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Abstract

Forest dynamics are highly dimensional phenomena that are not fully understood theoret-
ically. Forest inventory datasets offer unprecedented opportunities to model these dynamics,
but they are analytically challenging due to high dimensionality and sampling irregularities
across years. We develop a data-intensive methodology for predicting forest stand dynamics
using such datasets. Our methodology involves the following steps: 1) computing stand level
characteristics from individual tree measurements, 2) reducing the characteristic dimension-
ality through analyses of their correlations, 3) parameterizing transition matrices for each
uncorrelated dimension using Gibbs sampling, and 4) deriving predictions of forest devel-
opments at different timescales. Applying our methodology to a forest inventory database
from Quebec, Canada, we discovered that four uncorrelated dimensions were required to
describe the stand structure: the biomass, biodiversity, shade tolerance index and stand age.
We were able to successfully estimate transition matrices for each of these dimensions. The
model predicted substantial short-term increases in biomass and longer-term increases in the
average age of trees, biodiversity, and shade intolerant species. Using highly dimensional and
irregularly sampled forest inventory data, our original data-intensive methodology provides
both descriptions of the short-term dynamics as well as predictions of forest development on
a longer timescale. This method can be applied in other contexts such as conservation and
silviculture, and can be delivered as an efficient tool for sustainable forest management.
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Software and data availability1

The software to estimate transition matrices based on forest inventory was implemented2

by Jean Liénard in R version 2.15.1 (R Core Team, 2012) and is attached as a zip file to the3

submission.4

The database studied in this paper is available upon request to the Quebec provincial for-5

est inventory database (http://www.mffp.gouv.qc.ca/forets/inventaire/). Straight-6

forward modifications of the software allows to use with the USDA Forest Inventory and7

Analysis program (http://www.fia.fs.fed.us/).8
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1. Introduction9

Forest ecosystems are complex adaptive systems with hierarchical structures resulting10

from self-organization in multiple dimensions simultaneously (Levin, 1999). The patch-11

mosaic concept was actively developed in the second half of the twentieth century after12

Watt (1947) suggested that ecological systems can be considered a collection of patches at13

different successional stages. Dynamical equilibria arise at the level of the mosaic of patches14

rather than at the level of one patch. The classic patch-mosaic methodology assumes that15

patch dynamics can be represented by changes in macroscopic variables characterizing the16

state of the patch as a function of time (Levin and Paine, 1974). Forest disturbances are17

traditionally associated with a loss of biomass; however, Markov chain models based only18

on biomass do not capture forest succession comprehensively (Strigul et al., 2012). This19

limitation motivates the need for alternative formulations that are able to consider several20

forest dimensions instead of only one.21

Here we develop a novel statistical methodology for estimating transition probability22

matrices from forest inventory data and generalize classic patch-mosaic framework to multiple23

uncorrelated dimensions. In particular, we develop a landscape-scale patch-mosaic model of24

forest stand dynamics using a Markov chain framework, and validate the model using the25

Quebec provincial forest inventory data. The novelty of our modeling framework lies in the26

consideration of forest transitions within multiple dimensional space of macroscopic stand-27

level characteristics (biomass, average age of trees, biodiversity and shade tolerance index)28

that constitutes a generalization of the one-dimensional model of forest biomass transitions29

developed earlier (Strigul et al., 2012). Our framework is also substantially distinct from30

previous models of forest dynamics, where successional stages are ordinated using empirical31

observations on successional pathways (Curtis and McIntosh, 1951; Kessell and Potter, 1980;32

Logofet and Lesnaya, 2000).33

The Quebec forest inventory (Perron et al., 2011) is one of the extensive forest inventories34

that have been established in North America, among others led by the Canadian provincial35

governments and the USDA Forest Inventories and Analysis program in the USA. These36
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inventories provide a representative sample of vegetation across the landscape through a37

large number of permanent plots that are measured repeatedly. Although they were originally38

developed for estimating growth and yield, they were rapidly found to be extremely useful39

to studies in forest ecology, biogeography and landscape dynamics. Each permanent plot40

consists of individually marked trees that are periodically surveyed and remeasured. Each41

plot can be considered as a forest stand and then, theoretically, the forest inventories provide42

empirical data sufficient for parametrization and validations of patch-mosaic models (Strigul43

et al., 2012). However, practical development of the patch-mosaic forest models (i.e. their44

parametrization, validation and prediction) is challenging due to the underlying structure of45

the forest inventory datasets. These datasets are indeed collected at irregular time intervals46

that are not synchronized across the focal area, and data collection procedures including47

spatial plot design and tree measurement methods can be different at various survey times48

and conducted by different surveyors (Strigul et al., 2012).49

Our objective in this study is to develop a data-intensive method predicting the dynamics50

of forest macroscopic characteristics. The idea of a data-intensive modeling approach is to51

develop and explore a quantitative theory using statistical modeling, in contrast with the52

hypothesis-driven theoretical approach in which selected mechanisms are used to design53

and constrain models. We focus here on the development of the modeling framework and54

illustrate the application of the framework to a large forest inventory dataset spanning 3855

years of observations collected in Quebec. To overcome the issue of irregular samplings in56

time specific to forest inventory data, we develop a Gibbs sampling procedure for augmenting57

the data and infer the transition probabilities. Our particular use of Gibbs sampling58

(Pasanisi et al., 2012) has a substantial scientific novelty, as this is the first application of59

this statistical machinery to overcome the problems of irregularities in the forest inventory60

sample design. In this paper, we demonstrate the power of this statistical methodology in61

our application, and deliver it as ready-to-go tool for other applications by explaining every62

step, providing pseudocode, and original R code. We anticipate that this novel statistical63

methodology will be broadly used in forest inventory analysis as the issue of irregularities in64
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inventories has previously been a substantial hindrance (e.g. Strigul et al., 2012).65

We present in this paper the general methodology and demonstrate each of its steps on66

the Quebec dataset. In particular, we consider the dimensionality of stand characteristics67

in this dataset and present evidence that some characteristics are redundant. We apply68

the method to predict long-term dynamics of Quebec forests, as represented by a subset of69

macroscopic properties that best represent the variability in the data. We validate the model70

utilizing two different cross-validation schemes to split the original data, based on survey71

date (predicting later years using earlier years) and based on a random 2-folds partition of72

plots (comparing long-term predictions inferred from two independent subsets). We finally73

discuss the implications of this work, such as the effect of spatial and temporal variability,74

the independence of most forest variables, the effect of changing external drivers and of75

feedbacks.76

2. Patch-mosaic modeling framework77

The goal of this section is to introduce the modeling of patch-mosaic using Markov chains,78

which is generalized and employed to predict forest dynamics in the main text. The patch-79

mosaic concept assumes that the vegetation at the landscape level can be represented as80

a collection of isolated spatial units - patches - where patch development follows a general81

trajectory and is subject to disturbances (Watt, 1947; Levin and Paine, 1974). Patch-mosaic82

models are derived using the conservation law, which takes into account patch aging and83

other changes to macroscopic variables representing succession, growth of patches in space,84

and disturbances (Levin and Paine, 1974). The same general idea as well as mathematical85

derivations are broadly used in population dynamics to describe age- and size-structured86

population dynamics. Patch-mosaic models can be partial differential equations or discrete87

models depending on whether time and patch stages are assumed to be continuous or discrete.88

Classic continuous patch-mosaic models are based on the application of the conservation89

law to continuously evolving patches that can be destroyed with a certain probability, and90

can be represented by the advection equation (model developed by Levin and Paine, 1974,91
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for fixed-size patches) or equivalently by the Lotka-McKendick-von Foerster model (Strigul92

et al., 2008). The continuous patch-mosaic models have been used in forest ecology to model93

the dynamics of individual canopy trees within the stand or forest gap dynamics (Kohyama94

et al., 2001; Kohyama, 2006).95

In the case of patches changing in discrete time, the derivation of the conservation law96

leads to discrete-type patch-mosaic models. In particular, the advection-equation model97

(Levin and Paine, 1974) is essentially equivalent to several independently developed discrete98

models (Leslie, 1945; Feller, 1971; Van Wagner, 1978; Caswell, 2001). These models consider99

only large scale catastrophic disturbances (patch ”death” process), destroying the patch,100

which then develops along the selected physiological axis until the next catastrophic dis-101

turbance Levin and Paine (1974). The stochastic model we are considering here employs a102

Markov chain framework (Waggoner and Stephens, 1970; Usher, 1979a; Facelli and Pickett,103

1990; Logofet and Lesnaya, 2000; Caswell, 2001) that is capable of taking into account all104

possible disturbances.105

In a Markov chains model, the next state of a forest stand depends only on the previous106

state, and the probabilities of going from one state into another are summarized in what is107

called a transition matrix, denoted T .108

We summarize the distribution of states at time t as the row vector Xt, with length equal109

to the number of discrete classes of patch state and with a sum equal to 1. We can predict110

Xt+∆t by multiplying the transition matrix:111

Xt+∆t = Xt.T (1)

To project an arbitrary number n time steps into the future, one simply multiplies by112

T n instead of T . The Perron-Frobenious Theorem guarantees the existence of the long-term113

equilibrium, which can be practically found as the normalized eigenvector corresponding to114

the first eigenvalue, or by iterative sequence of state vectors. In this paper we employ the115

iterative method as it allows to derive forest states at different time steps in the future, for116
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example allowing to make predictions in 10, 20 or 30 years from now. To derive the long-term117

equilibrium we simply choose an n large enough to satisfy the condition:118

|Xt+n∆t −Xt+(n−1)∆t| < ε (2)

Three illustrative examples of simplified Markov chains are available in Appendix 1.119

3. Materials and Methods120

We address here the issue of constructing transition matrices from forest inventory data121

stemming from irregular sampling intervals and variable numbers of plots sampled in each122

year. We outline in the following the general concepts of the methodology along with prac-123

tical guidelines using the inventory led by the provincial Ministry of Natural Resources and124

Wildlife in Quebec (Appendix 1). The key steps to use Gibbs sampling to estimate a tran-125

sition matrix from irregular measurements are:126

1. Compute stand level characteristics for each plot and for each survey year. Analyze127

the dimensionality of these characteristics using correlation and principal component128

analysis;129

2. Construct temporal sequences of uncorrelated characteristics depending on forest sur-130

vey dates. Use Gibbs sampling to infer the transition matrix. This algorithm consists131

of random initialization of missing values followed by iteration of parameter estimation132

and data augmentation:133

• Parameter estimation: Compute the transition matrix using the (augmented)134

sequences of plot transitions.135

• Data augmentation: Draw new sequences conditional on the new transition ma-136

trix.137

The transition matrices for Quebec forests were obtained using this method with a three-138

year time step. Future and equilibrium landscape characteristics were predicted according139

to equations 1 and 2 (cf. Appendix 1).140
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3.1. Step 1: stand characteristics and dimensional analysis141

This step consists of (a) the selection of a set of stand-level forest characteristics, (b) the142

dimensional analysis of these characteristics, (c) their decomposition into uncorrelated axes,143

and (d) the discretization of these uncorrelated axes.144

Our modeling method can be applied for the prediction of any forest stand characteristic145

under the condition that it is computable from every single plot survey. The particular choice146

of the characteristics depends on available data and research objectives. A general guideline147

is that these characteristics should summarize data from individual trees into macroscopic148

indicators of stand structure, which can then be used to compare forests across different149

ecosystems. We consider six characteristics of Quebec forests according to the rationale pre-150

sented in Strigul et al. (2012) and Lienard et al. (2014). These characteristics are computed151

based on trees with a diameter at breast height larger than 90mm (see Appendix 1.1 for152

more details about the Quebec forest inventory measuring protocol). We denote S the set of153

species inside each plot and T the set of trees inside each plot, and compute for each single154

plot survey the following characteristics:155

• dry weight biomass, estimated from Jenkins et al. (2003), using the formula:
∑

i∈T e
B1i+B2ilog(di)

156

where B1 and B2 are species specific density constants , and d is the trunk diameter157

at breast height in cm. B1 and B2 have been derived from both US and Canadian158

studies, making it a suitable approximation for Quebec forests (Jenkins et al., 2003).159

The resulting aboveground biomass is expressed in 103 kg/ha.160

• basal area, computed as the sums of trunk diameters at breast height d:
∑

i∈T π
(
di
2

)2
.161

The basal area is expressed in m2/ha.162

• intra-plot diversity (evenness), computed as the Gini-Simpson index (Hill, 2003), with163

Ω(s) referring to the number of trees with species s and Ω(T) referring to the total164

number of trees inside each plot: 1 −
∑

s∈S

(
Ω(s)
Ω(T)

)2

. This provides an index in the165

0-1 range describing the species heterogeneity at the stand level, with high values166

indicating a high heterogeneity.167
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• extra-plot diversity (species richness), computed as the number of species present in a168

plot: Ω(S). In the Quebec dataset, this indicator ranges from 1 to 8 species, and is169

interpreted as another measure of diversity.170

• shade tolerance index, a new metric introduced by Strigul and Florescu (2012) and171

Lienard et al. (2014) describing the shade tolerance rank of species r:
∑

i∈T
Ω(s)ri
Ω(T)

.172

This index ranges from 0 to 1, with high values denoting forest stands composed of173

typically late successional species and low values denoting forest stands composed of174

typically early successional species in Quebec (Lienard et al., 2014).175

• average age, computed as the average of tree ages a :
∑

i∈T
ai

Ω(T)
. This commonly-used176

indicator approximates the stand age in the forest inventory analysis (see Strigul et al.177

2012 for a discussion of this characteristic).178

Statistical relations of these stand-level characteristics were analyzed using standard mul-179

tivariate methods. First, we computed the Pearson correlation coefficients both in the whole180

dataset and in the dataset broken down in decades (to avoid biases due to their temporal181

autocorrelation). We then performed a principal component analysis (PCA) to examine182

(a) the number of components needed to explain most of the variance as well as (b) the183

projection of characteristics in the space defined by these components.184

In general, it is possible for a multidimensional model to operate on the space of principal185

components. Such a model would (a) project the characteristics into the low-dimensional186

space given by the principal components, then (b) predict their dynamics in this new space,187

and finally (c) perform the inverse transformation to obtain predictions on the characteristics.188

In our application to the Quebec dataset, we discovered that four uncorrelated characteristics189

approximate well the principal component space (namely biomass, average age of trees, Gini-190

Simpson and shade tolerance indexes, cf. Results). Our model employs this approximation191

and is based on transition matrices of these forest characteristics. It substantially simplify192

interpretation of modeling predictions.193

Prior to the computation of transition matrices in the Markov chain framework, it is194
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necessary to discretize continuous variables into distinct states (Strigul et al., 2012). The195

general approach is to subdivide data into uniformly spaced states, with a precision that is196

small enough to capture the details of the distribution but large enough to be insensitive197

to statistical noise in the dataset. In addition, the computational effort needed to infer198

transition matrices is proportional to the square of the number of states, and available199

computational power may constitute a practical limitation to the number of states. In the200

Quebec dataset, the stand-level characteristics span different ranges (see Figs. 2 and 3 in201

Appendix), with the biomass distribution in particular showing a long tail for the highest202

values. In order to capture enough details of the distributions of the Quebec characteristics,203

we opted to remove plots in the long tail of the biomass (those with a biomass higher204

than 50,000 kg/ha, representing roughly 4% of the total dataset) and then subdivided the205

remaining plots into 25 biomass states. An alternative approach would be to merge the rarely206

occurring high-biomass states into the last state as was implemented in Strigul et al. (2012).207

We conducted a comparison of these two approaches and found no significant differences.208

For the other characteristics investigated (i.e. the internal diversity, shade tolerance index,209

and average age), we found that 10 states were enough to capture their distributions with210

sufficient detail.211

3.2. Step 2: Gibbs sampling methodology212

Inferring a Markov Chain model for characteristics computed with field data sampled at213

irregular intervals is a challenging problem. Indeed, the usual direct approach of establishing214

the n-year transition matrix by simply counting the number of times each state changes to215

another after n years can not be employed in most forest inventories, as successive mea-216

surements on the same plot are not made with constant time intervals. This irregularity217

in sampling results in states of the forest plots that are not observed, and can be modeled218

as missing data. Two classes of algorithms can be used to parameterize a transition matrix219

describing the dynamics of both observed and missing data: expectation-maximization (EM)220

and Monte Carlo Markov Chain (MCMC), of which Gibbs sampling is a specific implemen-221

tation. Both classes of algorithms are iterative and can be used to find the transition matrix222
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that best fits the observed data. EM algorithms consist of the iteration of two steps: in the223

expectation step the likelihood of transition matrices is explicitly computed given the distri-224

bution of the missing data inferred from the previous transition matrix estimate, and in the225

maximization step a new transition matrix maximizing this likelihood is chosen as the new226

estimate (Dempster et al., 1977). MCMC algorithms can be seen as the Bayesian counter-227

part of EM algorithms, as at each iteration a new transition matrix is stochastically drawn228

with the prior information of estimated missing data, and in turn new estimates for the229

missing data are stochastically drawn from the new transition matrix (Gelfand and Smith,230

1990). EMs are deterministic algorithms, and as such they will always converge to the same231

transition matrix with the same starting conditions; conversely, MCMCs are stochastic and232

are not guaranteed to converge toward the same estimate with different random seeds. While233

both algorithms are arguably usable in our context, the ease of implementation and lower234

computational cost of MCMC algorithms led us to prefer them over EM (Deltour et al.,235

1999). We selected Gibbs sampling as a flexible MCMC implementation (Geman and Ge-236

man, 1984). We provide in the following a brief presentation of Gibbs sampling. Additional237

implementation details are in Appendix 1.2, and we refer to Robert and Casella (2004) for238

the general principles underlying MCMC algorithms and to Pasanisi et al. (2012) for an ex-239

tended description of Gibbs sampling to infer transition probabilities in temporal sequences.240

In addition to the full explanation below, we also provide a pseudocode of the procedure241

(Box 1).242

To apply Gibbs sampling for the estimation of the transition matrices, it is required to243

include plot characteristics in a set of temporal sequences. For each plot p, this is done by244

inserting each characteristic s(p,i) measured in the i-th year at position i of a row vector Sp245

representing the temporal sequence of this plot. For example, if a plot p was sampled only246

at years 1 and 3 during a 5-year inventory, allowing for the computation of characteristics247

s(p,1) and s(p,3), then its sequence would be the row vector Sp = [s(p,1), •, s(p,3), •, •], where248

• denotes a missing value. The sequences are mostly composed of unknown values as only249

a fraction of the forest plots were surveyed each year. In the application to the Quebec250
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dataset, a reduction of the size of these temporal sequences was performed (see Appendix251

1.2 for a detailed description of this reduction and an illustrative example); however it is not252

a pre-requisite for the general application of Gibbs sampling. Let further Y be the matrix253

constructed using all the sequences S, with rows corresponding to successive measures of254

different plots and columns corresponding to different years. The preliminary step of Gibbs255

sampling consists of replacing the missing values • in Y at random, resulting in so-called256

augmented data Z [0]. Then, the two following steps are iterated a fixed number of times H,257

with h the index of the current iteration:258

1. in the parameter estimation step, we draw a new transition matrix Φ[h] conditional259

on the augmented data Zh−1, using for every row i:260

Φ
[h]
i |Z [h−1] ∼ Dir(γi,1 + w

[h−1]
i,1 , ..., γi,r + w

[h−1]
i,n ) (3)

with Dir is the Dirichlet distribution, γ are biasing factors set here uniformly to 1 as261

we include no prior knowledge on the shape of the transition matrix (Pasanisi et al.,262

2012). wi,j are the sufficient statistics reflecting the transitions in the augmented data263

Z [h−1], formally defined as264

wi,j =
∑

t ∈ years

∑
k ∈ plots

1{Z[h−1]
k,t−1=si & Z

[h−1]
k,t =sj}

(4)

with 1{Yk,t−1=si & Yk,t=sj} the count of sequences elements in the state si at time t − 1265

and in the state sj at time t.266

2. in the data augmentation step, we draw new values the missing states, based to the267

probabilities of the transition matrix Φ[h]. The probabilities P used to augment the268

data Z [h] are derived from their values in the previous iteration (Z [h−1]) as well as their269

values in the current iteration but in an earlier year (Z
[h]
k,t−1 for t ≥ 2):270

for the earliest data t = 1, P(Z
[h]
k,1 = sj|Z [h−1]

k,2 = si,Φ
[h]) ∝ Φ

[h]
j,i (5)
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for the latest data t = T, P(Z
[h]
k,T = sj|Z [h]

k,T−1 = si,Φ
[h]) ∝ Φ

[h]
i,j (6)

otherwise, P(Z
[h]
k,t = sj|Z [h]

k,t−1 = si1 , Z
[h−1]
k,t+1 = si2 ,Φ

[h]) ∝ Φ
[h]
i1,j
× Φ

[h]
j,i2

(7)
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Pseudocode 1: Estimate of the transition matrix of one stand characteristic
Data: Y , a matrix whose rows are sequences S of repeated measurements.
Result: M , the transition matrix
begin

transitions list ← ∅;
for r ← 1 to R do

/* initialization */

Obtain Z [0] by filling missing states from Y at random;
for h← 1 to H do

/* Parameter estimation */

Compute the sufficient statistics wi,j, ∀(i, j) ∈ [1, n]2 using Eq. 4;

Initialize Φ[h] as an empty n× n matrix;
for i← 1 to n do

Φ
[h]
i,1...n ← random values drawn from Eq. 3;

end
/* Data augmentation */

Z [h] ← Y ;
for k ← 1 to K do

if missing, Z
[h]
k,1 ← random value drawn from Eq. 5;

end
for t← 2 to T − 1 do

for k ← 1 to K do

if missing, Z
[h]
k,t ← random value drawn from Eq. 6;

end

end
for k ← 1 to K do

if missing, Z
[h]
k,T ← random value drawn from Eq. 7;

end

end
if h > B then

transitions list ← {transitions list, Φ[h]};
end

end

end
M ← mean of all matrices in transitions list
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As Gibbs sampling is initialized by completing the missing values at random, the first271

iterations will likely result in transition matrices far away from the optimal. The usual272

workaround is to ignore the first B transition matrices corresponding to so-called ”burn-in”273

period, leaving only H −B matrices. Furthermore, as Gibbs sampling relies on a stochastic274

exploration of the search space, a good practice to ensure that Gibbs sampling converged275

to the optimal transition matrix is to run the whole algorithm R times. There are no276

general guidelines for setting the H, B and R parameters (Robert and Casella, 2004). We277

empirically settled with H = 1000, B = 100 and R = 50 in order to ensure that the transition278

matrices were reproducible for the Quebec dataset, leading to R ×H = 50000 iterations of279

parameter estimation and data augmentation steps and resulting in R × (H − B) = 45000280

transition matrices. This process was repeated independently for each plot characteristic.281

The algorithm was implemented in R version 2.15.1 (R Core Team, 2012) and took a total282

runtime of 4 days on a 1.2 Ghz single-core CPU to compute the transition matrices for all 4283

characteristics studied here.284

4. Results285

4.1. Multivariate analysis of stand characteristics286

The correlation analysis performed on the Quebec forest inventory (Perron et al., 2011,287

Appendix 1.1) revealed that biomass and basal area were highly correlated (r = 0.96), as288

well as the external and internal diversity indices (r = 0.90, see Appendix 1.3 for the other289

coefficients). These correlations are further preserved when the correlation analysis is done290

separately on each decade, from the 1970s until the 2000s (cf. tables in Appendix 1.3),291

confirming the presence of time-independent strong correlations between these two pairs of292

characteristics.293

A PCA applied to the dataset further confirmed that the biomass and basal area on one294

hand, as well as the external and internal diversity on the other hand, have nearly identical295

vectors in the principal components space (cf. Appendix 1.4). Furthermore, this analysis296

showed that 4 principal components are required to adequately explain variance in the data;297
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using 3 components accounts for only 87 % of the variance, while 4 components explain up298

to 98 % of the variance. The PCA revealed that biomass, the internal diversity index, the299

shade tolerance index, and the average age are close approximations of the different principal300

components and explain most of the variance. Therefore, these variables have been employed301

in the following analysis.302

4.2. Interpretation of the transition matrices303

We present here in detail the transition matrix for biomass with a 3-year time interval,304

shown in Fig. 1 (the other characteristics are to be found in Appendices, in Figs. 7 and 8).305

In this matrix, each value at row i and column j corresponds to the probability of transition306

from state i into state j after 3 years. By definition, rows sum to 100%. This transition307

matrix, as with the others in Appendix, is dominated by its diagonal elements, which is308

expected because few plots show large changes in a given 3-year period. The values below309

the diagonal correspond to transitions to a lower state (hence, they can be interpreted as310

the probabilities of disturbance), while values above the diagonal correspond to transitions311

to a higher state (i.e., growth). The transitions in the first column of the matrix correspond312

to major disturbances, where the stand transitions to a very low biomass condition. As313

the probabilities above the diagonal are larger than below the diagonal, the overall 3-year314

prediction is of an increase in biomass. This matrix also shows that plots with a biomass315

larger than 40,000 kg/ha have a roughly uniform 10% probability of ending with a biomass of316

less than 20 000 kg/ha 3 years later, which is interpreted as the probability of high-biomass317

stand to go through a moderate to high disturbance.318
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Fig. 1. 3-year transition matrix for the biomass. The states are the biomass ranges in 103 kg/ha,
spanning from 0 − 2 to 48 − 50 103 kg/ha, and represented here on the left and on top of the
matrix. The values M(i, j) inside the matrix correspond to the rounded probability of transition
from state i to state j. The color represents the relative standard error of the mean and indicates
the robustness of the stochastic search, as explained in Section 4.3. Lighter colors thus indicate
a better confidence in the transition value; all relative standard errors of the mean (RSEM) are
below 1%, corresponding to a very high confidence, and furthermore the smallest errors are found
for the higher transition probabilities close to the diagonal.

4.3. Model validation319

Two main types of error should be considered when designing a model with a parameter320

search based on real data. The first error relates to the robustness and efficiency of the321

estimation of the optimal transition matrix, which was performed with Gibbs sampling in322

our case. The second type of error encompasses more broadly the capacity of the chosen323

theoretical framework to predict the system beyond the range of the dataset. In our case, the324

theoretical framework we relied on is patch-mosaic concept, implemented with the Markov325

chain machinery, to describe the dynamics of our four characteristics.326

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2015. ; https://doi.org/10.1101/005009doi: bioRxiv preprint 

https://doi.org/10.1101/005009


To estimate the errors of the parameter search, we used the R(H −B) transition matri-327

ces to compute for each transition the standard error of the mean (SEM) and the relative328

standard error of the mean (RSEM, defined as the ratio of the SEM over the transition prob-329

ability, and expressed as a percentage). The SEM were below 1% throughout the matrices,330

with the highest errors occurring for very low transition probabilities (i.e., far from the diag-331

onals). Furthermore, the RSEM were very low, and particularly so for the transitions with332

the highest probability (Fig. 1 in main text as well as Figs. 7 and 8 in Appendix). We finally333

computed the SEM in the long-term predicted equilibriums and found values below 0.01%,334

strengthening the conclusion that negligible errors are to be attributed to the stochastic fit335

procedure.336

An independent dataset would be most suited to estimate the more general errors in337

the ability of a Markov-Chain model to predict future forest characteristics. As there is no338

such dataset available, we performed two cross-validations of our methodology by splitting339

this dataset in two different ways. In the first, we ran the Gibbs sampler with only the340

first 18 years of records (from 1970 to 1988). We then used the model to predict forest341

state for the period corresponding to the second half of the dataset (i.e., 1989 to 2007), and342

we compared the predicted dynamics with the aggregated distribution of the second half343

of the dataset (Fig. 2). Overall, the predictions were highly accurate, with R2 between344

observation and prediction ranging from 0.8 to 0.95, indicating that the second half of the345

dataset is predictable with a Markov chain model based solely on the first half. In the346

second validation, we randomly split the data into two sets, regardless of year. We then347

computed the transition matrix and corresponding equilibrium conditions for each half (Fig.348

9 in Appendix). Here again, the predictions match closely with values of R2 higher than 0.98349

for the internal diversity, shade tolerance index and average age. The R2 was near 0.6 for350

the biomass, indicating that this variable is more sensitive to small changes than the others;351

however the difference in predictions were small, typically around 1% for each biomass state.352

This second validation overall showed that the data contained in the inventory is redundant,353

and that half of it is enough to provide highly accurate long-term estimates for the internal354
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diversity, shade tolerance index and average age. Considering only half of the data at random355

would likely result in errors of around 1% in the long-term estimates of the biomass.356
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Fig. 2. Results of model validation, showing the second half of the dataset vs the model prediction
for the classes of each characteristic (distribution in %). For each class, the circle size denotes the
number of stands belonging to it in the real dataset. The R2 measure is indicated on the top right
of each plot. The model used to make the prediction was computed using only the first half of the
dataset, corresponding to years 1970 to 1988 (see Materials & Methods for details).
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4.4. Predictions of temporal dynamics and long-term equilibrium357

We applied the inferred transition matrix to predict the state of forest in 2010s, 2020s358

and 2030s based on their distribution in 2000s. We also predicted the long-term dynamics359

of the forest stands, by computing the equilibrium states of the transition matrices. Overall,360

the predictions showed an increase in biomass and stand age (Fig. 3 e and h), along with361

a slight increase in biodiversity (Fig. 3 f) and a slight decrease of the prevalence of late362

successional species accompanied by a slight increase of early successional species (Fig. 3 g).363

These predictions are obvious for the biomass and average age of trees by looking at their364

distributions in the existing dataset (Fig. 3 a and d), while they are less clearly seen when365

looking at the average distributions of the biodiversity and shade tolerance index (Fig. 3 b366

and c).367
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Fig. 3. Current distribution of relevant characteristics from the database, along with the long-term
predictions of our models.

These long-term predictions were reached at different timescales depending on the char-368
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acteristics. For biomass, equilibrium was reached by approximately year 2030, but the other369

characteristics, and in particular the average age of trees in plots, showed much slower dy-370

namics to reach their equilibria (Fig. 3 e to h). The model predicted average relative changes371

of +38.9% and +14.2% by the 2030s for biomass and stand age, and +44.0% and +37.9% by372

the time they reach their long-term equilibrium state. Relative changes for the Gini-Simpson373

diversity index were +5.2% by the 2030s and +7.1% in the long term, and early successional374

species will become slightly more abundant with a change of -4.7% of the shade tolerance375

index by the 2030s and -13.6% in the long term.376

5. Discussion377

We developed a data-intensive approach to multiple-dimensional modeling of forest dy-378

namics. The modeling steps include 1) dimensional analysis of forest inventory data, 2)379

extraction of non-correlated dimensions, and 3) the application of stochastic optimization to380

compute probability transition matrices for each dimension. We applied this approach to the381

Quebec forest inventory dataset and validated the model using two independent subsets of382

data. Our study demonstrates that there exist at least four uncorrelated dimensions in Que-383

bec forests: the biomass, biodiversity, shade tolerance index and averaged age of trees. The384

most pronounced changes predicted for Quebec forests are increases in biomass and stand385

age. Our model also predicted smaller increases in biodiversity in the prevalence of early386

successional species. Our results demonstrate the utility of this methodology in predicting387

long-term forest dynamics given highly dimensional, irregularly sampled data; the model was388

computationally efficient and validation procedures demonstrated its ability to make short389

and long-term predictions. Therefore, the framework will be useful both in applied contexts390

(e.g., conservation, silviculture) as well as in developing our conceptual understanding of391

how forested ecosystems are organized through dimensional analysis of forest characteristics392

under the current disturbance regime.393
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5.1. Contribution to Markov chain forest modeling framework394

Markov chain models have a rich history of application in ecology, and, in particular,395

in forest modeling (Facelli and Pickett, 1990; Caswell, 2001). This modeling framework396

has been employed to describe forest transitions at different scales with various focal vari-397

ables, for example, succession models defined on the species and forest type level (Usher,398

1969, 1981; Waggoner and Stephens, 1970; Horn, 1974; Logofet and Lesnaya, 2000; Ko-399

rotkov et al., 2001), gap mosaic transition models (Acevedo et al., 1996, 2001) and biomass400

transition models (Strigul et al., 2012). Markov chain successional models (Usher, 1969,401

1981, 1979b; Facelli and Pickett, 1990) are able to predict changes in species abundance,402

but require a comprehensive knowledge of successional sequence of species replacement and403

transition probabilities between different successional stages. The empirically-based Markov404

chain forest succession model, which operates at the species level and assumes that the un-405

derlying Markov chain is stationary, requires only substantially large observations to estimate406

transition probabilities (Waggoner and Stephens, 1970; Stephens and Waggoner, 1980). On407

the contrary, the mechanistic Markov chain modeling approach developed by Horn (1974,408

1981) employs shade tolerance and gap dynamics to predict species replacement in the forest409

canopy given the species composition in the understory. However, this approach requires410

a detailed survey of the understory vegetation that is not commonly available in forest in-411

ventories. Also, gap dynamics individual-based models can be coupled with Markov chain412

models for scaling of gap dynamics to patch level (Acevedo et al., 1996, 2001). These tran-413

sitional models have been demonstrated to be useful and relevant tools in forest prognosis,414

however their practical applications are often limited. The Bayesian methodology proposed415

in this study allows to extend the scope of transition matrices by allowing their computation416

directly from forest inventory data, with corresponding modifications of the R code provided417

as a supplementary material. The proposed methodology of matrix estimation could be418

employed to test the validity of the Markov chain homogeneity assumption.419
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5.2. A data-intensive approach to understand forest dynamics420

Modeling complex adaptive systems such as forest ecosystems requires capturing the421

dynamics of biological units at multiple scales and in multiple dimensions (Levin, 1998,422

2003). Ideally, a mechanistic model based on the physiological processes and interactions423

of individual organisms should simulate the observed forest structure and predict forest424

dynamics over different time horizons and environmental variables. However, such individual-425

based modeling is very challenging as interactions between individual organisms within the426

forest stand result in new properties at the stand level, where essential mechanisms, spatial427

dimensions of variables, and functional relationships between variables are largely unknown.428

Given these unknowns, a data-intensive approach can be useful for gaining insight into429

ecosystem dynamics provided that sufficient amounts of relevant data are available (Kelling430

et al., 2009; Michener and Jones, 2012). In particular, the matrices we estimated (see Fig.431

1 in main text and Figs. 7 and 8 in Appendices) incorporate all forest changes related to432

different magnitude disturbances. This opens a possibility of the future investigation of how433

particular disturbances are reflected in the forest macroscopic characteristics and can lead434

to a logical extension of classic models that take into account only major disturbances, in435

particular, birth-and-disaster Markov chains (Feller, 1971), forest fire models (Van Wagner,436

1978), and advection-reaction equations for patch dynamics (Levin and Paine, 1974) .437

A potential limitation to a mechanistic interpretation of the transition matrices arises438

from the Markovian assumption that the transition toward the next state depends solely439

on the current state. If this assumption is not valid, it could bias these models. This440

assumption warrants further attention as it has not been yet comprehensively evaluated in441

forest modeling.442

Integral Projection Model (IPM) is another modeling framework that could be used in443

place of Markov chains (Easterling et al., 2000; Caswell, 2001). In IPM, continuous kernel444

functions are used instead of discrete transition probabilities. While IPM are by design suited445

to handle well data irregularly distributed across the states, they do not address explicitly446

the issue of sampling irregularities in time. The data augmentation approach developed here447
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can however be transposed to parameterizing IPM as well. Markov chains are preferable in448

our application because they are not restricted by the choice of IPM kernels. Indeed, biomass449

and stand age transitions can be decomposed into several kernels using commonly accepted450

assumptions of growth and disturbances, however there is no obvious way to choose kernels451

for biodiversity and shade tolerance index as their dynamics can not be understood in terms452

of a monotonic progression toward high values (Lienard et al., 2014).453

The application of MCMC procedures allows to compute transition matrices for datasets454

with irregular sampling intervals and sample sizes. While Gibbs sampling has been intro-455

duced 30 years ago (Geman and Geman, 1984), its application to handle missing data in456

ecology has been mostly limited to stochastic patch occupancy models with a low number of457

free parameters (5-6) and either artificially simulated data or relatively restricted datasets458

(e.g. 72-228 resampled locations in ter Braak and Etienne, 2003; Harrison et al., 2011; Risk459

et al., 2011). From the technical point of view, our application of MCMC differs by taking460

advantage of the absolute time independence of Markov chains (allowing us to align sub-461

sequences starting with a known observation, see Methods and Appendix 1.1). This makes462

the use of MCMC possible in a data-intensive context, in which both the number of free463

parameters (600 for the biomass matrix, 90 for each of the biodiversity, shade tolerance and464

stand age matrices) and the number of samples (32,552) constitute increases of several or-465

ders of magnitude. Similar irregularity problems are quite common in ecological datasets,466

and the presented approach may have numerous applications beyond the statistical analysis467

of forest inventories. This methodology can also be applied to other datasets, even with468

regular samplings, and the same methodology can be applied to deduce transitions with a469

finer temporal scale.470

In this study we have analyzed the Quebec forest inventories without explicitly taking471

into account the geographical location of plots, as well as the environmental and climatic472

variables. We have obtained transition matrices covering temperate to boreal forests, with473

a disturbance regime varying from canopy gaps to disastrous fires. We have repeated the474

developed approach after subdividing the Quebec dataset into the major ecological domains475
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and have not observed substantial differences between the resulting transition matrices and476

the general matrices presented in this study (Liénard et al. unpublished data). In addition477

to this, the biomass transition matrices computed for the Lake States in the US (see Strigul478

et al. (2012) Tables 2 and 3) and the shade tolerance index transition matrices computed in479

northeastern parts of the US (Lienard et al., 2014) are quite similar to the ones presented480

in this study. It is quite amazing in fact that we could represent the dynamics of stand481

level characteristics given the neglection of geography. We hypothesize that the forest stand482

dynamics as well as disturbance regimes have substantial similarities across a large number483

of boreal and temperate forest types, and this will be specifically addressed in our future484

studies. We believe that the ability to make broad predictions on the forest stand dynamics485

without going into the fine details of geography is one of the major strengths of our approach.486

The patch-mosaic framework has been already extensively employed in forest model-487

ing (Kohyama et al., 2001; Kohyama, 2006; Scherstjanoi et al., 2013). Our approach has488

substantial similarities with the previous studies using the same scientific background (see489

Appendix 1), however there are distinctions related to the definitions of the forest patch.490

The forest stand or (forest patch) in this work represent a unit of forest which is large491

enough to be a community of trees, where individual tree gap dynamics is averaged, but492

at the same time small enough to be a subject to intermediate and large scale disturbances493

(Strigul et al., 2012)[p.72]. This definition results in an estimate of about 0.5-1 ha, which494

allows to use forest inventory permanent plots directly as an approximate forest stand rep-495

resentations (the size of the standard Quebec forest inventory plot is about 625 m2 and the496

USDA FIA plot is 675 m2). In other application of patch-mosaic concept to forest dynamics497

the patches (stands) are often defined differently. The size of patches varies from the size498

of large individual trees (in this case the patch dynamics is essentially equivalent to the gap499

dynamics Kohyama et al., 2001; Kohyama, 2006; Moorcroft et al., 2001), through patches500

similar to employed in our study (Acevedo et al., 2001) to the much large forest patches501

representing many hectares of forest (Boychuk et al., 1997). The difference in definitions of502

the patch essentially reflects the different applications and questions that can be addressed503
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with particular models (see Strigul et al. (2012)[p.71] for an additional discussion).504

5.3. Predictions for forest dynamics in Quebec505

Our model made several notable predictions about future forest dynamics in Quebec.506

The most pronounced predicted changes are substantial short-term increase in biomass and507

a longer-term increase in average age of trees (Fig. 3). The increase in biomass is intuitively508

consistent with the increase in stand age, and both demonstrate a progression toward more509

mature stands. This progression is to be sustained throughout the next 20 years and beyond510

(Fig. 3), thus meaning that the unmanaged forests sampled in the inventory are currently511

far from their equilibrium state. The model also predicted smaller changes in biodiversity512

and the shade tolerance index. To understand stand maturation occurring with the small513

increase in the prevalence of early successional species, we must recall that neither biomass514

nor stand age are significantly correlated with shade tolerance index in the dataset (e.g.,515

r = −0.02 with 95% confidence interval [-0.03,-0.01] for biomass and shade tolerance, see516

Fig. 5 in Appendix). Thus, it is unsurprising that the predictions are not correlated.517

Further, the predicted changes happen with different temporal dynamics and have different518

magnitudes, and have probably distinct mechanisms. In particular, while biomass and stand519

age are affected by both individual tree growth (leading to an increase) and disturbances520

(leading to a decrease), the shade tolerance index is affected only by disturbances. On521

the one hand, small disturbances (e.g., individual tree mortality) will typically promote522

the recruitment of late successional species into the canopy through gap dynamics. On523

the other hand, intermediate and large-scale disturbances will facilitate early successional524

species via the development of large canopy openings (e.g. Taylor and Chen, 2011). Thus,525

increase of intermediate and large-scale disturbances may promote early successional species,526

while the overall increase in biomass and stand age would result largely from individual tree527

growth. Our work thus suggests that Quebec forests are not progressing toward higher shade528

tolerance states despite their continuous biomass and stand age growth. This result echoes529

recent studies which showed that shade tolerance is not the sole driver for forest succession530

in Canadian central forests (Taylor and Chen, 2011; Chen and Taylor, 2012).531

27

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2015. ; https://doi.org/10.1101/005009doi: bioRxiv preprint 

https://doi.org/10.1101/005009


The accurate prediction of the second half of the dataset obtained using only the first half532

of the dataset demonstrate that the natural disturbance regime in the forest plots sampled533

in the Quebec inventory did not change substantially over the last 30 years. In the context534

of global warming, this could mean either that (a) there is no substantial consequence yet535

on the macroscopic dynamics of Quebec forests or that (b) the climatic change consequences536

were already present in the first half of the dataset or that (c) our analysis is not fine enough537

to catch the signal of the recent climate change (in particular moving climatic boundaries,538

cf. McKenney et al., 2007, are not taken into account as the approach developed here is not539

spatially explicit). In all cases, the inclusion in the transition matrices of future disturbances540

induced by climatic change (e.g. the increase of forest fire reviewed in Flannigan et al.,541

2009) could be a promising follow-up of our work by providing quantitative insights on the542

consequences of global warming on forests. The study of changes in disturbances was not543

the focus of the current study, and we have to be careful in generalizing conclusions about544

global warming as the gradual non-stationary disturbance regimes might take from 50 to545

100 years to show significant departures (Loudermilk et al., 2013; Rhemtulla et al., 2009;546

Thompson et al., 2011).547

The multidimensional nature of forest stands creates substantial challenges for modeling.548

Our study demonstrates that at least four dimensions are uncorrelated in the Quebec dataset,549

and that stand characteristics cannot be collapsed around one variable. The data intensive550

model could be based on uncorrelated principal component axes. However, such a model551

would not lend itself to a simple mechanistic interpretations in terms of macroscopic forest552

characteristics. Therefore, we have developed the model using the mostly uncorrelated stand553

characteristics: biomass, biodiversity, shade tolerance index, and average age of trees. In554

this model, the small correlations between these characteristics (Figure 3 in Appendix) will555

propagate to the model predictions, potentially resulting in slightly correlated predictions,556

in contrast with a model developed on the principal components. However, this choice of557

dimensional variables has the decisive advantage of allowing for the meaningful interpretation558

of the transition matrices and predictions.559
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The constructed transition matrices have predictive power, as demonstrated in Section560

4.3. However, the universality of the predictions is intrinsically dependent on the repre-561

sentativity of the dataset, and a bias in data collection will be reported in the predictions.562

For this particular dataset for instance, we observed (and also predicted) increasing biomass,563

diversity, age and slight decreasing shade tolerance over time. However we should not expect564

forest stands affected by additional silvicultural operations, such as logging, to follow the565

trajectory recorded in the Quebec dataset. Thus, predictions made with this dataset should566

not be extended to them.567
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