bioRxiv preprint doi: https://doi.org/10.1101/005033; this version posted May 12, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

biogo: a simple high-performance
bioinformatics toolkit for the Go language

R. DANIEL. KORTSCHAK™ DAvID L. ADELSON

School of Molecular and Biomedical Science
University of Adelaide, Adelaide 5000, AUSTRALIA

{dan.kortschak,david.adelson}@adelaide.edu.au

May 12, 2014

Abstract

biogo is a framework designed to ease development and mainte-
nance of computationally intensive bioinformatics applications. The
library is written in the Go programming language, a garbage-collected,
strictly typed compiled language with built in support for concurrent
processing, and performance comparable to C and Java. It provides a
variety of data types and utility functions to facilitate manipulation
and analysis of large scale genomic and other biological data. biogo
uses a concise and expressive syntax, lowering the barriers to entry
for researchers needing to process large data sets with custom analy-
ses while retaining computational safety and ease of code review. We
believe biogo provides an excellent environment for training and re-
search in computational biology because of its combination of strict
typing, simple and expressive syntax, and high performance.

1 Introduction

The emergence of bioinformatics as an important field of biological research
has seen the proliferation of bioinformatics development toolkits (Rice et al.,

*Contact author


https://doi.org/10.1101/005033
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005033; this version posted May 12, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

2000; Stajich et al., 2002; Gentleman et al., 2004; Knight et al., 2007; Doring
et al., 2008; Holland et al., 2008; Cock et al., 2009; Goto et al., 2010). Many
of these toolkits are used primarily as programmatic ‘glue’; joining together
functional units that are usually written in low-level high-performance lan-
guages, although many make use of high performance languages or environ-
ments internally; for examples, Pyrex/Cython in PyCogent, C in BioPerl,
Biopython and Bioconductor — which also incorporates fortran code — and
the Java Virtual Machine in BioRuby. This set of toolkits also includes exam-
ples written in high performance languages that have been used for building
commonly used tools, for example SeqAn is used in the popular short read
aligner, bowtie (Langmead et al., 2009).

The use of low level languages has become necessary due to the increas-
ingly high volumes of data encountered in modern bioinformatic analyses.
However, the technical expertise required to use languages such as C, C++
and Java put their use out of the reach of many biologists, leaving Perl,
Python and Ruby as the accessible options for these researchers when they
wish to produce custom analytical software. Many research problems can be
adequately addressed using these languages, particularly given the existence
of high-performance extensions such as SciPy (http://www.scipy.org/).
However, there still exist research problems where processing cannot be ef-
ficiently handled by the native language — the PyCogent authors deal with
this issue by using CPU profiling techniques to identify CPU-intensive loops
and rewrite ‘hot’ code in Cython/Pyrex, a Python-like language that com-
piles to C (Knight et al., 2007; Behnel et al., 2011). While this approach
is effective, it requires that the authors understand two quite different lan-
guages; for although Cython is syntactically similar to Python it is, unlike
Python, a statically typed language.

In addition to the issues raised above, a recent paper has highlighted
the importance of good software engineering practices in scientific comput-
ing and the potential problems that may arise when these are not adopted
(Wilson et al., 2014). Two key principles highlighted by Wilson et al. are
that programs should be written for people rather than machines, and that
programs should be designed to account for system failure in a safe way.
The first of these is at odds with the design of high performance languages
such as C and C++ which expose a great deal of machine detail at the cost
of readability, while the second is at odds with the design of many of the
higher level, dynamically typed, languages which may allow subtle errors to
silently propagate through program execution, resulting in undetected erro-


https://doi.org/10.1101/005033
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005033; this version posted May 12, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

neous output.

2 New Approaches

We have chosen to approach the above problems of computational perfor-
mance, ease of software development and maintenance, and computational
safety by adopting a language that focuses specifically on these areas. As
many of the features of biogo are a result of the design of the Go language
and its tool chain we will describe the language features briefly here.

The Go language is a general purpose programming language that has
been developed at Google Inc. (http://golang.org/) and as a community-
based open source project. It is a compiled, strongly typed, garbage-collected
language with explicit support for concurrent programming (http://golang.
org/ref/spec). At approximately 50 pages in length, the language speci-
fication is short by comparison with many other languages, to allow pro-
grammers to more easily hold a complete understanding of the language’s
defined behavior. The language is based on design principles intended to
promote rapid and efficient software development and reduce the barriers
to entry for new developers — language features should be ‘simple’, ‘or-
thogonal’, ‘succinct’ and ‘safe’ (R. Pike, JAOO Conference 2010). These
characteristics, the language implementation and its supporting tools are
well aligned with the principles for scientific computing described by Wilson
et al. (2014): excellent support for documentation and testing; rapid write—
compile-debug cycles; language-level support for concurrent processing and
interprocess communication; tools for performance profiling and data race
detection in concurrently executed code; and compile-time type safety in
conjunction with ‘duck’ typing through interface types.

Go code is formatted mechanically to a consistent form using a tool in-
cluded in the tool chain; this form, and other aspects of the Go grammar and
coding style promote short lines, favoring code readability (Buse and Weimer,
2010), an important aspect in code maintainability and peer review.

Go source code and documentation are intimately tied. The Go tool
chain includes an automated documentation generator that produces textual
and hyper-textual documentation from source code commentary and func-
tion signatures. In the hypertext form, documentation is linked directly to
source definitions via navigable hyper-links. These features provide strong
connections between source and documentation and so aid development. In


https://doi.org/10.1101/005033
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005033; this version posted May 12, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

addition to this, the language tool chain supports inclusion of example code
in the documentation. These examples are executed when running test suites,
ensuring documentation parallels implementation. There is a strong culture
for inclusion of good documentation and example code within the Go com-
munity, a practice that eases adoption of the language and its libraries.

As well as providing excellent documentation support, compilation is very
fast, allowing a rapid write-compile-debug cycle. This speed of compilation
gives rapid feedback on experimental approaches, improves language learn-
ing, and allows Go to be used in areas where scripting languages have been
used because of their rapid development cycle.

Parallel computation has been noted as an important aspect of high per-
formance computing in the context of genomic datasets (Knight et al., 2007).
The Go language has built-in support for concurrent processing, with primi-
tives for initiating concurrent routines and allowing safe communication be-
tween them. This support eases implementation of parallel computation on
appropriate architectures.

A significant difference between Go and other languages commonly used
in bioinformatic computation, such as Python, Perl and Ruby is that Go
is strongly typed. This strictness prevents a large class of programming er-
rors by requiring explicit statement of programmer intention and by catching
errors in code manipulation during the maintenance phase of program de-
velopment. We believe that the explicit nature of strong typing also favours
ease of peer review of published code. Subtle errors that do not cause pro-
gram failure can be a significant cause for introduction of invalid data into
the body of scientific literature (Wilson et al., 2014); Go programming prac-
tice promotes the transparency in failure, failing ‘noisily’ and informatively
rather than silently as is often the case with dynamically typed languages or
uninformatively as is the case with C/C++. Go’s use of structural typing
through interface types in conjunction with type composition via embedding
retains the level of flexibility given by dynamic typing, and support for type
inference reduces the burden on programmers to explicitly state types in all
cases.

The Go standard library includes support for CPU and memory profiling
to identify ‘hot’ or memory-expensive code that would benefit from opti-
mization to improve performance. Further, the Go tool chain supports the
inclusion of C and assembly code into packages, allowing an approach, similar
to that used in PyCogent, when Go performance is inadequate. An example
of this is the biogo.matrix package which interfaces with the CBLAS linear

4


https://doi.org/10.1101/005033
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005033; this version posted May 12, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

algebra library via a C wrapper package, biogo.blas, to maximize perfor-
mance with matrix operations and leverage the expertise that has gone into
the development of CBLAS.

In addition to this direct interaction between Go and C code, biogo in-
terfaces easily with external tools using the biogo.external package. This
allows a concise description of command line parameters for an external ap-
plication within the context of the Go type system. Defining new external
application interfaces is a trivial exercise.

The biogo library includes packages supporting common bioinformatic use
cases: reading and writing sequence data in FASTA and FASTQ formats, and
genomic interval data in BAM, BED and GTF formats; and storing meta-
data, sequence and interval data in a variety of general purpose data struc-
tures in addition to the built-in Go types. In addition to handling common
data formats, biogo supports Entrez and remote BLAST queries through the
biogo.ncbi packages easing public data acquisition. Analytical tools are
provided to support sequence alignment, data clustering, and numerical and
graph analysis. In addition to the provided analytical tools, biogo provides
support for graphical rendering of genomic data with a collection of graphics
packages, including a package for generation of Circos-like plots (Krzywinski
et al., 2009), allowing direct integration with biogo data types.

A significant feature of the biogo library is its use of Go’s structural
typing. An example of this is the interface relationships between genomic
intervals defined in the feat package and sequence types defined in the seq
package hierarchy; sequence types satisfy the feature interface, thus allowing
sequences to be used in all situations where features are permitted (Ex-
amples in Supplementary material 1). Further, Go’s embedding and com-
position capacity allows easy construction of rich data types based on the
provided biogo types, for example extension of a sequence type to satisfy the
biogo.store/step element interface allows a space-efficient storage and rep-
resentation of interrupted chromosomal sequence using run-length encoding.
Examples of the use of these language features in the context of the biogo
library are provided in the biogo.examples and biogo.talks repositories,
but we provide here some specific examples that demonstrate its utility in
developing tools for analyzing large data sets.

We have used components of the biogo library to implement a pure Go ver-
sion of the genome-scale pairwise local sequence alignment tool, PALS (Edgar
and Myers, 2005), as an example of a computationally intensive problem. We
find that the performance of the Go PALS implementation is comparable with


https://doi.org/10.1101/005033
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005033; this version posted May 12, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

the C implementation and is more robust; on a workstation with a 2.7GHz
Intel i7 processor and 12GB of RAM, processing of the 7T0Mbp Oikopleura
dioica genome (obtained from the Oikpleura Genome Browser http://www.
genoscope.cns.fr/externe/GenomeBrowser/0ikopleura/) with default PALS
options is completed in 1 minute 25 seconds with the C implementation and
2 minutes 20 seconds with the Go implementation. Parallel processing is not
possible with the C implementation, but is completed in 1 minute 40 sec-
onds with the Go implementation. While this demonstrates a comparative
reduction in computational performance, the Go implementation is perform-
ing additional work in ensuring memory safety where the C implementation
does not. We have used this tool for analyzing retro-transposable repeats in
mammalian genomes in place of C implementation of PALS due to the safety
provided Lim et al. (2014).

— I

Figure 1: Possible impact of cluster collision on read pair mapping discor-
dance. A. shows a diagram of a field of flow-cell image spots and a colliding
pair of pair-end read pair spots (blue/purple and red/green); B. shows the
true oracular identity of spots and resulting genomic mapping; and C. shows
incorrect resolution, with discordant mapping due to one member of a pair
(red) being attributed to the colliding pair mate (purple) image spot.

Another example is the analysis of Illumina HiSeq™sequencing data to
examine the effect of template cluster collision on paired-end read mapping
discordance. We wanted to rule out cluster collision as a source of error in
a structural variation analysis, so we designed an analysis to estimate the

6


https://doi.org/10.1101/005033
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005033; this version posted May 12, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

proportion of discordant read pair mappings due to incorrect image anal-
ysis by the Illumina sequencing pipeline (Figure 1). This involved finding
the nearest neighbor spot of each discordantly mapped read pair and then
finding its genomic mapping location, marking it as a possible cause if it
had been mapped to the same genomic location as at least one mate of the
discordant pair. This approach requires that the location and mapping data
of all clusters of a flow-cell tile be stored to be able search for neighbors
and compare mapping locations. We were able to implement this analysis in
under 400 lines of source code (Supplementary material 2). An analysis of
approximately 370 million paired-end 100nt read alignments from 91 flow-cell
tiles using this code was completed in 12 hours with 90GB of system RAM
allocating eight cores of a 2.3GHz AMD Opteron 6134. A smaller memory
footprint would be possible if the mapping data were sorted by tile prior to
the analysis such that only one tile need be kept in memory at a time. We
found a statistically significant, but negligible effect of collision on read pair
discordance (not shown).

Components of biogo have been used in the implementation of a compres-
sively accelerated protein BLAST which outperforms existing similar tools
written in C (Daniels et al., 2013). The CaBLASTP project makes use of
Go’s built-in concurrency primitives to exploit multiprocessing CPUs.

3 Conclusion

biogo is a simple, type- and thread-safe toolkit for the prototyping and devel-
opment of bioinformatic tools. It is easy to learn and use, and aids in devel-
opment of easily maintained and peer-reviewed code. Applications written
using biogo have comparable performance with tools written in C.

4 Supplementary Material

All biogo packages and documentation are freely available from the web at
http://code.google.com/p/biogo/ under a Modified BSD License.


https://doi.org/10.1101/005033
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005033; this version posted May 12, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

5 Acknowledgments

We would like to thank Russ Cox, Martin Frith and Dan Perkins for their
feedback on the manuscript, and Stephen Bent for his input into the design
of key aspects of the library. This work was supported by The University
of Adelaide; and The National Health and Medical Research Council [grant
number 1011334].

References

Behnel, S. et al. 2011. Cython: The best of both worlds. Comput. Sci. Eng.,
13: 31-39.

Buse, R. P. and Weimer, W. R. 2010. Learning a metric for code readability.
IEEE Trans. Softw. Eng., 36: 546-558.

Cock, P. J. A. et al. 2009. Biopython: Freely available Python tools for
computational molecular biology and bioinformatics. Bioinformatics, 25:
1422-3.

Daniels, N. M. et al. 2013. Compressive genomics for protein databases.
Bioinformatics, 29: 1283-1290.

Doring, A. et al. 2008. SeqAn an efficient, generic C++ library for sequence
analysis. BMC Bioinf., 9.

Edgar, R. C. and Myers, E. W. 2005. PILER: Identification and classification
of genomic repeats. Bioinformatics, 21 Suppl 1: i152-8.

Gentleman, R. C. et al. 2004. Bioconductor: Open software development for
computational biology and bioinformatics. Genome Biol., 5: R80.

Goto, N. et al. 2010. BioRuby: Bioinformatics software for the Ruby pro-
gramming language. Bioinformatics, 26: 2617-9.

Holland, R. C. G. et al. 2008. BioJava: An open-source framework for bioin-
formatics. Bioinformatics, 24: 2096-7.

Knight, R. et al. 2007. PyCogent: A toolkit for making sense from sequence.
Genome Biol., 8: R171.


https://doi.org/10.1101/005033
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005033; this version posted May 12, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Krzywinski, M. et al. 2009. Circos: an information aesthetic for comparative
genomics. Genome Res., 19: 1639-45.

Langmead, B. et al. 2009. Ultrafast and memory-efficient alignment of short
DNA sequences to the human genome. Genome Biol., 10: R25.

Lim, S. L. et al. 2014. Discovery of a novel LTR (LTR2i_SS) in Sus scrofa.
Animal Genetics, in press.

Rice, P. et al. 2000. EMBOSS: The European molecular biology open software
suite. Trends Genet., 16: 276-277.

Stajich, J. E. et al. 2002. The Bioperl toolkit: Perl modules for the life
sciences. Genome Res., 12: 1611-8.

Wilson, G. et al. 2014. Best practices for scientific computing. PLoS Biol.,
12: €1001745.


https://doi.org/10.1101/005033
http://creativecommons.org/licenses/by-nd/4.0/

