygous at all sites.

7.1 GERMLINE

As we only considered IBD segments larger than 0.1 cM, we set min m = 0.1. We also made use
of GERMLINE’s h extend option, which improves performance when data is well-phased. The
bits parameter determines the number of markers to be considered in an exact matching seed.
Choosing a value which is too large may result in missing shorter IBD segments, while one that is
too small affects computation time. We set this parameter so that a seed length corresponded to
0.02 cM, which was significantly shorter than our threshold for candidate IBD segments (0.1 cM).
For example, for a density of 1 marker per 0.2kb, bits = 20,000

200 = 100. Note that the recombination
rate we used in the simulated data, r = 10−8, implies that 0.02 cM corresponds to 20kb. When
running on perfect data, we set the allowed number of homozygous mismatches per seed err hom
to 0. Otherwise, we calculate the number of expected errors in a bin (here, 20kb). Using this
method, we set err hom = 1. Because our data consisted of haploid sequences, we set err het =
0.

7.2 fastIBD

We ran fastIBD with the default setting ibdscale = 2. Because of no phase uncertainty in our
data, we ran only one iteration (ninterations=1) and allowed for a very high score threshold of
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fastibdthreshold= 10−2.

7.3 Refined IBD

Refined IBD uses the GERMLINE algorithm to find candidate IBD segments, and the ibd-
window parameter is equivalent to the GERMLINE bits parameter, and was set to the same
value (ibdwindow = 100). Likewise, we set ibdcm = 0.1, as this parameter is equivalent to
GERMLINE’s min m. Due to no phase uncertainty in our data, we set the threshold for the LOD
score (the base 10 log of the likelihood ratio) to ibdlod = 1.0.

8 Results and discussion

Figures 3 to 5 show the performance of GERMLINE, fastIBD, Refined IBD and diCal-IBD for
the two simulated datasets. From the figures, it is clear that diCal-IBD has an overall better
performance, with an increased recall, while the precision is at least as high as for the other
programs. Overall, all programs have better accuracy for the AF dataset. We believe this is mainly
due to the higher number of SNPs present in the AF dataset (Table 1), which increases the amount
of available information.

In Figures 3b to 5b, we plotted the accuracy as a function of tract length using windows of
0.1 cM (i.e., the first window contains tracts between 0.1 cM and 0.2 cM in length, the next 0.2 cM
- 0.3 cM, and so on). We note that the sudden jumps in the figures for the longer tracts are due to
the low number of tracts in those ranges (Figure 1b). diCal-IBD has very high true positive and
power for tracts as low as 0.1 cM, while the other programs recover only a modest portion of the
tracts. The small difference between the true positive and power for diCal-IBD indicates that most
true tracts overlap at least 50% with a predicted tract. This, together with the similarity between
false negative and under-prediction, suggests that most often there is a unique correspondence
between true and predicted tracts, in that the situations where one true tract overlaps with several
predicted tracts, or vice versa, are rare.

The main fault in diCal-IBD is its relatively high false positive rate. For the AF dataset, the
discrepancy between the false positive and over-prediction rates implies that a significant portion
of the false positives correspond to predicted tracts that do not overlap with any true tract. These
tracts may correspond to true tracts too short to pass the length filter; this is supported by the fact
that the false positive rate is considerably higher in the first window considered. In contrast, for
the EA dataset, the false positive and over-prediction rates are more comparable. This indicates
that false positives in this prediction are the result of extension at the boundaries of true tracts.

Effect of errors in the data

Sequencing errors in the data reduce diCal-IBD’s accuracy slightly, with a more pronounced effect
for the EA dataset. Correcting for the false negative errors doesn’t seem to affect the results.
In contrast, the other programs seem to be more drastically affected by errors. GERMLINE
shows a better performance for the datasets with errors. We believe this is a consequence of
GERMLINE’s option to accommodate mismatches in tracts (the err hom parameter, which was
set to 1), which effectively allows for presence of point mutations inside tracts. fastIBD and Refined
IBD do not allow for mismatches. While this option in GERMLINE could be used to account for
point mutations even in perfect datasets, the number of such changes is highly dependent on the
population history.
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(a) Average recall, precision and F-score.

(b) The six accuracy measures calculated as a function of tract length, for the perfect datasets.

Figure 3: Accuracy results for GERMLINE, fastIBD and Refined IBD for both AF and EA datasets.
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(a) Average recall, precision and F-score.

(b) The six accuracy measures calculated as a function of tract length, for the perfect dataset.

Figure 4: Accuracy results for diCal-IBD, using different population sizes, discretizations and
posterior probability thresholds for trimming of tracts, for the AF dataset.
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(a) Average recall, precision and F-score.

(b) The six accuracy measures calculated as a function of tract length, for the perfect dataset.

Figure 5: Accuracy results for diCal-IBD, using different population sizes, discretizations and
posterior probability thresholds for trimming of tracts, for the EA dataset.
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Bin size

In the presented analysis we binned the sequences using a bin size of 100. To investigate whether
this influences the performance, we reran diCal using a bin size of 10. The performance showed no
difference between the two runs (results not shown).

Population size and discretization

We ran diCal-IBD assuming a constant population size (‘const size’) or approximating the true
population size (‘var size’). For the former, we used the two discretizations described previously
(‘const disc’ and ‘const cond disc’, respectively), considering tracts longer than m = 0.01 cM for the
conditional discretization. For the latter, we recalculated the two presented discretizations under
the variable population size (‘var disc’ and ‘var cond disc’), but also used the two discretizations
under a constant size. This enables us to investigate the effect of using different population sizes
when the discretization is fixed.

diCal-IBD generally shows similar F-scores under the different assumed population sizes and
discretizations, indicating the robustness of the posterior distribution. The discretization seems to
have a higher impact on the performance, as the recall and precision vary with the discretization
used, but not with the population size assumed.

Trimming of tracts

We investigated the effect of trimming of tracts based on the posterior probability, using thresholds
0.2 and 0.4. It is clear that in most cases the precision increases, while the false positive and over-
prediction are reduced. Trimming can, however, have the opposite desired effect, as it potentially
removes ends of the predicted tracts that overlap correctly with a true tract. Most of the effects of
trimming are rather minor, indicating that tracts have overall posterior probabilities above 0.4. In
some cases, trimming using 0.4 as threshold decreases the recall more drastically, without a large
enough increase in the precision, to balance the final F-score.

Density of time intervals

From our experiments, we observed that using time intervals that are too dense decreases the
performance of diCal-IBD. This is somewhat counter-intuitive, as one would expect that using more
time intervals would allow diCal to identify the TMRCA of each tract more accurately. However,
we believe the decline in performance to be the result of the large variation in TMRCA for tracts
of the same length (Figure 1b). On the other hand, discretization schemes that are too sparse
can blur the boundaries between adjacent IBD tracts. An increased density of time intervals can
arise from using a conditional discretization with a high tract length threshold tracts (for example,
0.1 cM), or from the discretizations based on the variable population size. Such an example is the
discretization for the EA dataset based on the variable population size, where the resulting dense
intervals are probably due to the out-of-Africa bottleneck. The low confidence in the TMRCA is
also reflected in the effect of trimming of tracts, as the performance is drastically affected when
using a threshold of 0.4.

8.1 Detecting selection

For illustrating the visualization method for identifying regions under positive selection, we used a 4
Mb segment of chromosome 15 (46 Mb - 50 Mb) from the 69 Genomes public dataset by Complete
Genomics (Drmanac et al., 2010). In this region, the SLC24A5 gene is located. This gene is
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Table 2: CEU and YRI samples from Complete Genomics data.

Coriell ID Population Coriell ID Population

NA06985 CEU NA18501 YRI
NA06994 CEU NA18502 YRI
NA07357 CEU NA18504 YRI
NA10851 CEU NA18505 YRI
NA12004 CEU NA18508 YRI

Figure 6: Detection of high sharing using diCal-IBD. Dotted lines indicate the thresholds for
considering that a region exhibits high sharing.

responsible for light skin pigment and lack of dependence on sunlight for vitamin D production,
and has been found to be under positive selection in northern Europeans (Wilde et al., 2014).

We ran diCal-IBD on samples from both European (CEU) and African (YRI) populations (Ta-
ble 2). We assumed the mutation and recombination rates to be 1.25×10−8 and 10−8, respectively.
We used constant population size, the unconditional discretization and untrimmed tracts that were
at least 0.1 cM long. Figure 6 shows the resulting average sharing and posterior probability. The
CEU data contains one peak with high sharing corresponding to the region (48.41 - 48.43 Mb)
which has been found under positive selection. As expected, the YRI data does not exhibit high
sharing.
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