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SUMMARY

Populations of hippocampal place cells encode an animal’s past, current and
future location through sequences of action potentials generated within each
cycle of the network theta rhythm. These sequential representations have
been suggested to result from temporally coordinated synaptic interactions
within and between cell assemblies. In contrast, we show that a model based
on rate and phase coding in independent neurons is sufficient to explain the
organization of CA1 population activity during theta states. We show that
CA1 population activity can be described as an evolving traveling wave that
exhibits phase coding, rate coding, spike sequences and that generates an
emergent population theta rhythm. We identify measures of global remapping
and intracellular theta dynamics as critical for distinguishing mechanisms for
pacemaking and coordination of sequential population activity. Our analysis
suggests that independent coding enables flexible generation of sequential
population activity within the duration of a single theta cycle.

INTRODUCTION

Cognitive processes are thought to involve the organization of neuronal activity into
phase sequences, reflecting sequential activation of different cell assemblies (Hebb, 1949;
Harris, 2005). During navigation, populations of place cells in the CA1 region of the
hippocampus generate phase sequences structured relative to the theta rhythm (e.g.,
Skaggs et al., 1996; Foster and Wilson, 2007). As an animal moves through the firing field
of a single CA1 neuron, there is an advance in the phase of its action potentials relative
to the extracellular theta cycle (O’Keefe and Recce, 1993). Thus, populations of CA1
neurons active at a particular phase of theta encode the animal’s recent, current, or future
positions (Figure 1A, B). One explanation for these observations is that synaptic output
from an active cell assembly ensures its other members are synchronously activated and in
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addition drives subsequent activation of different assemblies to generate a phase sequence
(Figure 1C) (Harris, 2005). We refer to this as the coordinated assembly hypothesis. An
alternative possibility is that single cell coding is sufficient to account for population
activity. According to this hypothesis, currently active assemblies do not determine the
identity of future assemblies (Figure 1D). We refer to this as the independent coding
hypothesis.

Since these coding schemes lead to different views on the nature of the information trans-
ferred from hippocampus to neocortex and on the role of CA1 during theta states, it is
important to distinguish between them. While considerable experimental evidence has
been suggested to support the coordinated coding hypothesis (e.g., Harris et al., 2003;
Foster and Wilson, 2007; Maurer et al., 2011; Gupta et al., 2012), the extent to which
complex sequences of activity in large neuronal populations can be accounted for by in-
dependent coding is not clear. To address this we developed a phenomenological model
of place cell activity during navigation. This model is based on rate coding across a place
field and phase precession against a fixed theta rhythm. The independent coding hypoth-
esis predicts that this model, when generalized to a population of independent cells, will
be sufficient to explain the spatiotemporal dynamics of cell assemblies in CA1. In con-
trast, the coordinated assembly hypothesis predicts that groups of cells show additional
coordination beyond that imposed by a fixed firing rate and phase code (Harris et al.,
2003; Harris, 2005). In this case, independent coding would not be sufficient to explain
the detailed dynamics of CA1 cell assemblies. In the independent coding model that we
develop, phase coding generates a traveling wave which propagates through the popula-
tion to form spike sequences. This wave is constrained by a slower moving modulatory
envelope which generates spatially localized place fields. Importantly, this model repli-
cates experimental data previously interpreted as evidence for the coordinated assembly
hypothesis (Harris et al., 2003; Foster and Wilson, 2007; Maurer et al., 2011; Gupta et al.,
2012), despite the absence of coordination within or between assemblies. We show how
the independent coding model leads to new and experimentally testable predictions for
membrane potential oscillations and place field remapping that distinguish circuit mech-
anisms underlying theta sequences. We demonstrate that a key advantage of independent
coding by CA1 neurons is to allow flexible global remapping of population activity while
maintaining the ability to generate coherent theta sequences in multiple environments.

RESULTS

Single Cell Coding Model

To test the independent coding hypothesis, we developed a phenomenological model which
generates spiking activity for a single place cell during navigation. We modeled the firing
rate field using a Gaussian tuning curve:

rx(x) = A exp

(
−(x− xc)2

2σ2

)
(1)
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where rx describes firing rate when the animal is at location x within a place field with
center xc, width σ and maximum rate A (Figure 2A, top panel). Simultaneously, we
modeled the firing phase using a circular Gaussian:

rφ(φ(x), θ(t)) = exp (k cos(φ(x)− θ(t))) (2)

where rφ describes the firing probability of the neuron at each theta phase at a given
location (Figure 2B). Here, θ(t) = 2πfθt is the LFP theta phase at time t and φ(x) is the
preferred firing phase associated with the animal’s location x, denoted the encoded phase.
The encoded phase φ(x) is defined to precess linearly across the place field (Figure 2A,
bottom panel; Appendix: A1). The phase locking parameter k determines the precision
at which the encoded phase is represented in the spike output (Figure 2B). The total
activity of the cell is given by the product of these two components r = rxrφ. The phase
locking can be set so that the cell exhibits only rate coding (at k = 0, where r = rx),
only phase coding (as k →∞, where all spikes occur at exactly the encoded phase φ(x))
or anywhere in between (Figure 2C).

To model place cell activity during navigation on a linear track, we set x(t) = vt, where
v is the running speed (Figure 2D, E). This causes the encoded phase φ(t) to precess
linearly in time at a rate fφ which is directly proportional to running speed and inversely
proportional to place field size, as in experimental data (Huxter et al., 2003; Geisler et al.,
2007). To generate spikes we used an inhomogeneous Poisson process with an instanta-
neous rate r = rxrφ. We normalized the firing rate such that the average number of spikes
fired on a pass through a place field is independent of running speed (see Appendix: A2)
(Huxter et al., 2003). If the phase φ(x) at each location in the place field is fixed, the
full rate and phase coding properties of a cell are encompassed by three independent
parameters - the width of the spatial tuning curve σ, the degree of phase locking k and
the average number of spikes per pass Nspikes. We find that in this model phase precession
(Figure 2C) and firing rate modulation as a function of time (Figure 2E) closely resemble
experimental observations (e.g., Skaggs et al., 1996; Mizuseki and Buzsaki, 2014).

Place cells often show variations in firing rate in response to nonspatial factors relevant
to a particular task (e.g., Wood et al., 2000; Griffin et al., 2007; Fyhn et al., 2007; Allen
et al., 2012). In our model, such multiplexing of additional rate coded information can
be achieved by varying the number of spikes per pass Nspikes without interfering with the
other parameters φ(x), σ and k (Figure S1).

Independent phase coding generates traveling waves

Given this single cell model and assuming an independent population code, we asked how
CA1 population activity evolves during navigation. To map the spatiotemporal dynamics
of the population activity onto the physical space navigated by the animal, we analyzed
the distributions of the rate components rx and phase components rφ of activity in cell
populations organized according to the location xc of each place field (Appendix: A3).

Our model naturally separates population activity into two components at different
timescales: the slow behavioral timescale at which the rat navigates through space and
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a fast theta timescale at which trajectories are compressed into theta sequences. While
the rat moves through the environment, the spatial tuning curves rx(x) generate a slow
moving ‘bump’ of activity which, by definition, is comoving with the rat (Figure 3A
top, black). Simultaneously, the phasic component rφ(φ(x), θ(t)) instantiates a traveling
wave (Figure 3A top, red). Due to the precession of φ(t), the wave propagates forward
through the network at a speed faster than the bump, resulting in sequential activa-
tion of cells along a trajectory on a compressed timescale. The slower bump of activity
acts as an envelope for the traveling wave, limiting its spatial extent to one place field
(Figure 3A bottom). The continuous forward movement of the traveling wave is trans-
lated into discrete, repeating theta sequences via a shifting phase relationship to the slow
moving component (Figure 3B-D, Supplemental Video 1). Moreover, this shifting phase
relationship generates global theta oscillations at exactly the LFP frequency that cells
were defined to precess against (Figure 3B top panel). Thus, our model can be recast
in terms of the dynamics of a propagating wavepacket comprising two components, with
network theta resulting from their interaction. While we originally defined single cells to
precess against a predetermined “pacemaker” theta rhythm, when the model is recast in
this form the same theta oscillation instead emerges independently from the population.
A parsimonious interpretation is that the traveling wave dynamics outlined here could
generate both the LFP theta rhythm and the precession of cells against it, without an
external pacemaker.

While the emergence of global theta oscillations in networks of faster oscillating place
cells has been identified previously (Geisler et al., 2010), that work assumed a fixed
running speed and fixed, experimentally determined, temporal delays between cells. In
contrast, our model based on single cell coding principles allows an analysis in which
only place field configurations and navigational trajectories are required to fully predict
the population dynamics at any running speed. The spiking delays between cells in our
model are determined by speed of the fast moving traveling wave vp, which is related to
the rat’s running speed v by:

vp = cv (3)

where c is called the compression factor. This factor is equivalent to the ratio of the rat’s
actual velocity and the velocity of the representation within a theta cycle and has been
quantified in previous experimental work (Skaggs et al., 1996; Dragoi and Buzsáki, 2006;
Geisler et al., 2007; Maurer et al., 2011), although the relationship to the traveling wave
model developed here was not previously identified (see Appendix: A2 for derivation).

A novel finding of our model is that for an independent population code the compression
factor naturally depends on running speed. This change in compression factor with
running speed allows the network to maintain a fixed population frequency while running
speed and single unit frequency vary:

vp − v = λfθ (4)

where λ is the wavelength of the traveling wave (equal to the size of a place field, measured
as the distance over which a full cycle of phase is precessed (Maurer et al., 2006)) and
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vp − v is held constant across running speeds by the changing compression factor.

Independent coding accounts for apparent peer-dependence of
CA1 activity

Having derived a model for population activity based on independent coding, we next
asked if it accounts for observations previously interpreted to imply coordination within
and between assemblies (Harris et al., 2003; Foster and Wilson, 2007; Maurer et al.,
2011; Gupta et al., 2012). We show below that these observations can be accounted for
by independent neurons using the traveling wave model.

We first assessed whether independent coding accounts for membership of cell assemblies.
The predictability of a single place cell’s activity appears to improve when, in addition
to information about LFP theta phase and spatial location, the activity of its peer cells
is also taken into account, with coordination between cells at the gamma timescale being
implicated (Harris et al., 2003). Because this improved predictability directly implies
interactions between CA1 neurons, it constitutes strong evidence against the independent
coding hypothesis. However, the prediction analysis of Harris et al. (2003) assumes
that firing phase is independent of movement direction in an open environment. In
contrast, more recent experimental data show that in open environments firing phase
always precesses from late to early phases of theta, so that firing phase at a specific
location depends on the direction of travel (Huxter et al., 2008; Climer et al., 2013;
Jeewajee et al., 2014). Therefore, to test if the apparent peer dependence of place cell
activity is in fact consistent with independent coding, we extended the traveling wave
model to account for phase precession in open environments (Appendix: A5). We then
constructed phase fields following the approach of (Harris et al., 2003), in which firing
phase is averaged over all running directions and separately constructed directional phase
fields consistent with recent experimental observations (Huxter et al., 2008; Climer et al.,
2013; Jeewajee et al., 2014). We then calculated the predictability of neuronal firing
patterns generated by the independent coding model. For simplicity, we considered the
problem in one dimension, treating separately passes from right to left, left to right and
the combined data in order to generate the directional and nondirectional phase fields
(Figure 4A&B respectively).

We find that nondirectional phase fields (Figure 4B), as assumed by (Harris et al., 2003),
yield little improvement in predictability of a neuron’s firing compared with predictions
based on the place field alone, and for high phase locking are detrimental (Figure 4C, blue
vs black). Consistent with the findings of Harris et al. (2003), peer prediction provides
a higher level of information about a neuron’s firing than predictions based on place and
nondirectional phase fields, despite the absence of intra-assembly coordination (Figure
4C, green and purple). However, peer prediction is unable to improve upon predictability
based on place fields and directional phase fields (Figure 4C, red). Therefore, previous
evidence for intra-assembly coordination can be explained by a failure to account for the
phase dependence of CA1 firing. Instead, our analysis indicates that independent phase
precession of CA1 neurons is sufficient to account for membership of CA1 assemblies.

Because peers share a relationship to a common theta activity and implement similar rules
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for generation of firing, a cell’s activity in the independent coding model can nevertheless
be predicted from that of its peers in the absence of information about location or theta
phase (Figure 4C, green). The quality of this prediction is dependent on the timescale
at which peer activity is included in the analysis, so that the optimal timescale for peer
prediction provides a measure of the temporal resolution of assembly formation. In
experimental data the optimal timescale for peer prediction is approximately 20ms, which
corresponds to that of the gamma rhythm and the membrane time constant of CA1
neurons (Harris et al., 2003). We find that in the independent coding model the optimal
peer prediction timescale depends strongly on phase locking (Figure 4D). Even though
the model does not incorporate gamma oscillations or neuronal membrane properties,
high values of phase locking also show a striking peak in peer predictability around the
20ms range (Figure 4D). We show below that for running speeds in the range 35 − 75
cm/s phase locking is likely to lie within the range at which the observed 20ms prediction
timescale dominates. Thus, the 20ms timescales found both here and experimentally are
explainable as a signature of the common, independent phase locking of place cells to the
theta rhythm, rather than transient gamma coordination or intrinsic properties of CA1
neurons.

Independent coding accounts for phase sequences

We next asked if independent coding can account for the sequences of spiking activity
observed in recordings of CA1 place cell populations (Foster and Wilson, 2007; Maurer
et al., 2011; Gupta et al., 2012). We focus initially on the path length encoded by spike
sequences, which we define as the length of trajectory represented by the sequence of
spikes within a single theta cycle. Experimental data show that this path length varies
with running speed (Maurer et al., 2011; Gupta et al., 2012), but it is not clear whether
this phenomenon is a feature of independent coding or instead results from coordination
between assemblies. We derived analytical approximations to the sequence path length
for strong phase coding, where k → ∞ (Appendix: A2) which predict a linear increase
in sequence path length with running speed, but with a lower gradient than that found
experimentally (Maurer et al., 2011). Hence, strong phase coding does not quantitatively
explain the changes in sequence properties with running speed.

We reasoned that independent coding might still explain observed sequence path lengths
if a more realistic tradeoff between rate and phase coding is taken into account. To test
this, we varied phase locking k and decoded the path length following the method of
Maurer et al. (2011), which decodes the location represented by the population at each
time bin in a theta cycle to estimate the encoded trajectory. We found that a good match
to the data of Maurer et al. (2011) requires that the degree of phase locking increases with
running speed (Figure 5A). This is due to the dependence of the decoded path length on
the amount of phase locking (Figure S2A).

To further test the traveling wave model, we analyzed the fast and slow components
of the movement of the activity bump (v and vp). Following again the methods used
by Maurer et al. (2011) to decode the fast and slow slopes shown in Figure 5B from
spiking data, we found that the dependence of the decoded fast slope on running speed
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in our simulated data matches experimental data when phase locking is made dependent
on running speed (Figure 5B, S2B). Hence, both the decoded sequence path length and
theta-compressed propagation speed in the traveling wave model match experimental
data provided the temporal resolution of spike output increases linearly with running
speed. This dependence of k on running speed is consistent with the observed increase
in LFP theta amplitude (McFarland et al., 1975; Maurer et al., 2005; Patel et al., 2012),
and is a novel prediction made by our model.

We also asked whether the independent coding model can account for experimental mea-
surements indicating that the compression factor scales inversely with running speed
(Maurer et al., 2011). Having accurately reproduced the fast slope only the slow slope
(which represents the overall movement of the population activity on a behavioral timescale)
is required to reproduce the reported compression factor. However, while our decoded
values for the slow slope closely matched the true value based on the rat’s running speed,
the values reported by Maurer et al. (2011) are considerably lower (Figure 5C) and if
correct would suggest that the population consistently moved more slowly than the rat,
even moving backwards while the animal remained still. This inconsistency precluded a
comparison to the compression factor in our model.

Independent experimental support for the notion of inter-assembly coordination comes
from an analysis suggesting that single cell phase precession is less precise than observed
theta sequences (Foster and Wilson, 2007). This conclusion relies on a shuffling analysis
which preserves the statistics of single cell phase precession yet reduces intra-sequence
correlations. However, performing the same shuffling analysis on data generated by our
independent coding model reproduced this result (t-test, p < 10−46) (Figure S3). The
effect arises because the shuffling procedure does not preserve the temporal structure
of single cell phase precession, despite preserving the phasic structure (Figure S3A, B).
Hence, the phase-position correlations are unaffected, while the time-position correlations
and hence sequence correlations are disrupted (Figure S3C, D). Thus, these experimental
observations can be accounted for by independent coding.

Finally, precise coordination of theta sequences has been suggested on the basis that
theta sequence properties vary according to environmental features such as landmarks
and behavioral factors such as acceleration (Gupta et al., 2012). To establish whether
independent coding could also account for these results, we generated data from our trav-
eling wave model and applied the sequence identification and decoding analyses reported
by Gupta et al. (2012). We found that, even for simulated data based on pure rate coding
with no theta modulation (k = 0), this analysis detected a fraction of “significant theta
sequences” similar to that reported for experimental data (Figure 6A, B). Moreover, ap-
plying the reported Bayesian decoding analysis yielded similar decoded path lengths to
those found experimentally, despite the absence of theta sequences in the simulated data
(Figure 6C). Since these results can be reproduced with data containing no sequences
at all, they lack the specificity required to analyze the trajectories represented by theta
sequences. Instead, as the results are reproducible with purely rate coded activity, they
are consistent with variations in rate coding across behavioral settings (e.g., Wood et al.,
2000; Fyhn et al., 2007; Allen et al., 2012).

In total, our analysis demonstrates that a traveling wave model based on independent
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phase coding for CA1 theta states is consistent with existing experimental data. Thus,
neither intra- nor inter-assembly interactions are required to explain CA1 activity during
theta states. We show that the spatiotemporal organization of CA1 population activity
within theta oscillations can be explained by independent phase precession against an
externally fixed pacemaker rhythm. Alternatively, such populations could instead gener-
ate their own theta frequency network oscillations, so that CA1 theta activity can also
be explained in terms of population coding with emergent theta frequency dynamics.

Linear phase coding constrains global remapping

When an animal is moved between environments, the relative locations at which place cells
in CA1 fire remap independently of one another (e.g., O’Keefe and Conway, 1978; Wilson
and McNaughton, 1993). Due to the limited storage capacity for temporal sequences
in neural networks (Sompolinsky and Kanter, 1986; Kleinfeld, 1986; Reiss and Taylor,
1991; Bressloff and Taylor, 1999; Leibold and Kempter, 2006), this global remapping
of spatial representations poses a challenge for generation of theta sequences through
coordinated assemblies as synaptic interactions that promote formation of sequences in
one environment would be expected to interfere with sequences in a second environment.
In comparison, it is not yet clear whether the independent coding model faces similar
constraints on sequence generation across different spatial representations. We therefore
addressed the feasibility of maintaining theta sequences following remapping given the
assumptions that underpin our independent coding model.

We first consider the possibility that following remapping the phase lags between cell
pairs remain fixed - that is, while two cells may be assigned new firing rate fields, their
relative spike timing within a theta cycle does not change. This scenario would occur
if the phase lags associated with linear phase precession were generated by intrinsic
network architectures (e.g., Diba and Buzsáki, 2008; Dragoi and Tonegawa, 2011, 2013)
or upstream pacemaker inputs. To illustrate the consequences of such mechanisms for
global remapping, we first consider representation of a linear track by a population of
place cells with distinct rate and phase fields (Figure 7A). Our description of phase
precession implies a mechanism to establish a cell’s phase field. With linear phase coding
a cell’s phase is maintained outside of its firing field such that the phase lag between
two neurons depends linearly on the distance between their place field centers, while cells
separated by multiples of a place field width share the same phase (Figure 7A). Each
cell pair therefore has a fixed phase lag and all cells can in principle be mapped onto
a single chart describing their phase ordering. If this mechanism for determining phase
ordering is hardwired, then following arbitrary global remapping, cells with nearby place
field locations will in most cases no longer share similar phases (Figure 7B). As a result,
theta sequences and the global population theta will in general be abolished (Figure 7B).
However, there exist a limited set of remappings which in this scenario do not disrupt
the sequential structure of the population (e.g., Figure 7C). On a linear track, these
remappings are: translation of all place fields by a fixed amount, scaling of all place fields
by a fixed amount and permuting the place field locations of any cell pair with zero phase
lag.
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When considering global remapping in an open environment similar constraints apply.
Because the phase lag between any two cells depends on running direction (e.g., Huxter
et al., 2008), the population phase ordering must always be aligned with the direction of
movement (Figure 7D). Hence, in open environments, the notion of a phase chart must be
extended to include a fixed phase ordering for each running direction. Given such a fixed
phase chart, a set of remappings known as affine transformations preserve the correct
theta dynamics (see Appendix: A6). Such remappings consist of combinations of linear
transformations (scaling, shear, rotation and reflection) and translations (Figure 7E).
Remappings based on permutation of place field locations of synchronous cells, which are
permissible in one dimensional environments, are no longer tenable in the two dimensional
case due to constraints over each running direction.

Since place cell ensembles support statistically complete (i.e. non-affine) remappings
(e.g., O’Keefe and Conway, 1978), CA1 network dynamics are not consistent with the
model outlined above. Nevertheless, it remains possible that CA1 theta dynamics are
based on fixed phase charts, provided that multiple such phase charts are available to
the network. In this case, each complete remapping recruits a different phase chart,
fixing a new set of phase lags. The number of possible global remappings that maintain
theta sequences is then determined by the number of available phase charts. Such a
possibility is consistent with recent suggestions of fixed sequential architectures (Dragoi
and Tonegawa, 2011, 2013) and has not been ruled out in CA1. It is also of interest
that affine transformations are consistent with the observed remapping properties in grid
modules (Fyhn et al., 2007), suggesting that a single phase chart might be associated
with a grid module.

Sigmoidal phase coding enables theta sequence generation and
flexible global remapping

Is it possible to overcome the constraints imposed on remapping by fixed phase charts
in independent coding models? We reasoned that experimental data on phase precession
only imply that phase precesses within a cell’s firing field and need not constrain a cell’s
phase outside of its firing field. We therefore implemented a version of the independent
coding model in which firing phase has a sigmoidal relationship with location (Figure
8A-B, solid line), so that phase precesses within the firing field but not outside of the
field. In this case, each cell’s intrinsic frequency is increased within the spatial firing
field, whereas outside the firing field it has the same frequency as the population theta
rhythm (Figure 8C, solid line). This is in contrast to the linear phase model in which
each cell’s intrinsic frequency is always faster than the population oscillation (Figure 8C,
dashed line). When spiking activity in a population of cells with sigmoidal phase coding is
considered (Figure 8D-F), phase precession and sequence generation are similar to models
in which cells have linear phase coding. However, in addition, sigmoidal phase coding
enables theta sequences to be generated after any arbitrary global remapping (Figure
8G). This flexible global remapping is in contrast to the scrambling of theta sequences
that typically occurs with global remapping when cells have linear phase coding (Figure
8G).
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Linear and sigmoidal models of phase coding lead to distinct experimentally testable
predictions. Recordings of membrane potentials of CA1 neurons in behaving animals
show that spikes precess against the LFP but always occur around the peak of a cells
intrinsic membrane potential oscillation (MPO) (Harvey et al., 2009). Therefore the
intrinsic phase of each cell in our model (Figure 2D, E) can be considered equivalent to
MPO phase. While data concerning the MPO phase outside of the firing field are limited,
this will likely distinguish generation of theta sequences based on a linear and sigmoidal
phase coding. If CA1 implements linear phase coding, then the MPO of each cell should
precess linearly in time against LFP theta at a fixed (velocity dependent) frequency, both
when the animal is inside the place field and when the animal is at locations where the cell
is silent (Figure 8A-C, dashed line). Alternatively, sigmoidal phase coding predicts that
precession of the MPO against the LFP occurs only inside the firing rate field (Figure
8A, B solid line) and that the MPO drops back to the LFP frequency outside of the place
field (Figure 8C solid line). A further prediction of sigmoidal coding is that the phase lag
between any two cells changes when the animal moves through their place fields, whereas
outside their place fields the cells are synchronized with each other and with the LFP
(Supplementary Video 2). Finally, phase precession under the sigmoidal model behaves
differently to the linear model in open environments. In the linear model, the phase chart
fixes a different population phase ordering for each running direction, so that spike phase
depends on the location of the animal and the instantaneous direction of movement. In
the sigmoidal model, however, each cell has a location dependent frequency, so that the
spike phase depends on the complete trajectory through the place field and no explicit
directional information is required (see Appendix: A5). In summary, evaluation of theta
sequences following global remapping and of theta phase within and outside of a cells
firing field will be critical for distinguishing models of theta generation.

DISCUSSION

Our model of the spiking activity of CA1 populations governed by independent phase
coding demonstrates how complex and highly structured population sequences can be
generated with minimal coordination between neurons. In contrast to previous sugges-
tions (Harris et al., 2003; Foster and Wilson, 2007; Maurer et al., 2011; Gupta et al.,
2012), we found that the population activity observed in CA1 can be accounted for by
phase precession in independent cells, without interactions within or between cell assem-
blies. The independent coding hypothesis leads to a novel view of the CA1 population as
a fast moving traveling wave with a slower modulatory envelope. This model exhibits rate
coding, global theta oscillations and phase precession against this self generated rhythm.
Amplitude modulation of the envelope provides a mechanism for multiplexing spatial
with nonspatial information, such as task specific memory items (Wood et al., 2000) and
sensory inputs from the lateral entorhinal cortex (Rennó-Costa et al., 2010). The inde-
pendence of each neuron naturally explains the robustness of phase precession against
intrahippocampal perturbations (Zugaro et al., 2005), an observation which is difficult
to reconcile with models based on assembly interactions. Depending on the exact nature
of the single cell phase code, we have shown that independent phase coding can enable
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theta sequences to be maintained with arbitrary global remapping. This flexibility may
maximize the number and diversity of spatial representations that CA1 can provide to
downstream structures.

Independent phase coding leads to several new and experimentally testable predictions
that distinguish mechanisms of CA1 function during theta states. Firstly, an absence of
coordination within or between assemblies has the advantage that neural interactions do
not interfere with sequence generation after global remapping. Rather, for independent
coding models the constraints on sequence generation following remapping arise from the
nature of the phase code. With linear phase coding the set of sequences available to the
network is fixed, resulting in a limited set of place field configurations with a particular
mathematical structure (Figure 7). Interestingly, the remappings observed in grid mod-
ules (Fyhn et al., 2007), but not CA1, are consistent with those predicted for networks
with a single fixed pacemaker input which forms a phase chart. More complex pace-
maker systems with multiple charts could explain CA1 population activity during theta
oscillations and “preplay”, which suggests a limited remapping capacity for CA1 (Dragoi
and Tonegawa, 2011, 2013). Alternatively, sigmoidal phase coding massively increases
the flexibility for global remapping as cells can remap arbitrarily while maintaining co-
herent theta sequences within each spatial representation (Figure 8). Secondly, linear
and sigmoidal phase coding predict distinct MPO dynamics. With linear phase coding
the temporal frequency of each MPO is independent of the animal’s location. With sig-
moidal phase coding, the MPO frequency increases inside the place field, so that phase
precession precession occurs inside but not outside the place field. In this case, only
the spiking assembly behaves as a traveling wave, whereas the MPOs of cells with place
fields distant from the animal are phaselocked to the LFP. Sigmoidal phase precession
could emerge due to inputs from upstream structures (Chance, 2012) or be generated
intrinsically in CA1 place cells (Leung, 2011). Finally, in contrast to linear phase coding
populations, sigmoidal phase coding populations do not require additional directional in-
formation to generate directed theta sequences in open environments. Instead, sigmoidal
theta sequences are determined solely by the recent trajectory of the rat through the set
of place fields. This is consistent with recent observations of reversed theta sequences
during backwards travel (Cei et al., 2014).

Independent coding implies that the spiking activity of CA1 place cell populations shows
no correlations beyond that generated by a fixed rate and theta phase code in each cell. In
other words, while the mutual dependence of each cell on LFP theta phase and location
induces strong signal correlations, there are no additional correlations in the activity
of the network. Because CA3 neurons immediately upstream from CA1 are connected
by dense recurrent collaterals (Miles and Wong, 1986; Le Duigou et al., 2014), there
are likely to be substantial additional correlations in the input to CA1, which might
be expected to induce deviations from the independent population code outlined here.
However, feedback inhibition motifs such as those found in CA1 are known to be able to
counteract such correlations (Renart et al., 2010; Bernacchia and Wang, 2013; Tetzlaff
et al., 2012; King et al., 2013). Hence, we suggest that the local inhibitory circuitry
in CA1 removes any additional correlations present in its input in order to generate an
independent population code. A major advantage of such a decorrelated representation
is that it provides a highly readable and information rich code for working and episodic
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memory in downstream neocortex. In particular, a downstream decoder with access to
an independent population code need only extract the stereotyped correlational patterns
associated with traveling waves under a given place field mapping, allowing it to flexibly
decode activity across a large number of spatial representations. Decoding in the presence
of additional correlations would likely lead to a loss of information. While this loss
can to some extent be limited by including knowledge of these additional correlations
(Nirenberg and Latham, 2003; Eyherabide and Samengo, 2013), this likely requires a
high level of specificity and therefore a lack of flexibility in the decoder. The flexibility
afforded by an independent population code may therefore provide an optimal format for
the representation and storage of the vast number of spatial experiences and associations
required to inform decision making and guide behavior.

EXPERIMENTAL PROCEDURES

We simulated data from a population of place cells with place field centers xc and width
σ which precess linearly through a phase range of ∆φ over a distance 2R on a linear track
using Equation (A3.6). To model discrete place cells with discrete action potentials, the
firing rate r was binned over xc and time t respectively. The initial phase ψs was either
taken as 0, or a uniform random variable ψs ∈ [0, 2π) set at the beginning of each run. In
all simulations, parameters were set as: 2R = 37.5 cm (Maurer et al., 2006), ∆φ = 2π,
σ = 9 cm, fθ = 8 Hz, Nspikes = 15. All simulations were performed using Matlab 2010b.

To replicate the results of Harris et al. (2003), we simulated constant speed movement
along a linear track, using a mean speed of 35 cm/s and standard deviation of 15 cm/s.
We simulated motion in each direction, using the same set of place fields in each case.
We estimated the preferred firing phase at each location from the simulated data using
the methods stated in Harris et al. (2003), using either single-direction data or data
consisting of runs in both directions to generate different phase fields. The prediction
analyses were performed according to the methods given in Harris et al. (2003). In Figure
4C, the optimal prediction timescale for each phase locking value was chosen. This was
done separately for the peer only case and the peer plus phase field case (other cases do
not involve a peer prediction timescale).

To compare the sequence path length in spiking data generated from the traveling wave
model to experimental data, we followed the decoding methods outlined in Maurer et al.
(2011). Briefly, this involves constructing trial averaged time by space population activity
matrices and decoding the location represented by the population in each time bin over
the theta cycle. The decoded path length is measured as the largest distance between
decoded locations within the theta cycle. To test the influence of phase locking in this
analysis, k was varied incrementally from 0 to 6 and the sequence path length for the
resulting data was calculated in each case. We used the same spatial and temporal bins
(0.7 cm and 20◦ of LFP θ) as the original study. To calculate the fast and slow slopes,
we generated the contour density plots described by Maurer et al. (2011) using the same
parameters as the sequence path length analysis. We simulated 100 trials for each running
speed. We then divided these 100 trials into 10 subsets of 10 and applied the contour
analysis to each subset. We fitted the fast slope to the 95% contour of the central theta
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peak, and measured the slow slope as the line joining the maximum of the top and
bottom peaks of the central 3. We averaged over the results from each subset to obtain
the final value. The analytical value for the fast slope in the limit of high phase locking is
FS = vp/(360fθ), where the denominator arises due to the normalization to cm/deg in the
analysis of (Maurer et al., 2011). Similarly for zero phase locking, FS = v/(360fθ). The
analytical value for the slow slope is independent of phase locking SS = v/(360fθ). Upper
and lower bounds for the slow slope were therefore fitted assuming the reported running
speed is accurate, and that the LFP theta frequency is in the range 4Hz < fθ < 12Hz.

To reproduce the results of Gupta et al. (2012), we used the significant sequence testing
protocol and Bayesian decoding algorithm described therein, with spatial binning set as
3.5 cm, as in the original study. Briefly, the significant sequence testing analysis tests
if population activity within a theta cycle has significant sequential structure, whereas
the Bayesian decoding algorithm decodes the ahead and behind lengths encoded in the
theta cycle. For Figure 6A, we varied phase locking and running speed independently and
generated spiking data for each pair of values. We then applied the significant sequence
detection methods for each resulting data set to obtain the fraction of significant sequences
in each case. For Figure 6B&C, we set k = 0. We generated 160,000 theta cycles,
each with a running speed drawn from a normal distribution with mean 30 cm/s and
standard deviation 15 cm/s and then discarded speeds less than 10 cm/s. We applied
the significant sequence detection algorithm to this data before applying the Bayesian
decoding algorithm to the significant sequences to find the sequence path lengths, ahead
lengths and behind lengths.

To reproduce the results of Foster and Wilson (2007), we generated data from 1000 theta
cycles, each with a running speed drawn from the same distribution as for the Bayesian
decoding analysis. Following the protocol outlined by Foster and Wilson (2007), we found
the set of all spike phases for each cell when the rat was at each position and analyzed
events defined as 40ms windows around the peak firing rate (i.e., LFP theta trough). For
the shuffling analysis, spikes in each event were replaced by another spike taken from the
same position and cell. The new spike time was then calculated by interpolation between
the closest two LFP theta troughs of the original spike, as reported in the original study.
100 such shuffles were performed for each event, and the correlations between cell rank
order and time were calculated in each case.
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Figure 1: Phase sequences in a place cell population.
(A) During navigation, place cells are sequentially activated along a route. (B) Within
each theta cycle, this slow behavioral sequence of place cell activations is played out on a
compressed timescale as a theta sequence. Theta sequences involve both rate and phase
modulation of individual cells, but it remains unclear whether additional coordination
between cells is present. (C) Internal coordination may bind CA1 cells into assemblies,
and sequential assemblies may be chained together synaptically. This would require
specific inter- and intra-assembly patterns of synaptic connectivity within the network.
(D) Alternatively, according to the independent coding hypothesis, each cell could be
governed by theta phase precession without additional coordination.
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Figure 2: Single cell coding model.
(A) Firing rate and phase at different locations within a cell’s place field are determined
by a Gaussian tuning curve rx and linearly precessing encoded phase φ respectively. (B)
The dependence of single cell activity on the LFP theta phase θ is modeled by a second
tuning curve rφ which depends on the angle between the LFP theta phase θ and encoded
phase φ at the animal’s location. The phase locking parameter k controls the precision
of the phase code. (C) The combined dependence of single cell activity on location and
LFP theta phase. (D) Temporal evolution of the rate and phase tuning curves for a single
cell as a rat passes through the place field at constant speed. (E) The total firing rate
corresponding to (D), and spiking activity on 1000 identical runs.
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Figure 3: Spatiotemporal dynamics of CA1 populations.
(A) Top: Population dynamics during a single theta cycle on a linear track after ordering
cells according to their place field center xc in physical space. The two components of the
population activity are shown - the slow moving envelope (black) and the fast moving
traveling wave (red), which give rise to rate coding and phase coding respectively (cf.
Figure 2). Bottom: Resulting firing rates across the population. When the traveling wave
and envelope are aligned, the population activity is highest (middle panel). The dashed
line shows the location of the rat at each instant. B: Firing rate in the population over
seven consecutive theta cycles. The fast and slow slopes are shown (solid and dashed lines
respectively), corresponding to the speeds of the traveling wave and envelope as shown in
part A. The top panel shows the LFP theta oscillations and emergent population theta
oscillations, which are generated by the changing population activity as the traveling
wave shifts in phase relative to the slower envelope (see Supplemental Video 1). (C, D)
The spiking activity for a population of 180 cells. All panels used v = 50 cm/s, so that
vp = 350 cm/s and c = 7.
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Figure 4: Peer prediction analysis for an independent population code.
(A) Combined place and phase fields constructed from simulated data using only runs
with a single direction. (B) Place/phase field constructed from a combination of both
running directions, as used by Harris et al. (2003). (C) Predictability analysis, using
various combinations of place, phase and peer activity. When using the nondirectional
phase field of Harris et al. (2003), an additional peer predictability emerges (black vs green
and purple). However, this additional predictability is seen to be illusory if the directional
phase field is used to predict activity (red). (D) Dependence of peer predictability on
the peer prediction timescale and phase locking of individual cells. The heat map shows
the predictability of a cell’s activity from peer activity (cf. part C, green line). The
optimal peer prediction timescale depends on the amount of phase locking, showing that
the characteristic timescale of peer correlations reflects independent phase precession of
single cells rather than transient gamma synchronization of cell assemblies.
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Figure 5: Decoded sequence path lengths and population activity propagation
speeds.
(A) The decoded path length increases linearly with running speed, but a dependence of
phase locking on running speed is required to account for the experimental data. The
shaded regions show upper and lower bounds (k = 0 and k = ∞). (B) Dependence of
decoded fast slope on running speed (cf. our Figure 3B; Maurer et al. (2011) Figure 3).
Again, a match to the data requires a velocity dependent phase locking. (C) The slow
slope was accurately decoded to the analytical value, where the population travels at the
running speed v. Bounds show LFP theta frequencies below 4 Hz (upper bound) and
above 12 Hz (lower bound).

Figure 6: Analysis of individual sequence statistics.
(A) The fraction of “significant sequences” generated under independent coding according
to the Gupta et al. (2012) analysis, as a function of running speed and phase locking (for
simulated data). Large fractions of significant sequences are generated even without
phase coding or theta sequences within the assembly (i.e. at k = 0). The black line
shows the fraction reported experimentally. (B) and (C) used only rate coding (k = 0),
and therefore do not contain any theta sequences above chance. (B) The distribution of
significant sequences over running speed and decoded path length, as calculated by Gupta
et al. (2012) (cf. their Fig 1c). (C) The relationship between decoded path length and
decoded ahead and behind lengths for significant sequences, using the same simulated
data as the previous panel. This replicates the experimental data (cf. Fig 4a, b in Gupta
et al. (2012)), showing that similar path lengths are decoded by this algorithm even when
theta sequences are not present.
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Figure 7: Properties of CA1 populations governed by linear phase coding.
(A) On a linear track, cells which precess linearly in phase maintain fixed delays. This is
illustrated as a phase ordering (colored bar), which describes the relative phase of each
cell (arrows show locations of cells at each phase). Each cell has a constant, running speed
dependent frequency and a fixed phase offset to each other cell. (B) A complete global
remapping with phase lags between cells held fixed. Theta sequences and population
oscillations are abolished. (C) In a constrained place field remapping, theta sequences
are preserved. (D) In open environments, phase lags depend on running direction. The set
of population phase lag configurations needed to generate sequences in each direction is
called a phase chart. (E) If a population has a fixed phase chart, the possible remappings
are restricted to affine transformations.
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Figure 8: Properties of CA1 populations governed by sigmoidal phase coding.
(A-C) Firing rate and intracellular phase and frequency in the linear (dashed lines) and
sigmoidal models (solid lines) during the crossing of a place field. In the sigmoidal model,
phase precession is initiated inside the place field by an elevation of intracellular frequency
from baseline. (D-F) Firing rate and intracellular phase and frequency for a place cell
population on a linear track. In the sigmoidal model, an intracellular theta phase between
cell pairs develops as the animal moves through their place fields. Outside their place
fields, cell pairs are synchronized. (G) Global remapping in the linear and sigmoidal
models. In the sigmoidal model, the intracellular dynamics allow arbitrary remapping
without disrupting population sequences.
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