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Abstract

In this paper we revisit the classic theory of forest succession that relates shade tolerance and
species replacement and assess its validity to understand patch-mosaic patterns of forested
ecosystems of the USA. We introduce a macroscopic parameter called the “shade tolerance
index” and compare it to the classic continuum index in southern Wisconsin forests. We
exemplify shade tolerance driven succession in White Pine–Eastern Hemlock forests using
computer simulations and analyzing approximated chronosequence data from the USDA
FIA forest inventory. We describe this parameter across the last 50 years in the ecoregions
of mainland USA, and demonstrate that it does not correlate with the usual macroscopic
characteristics of stand age, biomass, basal area, and biodiversity measures. We characterize
the dynamics of shade tolerance index using transition matrices and delimit geographical
areas based on the relevance of shade tolerance to explain forest succession. We conclude
that shade tolerance driven succession is linked to climatic variables and can be considered
as a primary driving factor of forest dynamics mostly in central-north and northeastern areas
in the USA. Overall, the shade tolerance index constitutes a new quantitative approach that
can be used to understand and predict succession of forested ecosystems and biogeographic
patterns.
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1 Introduction

Forest succession is a continuous stochastic process that occurs at the level of individual
trees and results in the replacement of one tree species by another at the level of forest
stands (Horn, 1974, White, 1979, McCarthy, 2001). Understanding the mechanisms under-
lying forest succession has remained a challenging scientific problem for more than a century
(Clements, 1916, Pickett et al., 1987, Huston and Smith, 1987). Existing succession theories
are mostly qualitative and represented as conceptual models having substantial limitations
in their appraisal and validation (Connell and Slatyer, 1977, Frelich and Reich, 1999, Platt
and Connell, 2003). Quantitative forest descriptions are typically based on simple indicators
(e.g., time since the last major disturbance) or on macroscopic stand characteristics calcu-
lated using forest surveys (e.g. stand age and size structures, tree abundance, biodiversity,
and biomass). However, these parameters are only remotely linked with forest succession.
The lack of quantitative characteristics capable to quantitatively describe successional pat-
terns in space and time hinders our ability to understand and predict changes of forested
ecosystems. Ideally, we would like to have quantitative variables describing forest succession
under different disturbance regimes. Such variables can be used to analyze stand dynam-
ics and spatial forest patterns within already existing modeling frameworks, such as the
hierarchical patch dynamics concept (Jianguo and Loucks, 1996, Strigul et al., 2012).

The classic succession paradigm has been formulated based on observations of temperate
forest patterns in Wisconsin, Michigan and New England (Clements, 1916, Cowles, 1911) and
in northern and Central Europe (Sukatschew, 1928). In this type of forest the gap dynamics
and shade tolerance driven succession are most noticeable and easy to observe. In a broad
range of plant ecology literature, including in major textbooks, shade tolerance is considered
as a primary factor underlying forest successional dynamics (Spurr and Barnes, 1980, Walters
and Reich, 1996, Smith, 1997). North-American tree species can also independently be
classified as early and late successional species based on their life history and physiological
traits (Parrish and Bazzaz, 1982, Huston and Smith, 1987). In the classic shade tolerance
succession paradigm, species that are shade intolerant and tolerant are analogous to early and
late successional species, respectively (Bazzaz, 1979). Replacement of early successional trees
by late successional trees is driven by small scale disturbances caused by wind, tree diseases
and tree removal (Yamamoto, 2000). Large scale disturbances such as hurricanes, severe
forest fire, clearcutting and some rare catastrophic events e.g. volcano eruptions significantly
change the successional stage of forest stands by promoting development of early successional
species (Bormann and Likens, 1979, Pickett et al., 1989). Particular disturbances often
have an intermediate scale and can be placed on a continuous scale of disturbances ( Laska,
2001, Turner, 2005). The interplay of disturbance regimes and successional processes results
in complicated and poorly understood multidimensional spatiotemporal patterns (Turner,
2005).

The goal of our research is to develop a quantitative approach that can be used to
appraise succession of forested ecosystems. In the present work we introduce a macro-
scopic stand characteristic called the shade tolerance index defined as a weighted average
of shade tolerant trees in a stand. We employ this new variable to describe patch-mosaic
properties of the U.S. forests using the Forest Inventory and Analysis (FIA) Program data
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(http://www.fia.fs.fed.us/). This database has been collected by the U.S. Forest Ser-
vice since the late 60s by surveying forested ecosystems across all U.S. ecological domains.
We compare the shade tolerance index to the continuum index in southern Wisconsin forests
using surveys from the FIA database, matching the location of the classic study of Curtis
and McIntosh (1951). We also assess the relevance of shade tolerance index to understand
forest succession in White Pine – Eastern Hemlock forest of northeastern US. This is done
using two approaches: analysis of approximated chronosequence from the FIA database and
individual-based computer simulations. We describe the shade tolerance index in mainland
USA, and we demonstrate that it does not correlate with other macroscopic characteris-
tics of forest stands. We finally characterize the dynamics of shade tolerance index based
on re-sampled plots in the database and we sketch geographical areas based on the impor-
tance of shade tolerance as a driving force for forest succession. The appendices include
description of the FIA database used in this study, quantitative tables of shade tolerance for
North-American trees, and additional statistical results.
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2 Shade tolerance index and succession dynamics

2.1 Shade tolerance and the classic model of succession

Shade tolerance is the ability of a tree to survive and develop under light limited conditions.
Overall, tree species can be ranked by their tolerance to different factors affecting tree growth
and survival, such as pollutants, heat, drought and nutrient deficiency. Therefore, shade
tolerance can be thought of as just one of these tolerance types (Shirley, 1943, Niinemets
and Valladares, 2006, Hallik et al., 2009). However, shade tolerance plays a special role in
forest development since light is one of the most important factors for tree growth (Zon and
Graves, 1911, Shirley, 1943, Baker, 1949). Ecological effects of shade are connected with
all aspects of a plant life cycle including growth, reproduction, and mortality. This was
noticed in numerous publications by both professional foresters and amateur naturalists. In
particular, Pliny the Elder described some ecological effects of shade more than 2000 years
ago (Pliny the Elder, 1855, Chapter 18). Henry David Thoreau wrote in his famous 1860
essay on forest tree succession: “The shade of a dense pine wood, is more unfavorable to
the springing up of pines of the same species than of oaks within it, though the former may
come up abundantly when the pines are cut, if there chance to be sound seed in the ground”
(Thoreau, 1992). The shade tolerance concept based on empirical data was developed in the
XIXth century and substantially influenced further development of plant succession theory
in XXth century (Cowles, 1911, Clements, 1916, Connell and Slatyer, 1977). In particular, as
early as 1852, German forester Heyer (1852) has published this conceptual framework and
a shade tolerance ranking table of European trees. Extended studies of the late 1800s to
early 1900s resulted in hundreds of research papers and several books providing synthesis
and shade tolerance tables for tree species in the northern Hemisphere (Morozov, 1908, 1912,
Zon and Graves, 1911, Sukatschew, 1928).

The shade tolerance tables classify tree species by their shade tolerance patterns along a
linear scale (Zon and Graves, 1911, Baker, 1949, Valladares and Niinemets, 2008). A typi-
cal shade tolerance classification consists of 5 uniformly distributed values: very intolerant,
intolerant, intermediate, tolerant and very tolerant trees. The earlier classifications have
been based on empirical observations of tree species growth under light limiting conditions,
including leaf density, rate of death of the bottom tree branches shadowed by the upper
tree branches (self-pruning), self-thinning of forest stands, density of trees in the under-
story and tree mortality (Morozov, 1908, 1912, Zon and Graves, 1911). Early experimental
studies examined physiological and morphological mechanisms underlying shade tolerance,
including differences in leaf morphological structure and photosynthetic activity to discover
mechanisms of shade tolerance (Morozov, 1908, 1912, Zon and Graves, 1911). The modern
species-specific shade tolerance tables have the same empirical character, but have been de-
veloped using the survey method. This is where teams of professional experts independently
evaluate different plant species with respect to their shade tolerance and the final ranking
is represented as a statistics of these independent evaluations (Baker, 1949, Humbert et al.,
2007). In particular, the shade tolerance tables for the US forests proposed by Zon and
Graves (1911) have been based on empirical observations and designed to be analogous with
European trees, for which several different classifications had been previously established.
These tables were revised for the first time 30 years later by Baker (1949), who employed

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2014. ; https://doi.org/10.1101/004994doi: bioRxiv preprint 

https://doi.org/10.1101/004994


summarized opinions of 55 foresters as well as published studies. The next substantial revi-
sion came after another 50 years, when Humbert et al. (2007) provided the shade tolerance
values not only for tree species but also for shrub, herbaceous, bryophyte and lichen species.
These consequent revisions obtained with the survey methods expanded the range of species
covered and have overall confirmed the earlier ranking of the major US tree species pro-
posed by Zon and Graves (1911). These existing shade tolerance rankings are species-level
expectations of individual-level random variables, and it is broadly recognized that there
exists substantial interspecific variability of shade tolerance depending on the environmental
conditions and tree age (Zon and Graves, 1911, Baker, 1949, Humbert et al., 2007, Kunstler
et al., 2009, Valladares and Niinemets, 2008). At the same time numerous quantitative stud-
ies based on the species-level shade tolerance values demonstrate that shade tolerance is one
of the major physiological traits correlated with other traits such as understory mortality
and growth (Kobe et al., 1995, Walters and Reich, 1996, Lin et al., 2001, Valladares and
Niinemets, 2008), photosynthetic and allocation patterns (Kitajima, 1994), tree morphology
(Messier et al., 1999), crown ratio (Lorimer, 1983), root distribution (Gale and Grigal, 1987)
and seed size (Hewitt, 1998).

The concept of shade tolerance is naturally linked with the concepts of forest succession
and disturbance. The classic successional model employs shade tolerance to explain the
following transitions in canopy tree composition after a major disturbance (Canham, 1988,
Smith, 1997, McCarthy, 2001):

primary successional trees (very shade intolerant)
↓

early successional trees (shade intolerant)
↓

late successional trees (shade tolerant)

This conceptual model historically states that the initial canopy is formed mostly by
primary and early successional species that are shade intolerant but tolerant to numerous
adverse factors affecting tree growth in the absence of the microclimate created by forest
canopy, for example water limitation, extreme temperatures, ice damage (Morozov, 1908,
Sukatschew, 1928, Shugart, 1984, Oliver and Larson, 1996). After the canopy is closed,
forest succession is driven by individual tree mortality and small disturbances that develop
relatively small gaps approximately equal to one average crown area which facilitate re-
cruitment of shade tolerant understory trees (Runkle, 1982, Pickett et al., 1987, Frelich and
Martin, 1988, Canham, 1988, Smith, 1997). The conceptual model of the forest gap dynam-
ics (White, 1979, McCarthy, 2001) includes two processes: 1) the development of forest gaps
in the canopy after the death of large trees, and 2) recruitment of understory trees into the
canopy. The gap facilitates recruitment of understory trees which are mostly shade toler-
ant (Yamamoto, 2000). Intermediate and large scale disturbances can create large canopy
openings and promote development and recruitment of faster growing early successional tree
species, which are mostly shade intolerant ( Laska, 2001, Platt and Connell, 2003).
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2.2 The shade tolerance index

According to the classic paradigm described in the previous section, the proportion of shade
tolerant versus intolerant trees is linked to the forest succession stage. We propose a quan-
titative parameter, the shade tolerance index, δ, to characterize stand successional stages as
follows:

1. Shade tolerance of every tree species is quantified by a number from an interval ρ = [0, 1]
where the range spans very intolerant to tolerant species. We will call the number ρ
the shade tolerance rank of a tree species.

2. δ, the shade tolerance index of the stand is defined as a weighted sum of the species
abundance on their shade tolerance ranks defined as:

δ =
k∑

j=1

ρjαj. (1)

In this formula αj is a measure of relative abundance of a species j in the stand, ρj is
a shade tolerance rank of the species j, and the index j runs through all k tree species
present in the stand.

The relative abundance parameter αj is estimated using the formula:

αj =
Ωj∑k
i=1 Ωi

, (2)

where Ωj is a measure of abundance of the tree species in the stand. This measure Ωj may
be calculated using all the trees in the stand or only for some particular group of trees, for
example the canopy or the understory trees.

The relative abundance measure αj, is a number in the interval [0, 1] and obviously∑k
j=1 αj = 1 regardless of the choice for the measure Ωj. Since all ρi are in [0, 1], the shade

tolerance index δ, is also a number from [0, 1]. Specifically, δ is equal to 0 if all the trees in
the stand are very shade intolerant and equal to 1 if all trees are shade tolerant. In Appendix
1, we address the technical points of the practical calculation of Ωj as well as ρj. We also
investigate the robustness of the shade tolerance index of the stand δ with respect to the
way in which Ωj and ρj are defined.

The shade tolerance index can be calculated at the level of individual trees with ρ as
a function of a tree life history, size, age and environmental factors, however, given the
lack of such information, we employ the average tree species values according to the shade
tolerance ranking tables. Specifically, we quantify the species as following: very intolerant =
0, intolerant = 0.25, intermediate = 0.5, tolerant = 0.75, and very tolerant = 1 (Appendix
1).

2.3 Comparison with the forest continuum index

The classic forest succession paradigm was historically developed under a strong influence
of the studies conducted in the Lake States (MI, WI and MN). In particular, both Clements
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(Clements, 1916) and Cowles (Cowles, 1911), the founders of this paradigm, have done their
field research in this area. Later, Curtis and McIntosh (1951) have developed the classic
continuum index to describe successional patterns in southern Wisconsin. This landmark
paper was an important step in the development of forest succession theory that influenced
numerous studies and theoretical developments, in particular the continuum hypothesis of
vegetation (McIntosh, 1967, Nakamura, 1985), gradient analysis of vegetation (Whittaker,
1967) and ordination of plant communities (Bray and Curtis, 1957, Austin, 1977, 1985). We
anticipate that the shade tolerance index is capable of capturing successional patterns, and
we compare these indexes in southern Wisconsin.

Curtis and McIntosh (1951) studied successional patterns in a collection of 95 selected
forest stands. The authors selected this snapshot of the forest stands at different successional
stages to characterize the continuous transition from early successional stages to the climax
stage. The importance values corresponding to tree species have been computed based on
respective species dominance within the stands. Using tree dominance data, these stands
were positioned along the continuum line representing a forest succession sequence. Accord-
ing to this continuum index axis, Curtis and McIntosh (1951) assigned numerical values to
the tree species within the stands called the climax adaptation numbers. The authors have
also demonstrated that the constructed continuum index is related to soil factors such as
exchangeable calcium concentration and soil acidity.

Curtis and McIntosh (1951) did not employ the concepts of shade tolerance and gap
dynamics to derive the climax adaptation numbers. However, they indicated that the calcu-
lated climax adaptation numbers are parallel to the shade tolerance ranking used in forestry
(Curtis and McIntosh, 1951, pp. 489-490). Our mechanistically-based approach of obtaining
the successional axis is substantially different from the empirical-based approach employed
by Curtis and McIntosh (1951). In particular, the shade tolerance index is based on inde-
pendently established shade tolerance rankings, while the continuum index relies solely on
the composition of sampled plots.

The original data used by Curtis and McIntosh (1951) is not available, and we reproduced
a similar analysis using the FIA data. We have calculated the same statistical characteristics
using a sample of about 7000 FIA plots on mesic soils corresponding to the same geographic
area as the original article did by using Figure 1 in Curtis and McIntosh (1951) as a reference
(see Figure 1 in the Appendix 2). The original study took into account only forest stands that
were: 1) “natural forests (i.e. not artificially planted)” of a minimum size of 40 acres, 2) “free
from disturbances in the form of fire, grazing or excessive cutting”, and 3) “upland land forms
on which run-off water never accumulate” (Curtis and McIntosh, 1951, p. 480). Similarly to
the original study, we restricted the analysis to mesic soils (criterion 3). However, in contrast
with Curtis and McIntosh (1951) we analyzed all forested plots, including planted forests
(criterion 1), and we did not filter out plots based on environmental disturbances (criterion
2).

Our extension of Curtis and McIntosh (1951) analysis to a wider range of plots resulted in
a more diverse species composition. Indeed, only 21 species were considered in the original
study, while the actual database plots that we used contain 84 species. To be able to
compute the original importance values (Curtis and McIntosh, 1951), we only consider the
trees belonging to the 21 species in the original work when computing both the continuum
and well as the shade tolerance index. This modification led to a smaller magnitude of the
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importance value, but overall our results are in good agreement with the original results
(Figure 1 vs Figures 5,6,7 in Curtis and McIntosh, 1951). Our results are also in agreement
with the work of Rogers et al. (2008) who re-sampled the same sites as Curtis and McIntosh
(1951) some 50 years later. In particular, we notice that the relative importance value of
red oak (Quercus rubra), black oak (Quercus velutina) and secondarily white oak (Quercus
alba) have decreased compared to sugar maple (Acer saccharum).

Figure 1: Comparison of the continuum index ( left) and shade tolerance index ( right) in southern
Wisconsin. Similarly to the original study (Curtis and McIntosh, 1951), the species were split in
two groups: major ( top) and lesser (bottom) species. Bars indicate the standard error of the
mean.

Overall, the successional pattern observed by Curtis and McIntosh (1951) did not change
substantially over the several decades, and the original plot sampling restrictions do not
substantially affect the observed patterns. At the same time, we have been able to observe
successional patterns on a broader range of the continuum index than Curtis and McIntosh
(1951) (continuum index changes from 300 to 3000 in Figure 1 and only from 632 to 2650
in the original paper). There are some remarkable successional patterns observed on these
additional intervals of the continuum index scale ([300−700] and [2600−3000]). In particular,
black oak has an obvious peak of its importance value at about 700 (Figure 1), that was
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not observed in the original study and the sugar maple’s importance value monotonically
increases along the continuum index. There is a good qualitative correspondence of the
species ordination between the continuum index axis and the shade tolerance axis (Figure
1), demonstrating the ability of the shade tolerance index to describe forest succession. Other
traditional indicators such as biomass, basal area, biodiversity or stand age do not allow to
discriminate between species (Figures 2 and 3 in Appendix 2).

2.4 Successional dynamics

The forest stand dynamics theory states that after a major disturbance stand development
follows four consecutive stages: initiation, stem exclusion, understory reinitiation, and old-
growth (Oliver and Larson, 1996, Smith, 1997). The stand initiation stage marks the onset
of succession by regeneration of open space from seed, sprouts and advance regeneration,
and lasts until the canopy closes. Different disturbances leave various types of biological
legacies providing highly variable initial species composition (Franklin et al., 2007, Swanson
et al., 2010). In the second stage of stem exclusion, the light-driven competition becomes the
major determinant of survival, resulting in a domination of fast-growing early successional
species. The third stage, understory reinitiation, is characterized by the selective recruitment
of understory trees in the canopy through gap-dynamics. The final stage, the old-growth
corresponds to the climax state of the forest, where the species composition is stable.

The shade tolerance index will be used to interpret and quantitatively measure these
dynamics. Figure 2 summarizes the conceptual model of shade tolerance driven successional
dynamics after a major disturbance. From the definition of the shade tolerance index, we
expect an initial decrease of the index value during the reinitiation and stem exclusion
stages. This is due to the higher mortality of shade tolerant species that are less resistant
to the large number of unfavorable environmental factors, as well as to their exclusion by
faster growing shade intolerant species. During the understory reinitiation stage, the shade
tolerance index will monotonically increase due to recruitment of shade tolerant species in
the canopy. In the old community stage we expect the shade tolerance index to remain stable
in the absence of intermediate and large scale disturbances. This conceptual model is in very
good agrement with our results, including analysis of the White Pine – Eastern Hemlock
succession presented below and data mining of FIA dataset (section 3.2 and Appendix 3).
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Figure 2: Conceptual model of shade tolerance index dynamics after a major disturbance. The
initial proportion of seedling of shade tolerant and intolerant species can be very different due to the
nature of the disturbance and biological legacies. Shade intolerant species outgrown shade tolerant
species during the stem exclusion stage of the forest stand development, leading to the index decrease.
Shade tolerant species gain an edge over shade intolerant species via canopy gap dynamics, resulting
in the index increase during the understory reinitiation stage, and its further stabilization as the
forest approaches the old growth stage.

We assess the conceptual model of Figure 2 by considering a two-species system consisting
of shade intolerant White Pine and shade tolerant Eastern Hemlock. This system embeds
the classic shade tolerance paradigm as it demonstrates the shade tolerance trade-off, and
at the same time, it plays an important role in the successional dynamics of the temperate
forest in the Eastern part of the United States (Bromley, 1935, Nichols, 1935, Burns and
Honkala, 1990). We analyze the predictions of a forest gap model (Strigul et al., 2008), and
compare them to the approximated chronosequence extracted from the FIA database, in
order to examine the shade tolerance dynamics on this bicultural system.

Traditionally, individual-based gap dynamics models are employed to quantitatively pre-
dict stand development after major disturbances (Shugart, 1984, Pacala et al., 1993, Bug-
mann, 2001). Gap models are parameterized by individual-tree data and can be used as a
tool to simulate shade tolerance driven succession and statistical characteristics of canopy
recruitment (Acevedo et al., 1995, Dubé et al., 2001). The White Pine – Eastern Hem-
lock system was previously simulated using the crown plastic version of the SORTIE model
(Strigul et al., 2008, Figure 12, p. 535), and this model is employed now to assess the
temporal dynamics of shade tolerance index. In this model, the shade tolerance trade-off is
simplified and limited only to differences in tree growth and mortality, and does not involve
interspecific differences in the seed dispersion and reproduction strategy. In particular, both
species have the same initial number of seedlings and new seedlings emerge every year in
the same quantity. This simulated scenario of the forest succession has been started after a
major disturbance, and Figure 3 shows changes of shade tolerance index. The successional

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2014. ; https://doi.org/10.1101/004994doi: bioRxiv preprint 

https://doi.org/10.1101/004994


dynamics are essentially driven by the shade tolerance trade-off: White Pine is the large tree
that grows faster in the full light, but has a higher mortality in the understory, while Eastern
Hemlock grows slower but survives in the light limited conditions. The canopy gaps devel-
opment is randomly driven by individual tree mortality that provides lottery recruitment of
understory trees, and this mechanism is sufficient to obtain the early decrease followed by a
progressive increase of shade tolerance postulated by the conceptual model of Figure 2.

Figure 3: Computer simulation of White Pine - Eastern Hemlock forest stand. Shade tolerance
index as a function of the implied stand age (left) and cumulative basal area of White Pine and
Eastern Hemlock (right) as a function of the implied stand age. The simulation is conducted using
the crown plastic SORTIE model following Strigul et al. (2008) for one hectare and 1000 years, the
parameter values are similar to the original paper except the mortality of both species was reduced
to 5%.

We compare the results of computer simulations with the statistical analysis of White
Pine – Eastern Hemlock forest stands from the FIA database (Figure 4). We consider here
approximate chronosequences, as the plots are ordinated relatively to the average age of
trees (see Appendix 1), the time since last disturbance being not available. The approxi-
mated chronosequence based on the FIA data can be used for model validation in case forest
succession data obtained at one particular location are not available (Purves et al., 2008).
The stands are observed throughout northeastern parts of the US. We isolated all plots in
the database with more than 75% of cumulative basal area composed by these two species,
resulting in a pool of 1375 plots (see Figure 1 in Appendix 3 for their locations). The com-
parison of Figures 4 and 3 demonstrates striking qualitative similarities between computer
simulations and the chronosequence. Specifically, the initial distribution of seedling shade
tolerance index decreases in the early years as the faster growing pioneering species start
to dominate the canopy. These then reach high values as shade tolerant species eventually
dominate the early successional species. Similarly, the cumulative basal areas show the same
pattern of early dominance of White Pine before Eastern Hemlock take over in old stands.
These results are in agreement with the conceptual model (Figure 2).
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Figure 4: Approximated chronosequence of White Pine – Eastern Hemlock forest stands in the
northeastern US. Analyzed data consist of 1375 USDA FIA plots, where these species account for
more than 75% of the total basal area (Appendix 3). Shade tolerance index (left) and cumulative
basal area of White Pine and Eastern Hemlock (right) as a function of the implied stand age
(Appendix 1). The shaded areas represent the standard error of the mean. The last bin “120+”
includes 3% of the plots.
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3 Spatiotemporal patterns of US forests

In this section we analyze forest stand mosaic in mainland US using the FIA dataset. The
goal is to understand statistical relationships between forest characteristics and patch mosaic
patterns related to shade tolerance. We first conduct a descriptive statistical analysis of shade
tolerance patterns, and compare them to indicators of implied stand age, diversity, biomass
and basal area. We then study shade tolerance dynamics by grouping all permanent plots
according to the Bailey’s ecoregions classification, which relates climatic factors and species
compositions (c.f. Bailey, 1995, see Figure 1 in Appendix 1 for a map of the ecoregions).
Our analysis allows us to delimit areas and conditions in which shade tolerance is a major
driver for succession.

3.1 Descriptive statistics and correlations

The stand-level characteristics display different spatial patterns in their distribution across
regions (Figure 5). To further study the spatial distribution of the characteristics, we clas-
sified plots according to geographically defined areas sharing common ecological properties.
We employed Bailey’s province subdivisions because they are fine enough to discriminate
between major plan formations, yet large enough to allow for the statistical description of
forest patch mosaic (see Figure 1 in Appendix 1). Descriptive statistics further confirm
important disparities in the various indicator’s distributions across provinces (Appendix 1).
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Figure 5: The stand-level characteristics of plots for all years demonstrate very heterogeneous forest
types in the US, with no obvious common distribution pattern between indicators. Maps of subsets
of plots from different decades are similar and can be found in Appendix 1.

The overall correlation pattern (Figure 6) indicates that the shade tolerance index does
not significantly correlate with any other macroscopic characteristics employed in this paper.
However, some of the other measures are correlated: biomass with basal area (confirming
the previous study of Strigul et al., 2012), and Gini-Simpson diversity with species richness.
Correlation matrices have been further calculated separately for all provinces in mainland
USA (Figure 5 in Appendix 4) and all inventory years with more than 500 plots recorded
from 1968 to 2012 (Figure 4 in Appendix 4). Correlations between different variables were
virtually identical for all the inventory years and different ecoregions. This result is similar
to what we obtained by analyzing another dataset for Eastern Canada forests (Lienard
et al., 2014). The fact that different stand characteristics share a common structure is
surprising given the very high variability across North-American forests in terms of species
composition, disturbance regimes and land-use history. This stable correlation structure
allows to apply multi-variate statistics to define uncorrelated axes describing variability of
forest stands through a principal component analysis (Lienard et al., 2014), where the shade
tolerance index matches one of the principal component axes. The fact that shade tolerance
index has been repeatedly shown to be uncorrelated with other macroscopic characteristics
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demonstrates its usefulness in the statistical description of the mosaic of forest patches.

Figure 6: Stand characteristics correlation matrix based on the whole database; the numbers below
the diagonal are the Pearsons coefficients (with 95% confidence intervals) and the circles above
the diagonal provide visual indications of the correlations. Breakdowns for different ecoregions and
different years are presented in Appendix 4 (Figures 5 and 4).

3.2 Ecoregion classification

To understand the shade tolerance dynamics, we computed and analyzed the transition
matrices for shade tolerance index, by employing an original Bayesian approach (Lienard
et al., 2014, see also Appendix 5). We discretized the continuous [0, 1] range of shade
tolerance index into 10 even states, the first state being [0, 0.1], and the tenth being [0.9, 1]
and estimated a 3-year transition probability matrix in each province. Due to the stochastic
nature of Gibbs sampling (Appendix 5), transition matrices computed from a very small
number of measurements are meaningless. In this study we consider the transition matrices
obtained in provinces with more than 150 remeasured plots (Figure 7).

The complexity of forest disturbance regimes leads to the non monotonic successional
dynamics within stands, which is reflected in the non-zero coefficients of transition matrices
(Figure 7). Intermediate and large scale disturbances can promote development of shade
tolerant or intolerant trees depending on stand conditions. These disturbances thus cause
nonmonotonic behavior (such as sudden jumps and drops) of the shade tolerance index. In
particular, in the case of a substantial part of the shade intolerant canopy trees being de-
stroyed and the well-developed shade tolerant understory trees recruited into the canopy, we
will observe the jump of the index. In another scenario, an intermediate or large disturbance
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of shade tolerant tree canopy with no developed understory will facilitate development of
shade intolerant species and lead to a drop in the index. These transitions are captured in
the matrices of Figure 7.

Ecoregions with succession driven by shade tolerance should have transition probabilities
in accordance with the conceptual model of Figure 2, which predicts three different phases
of shade tolerance dynamics: (a) a decrease in the early stages, followed by (b) an increase
and eventually (c) a stabilization. The matrices of Figure 7 capture all forest transitions
disregarding the implied stand age. It is possible to study specifically the initial dynamics
of shade tolerance index by computing transition matrices on the subset of plots with a
stand age less than 20 years. These matrices (Figure 2 in Appendix 5) demonstrate that a
decreasing pattern in the early stages is quite common in the different ecoregions and that
the shade tolerance index varies substantially within young forest stands in agreement with
the conceptual model. The observed compositions of earlier successional forests are also in
agreement with the stand dynamics theory stating that both earlier and late successional
species occur during the stand initiation (Swanson et al., 2010, Smith, 1997, Chapter 7,
Figure 7.1). However, the limited number of observed transitions of very young stands
prevents this analysis to be applied on most US ecoregions. To study systematically the
applicability of the shade tolerance succession paradigm to different ecoregions, we further
derived two quantitative criteria based on (a) distributions of the shade tolerance index in
all plots, and (b) transition matrices in all re-sampled plots (Figure 7).
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Figure 7: 3-year transition matrices of the shade tolerance index for all provinces with n > 150 re-
sampled plots. Mi,j, the value located in row i and column j of a given matrix M , is the probability
in percent of transition from state i to state j after 3 years. At the right of the matrices, bar graphs
show the overall distribution of plots along the states in the provinces. For easier reading, the color
coding for these distributions are also reported in the transition matrices.

First, the shade tolerance index should take substantially different values depending on
stand age according to the conceptual model of Section 2.4. Indeed, projecting this model
on forest stand mosaic within an ecoregion, we anticipate that stands with all possible shade
tolerance index will occur, from low values (for plots in the early stages) to high values
(for old-growth plots). Quantitatively, this disparity can be assessed by characterizing the
shape of the shade tolerance distribution in the forest inventory dataset. In particular, the
limited width of the distribution indicates that the shade tolerance is not the primary factor
in succession within a given ecoregion. We use the width encompassing 95% of the shade
tolerance index as the first criterion for ecoregion classification (Figure 8). The restriction
of the distribution width to 95% removes outliers existing in the database that can be seen
in distributions of all stand characteristics presented in Appendix 1.

Second, we expect that shade tolerance should be quicker to reach its equilibrium after
a perturbation in the case when shade tolerance is the major driver for succession than in
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the case when shade tolerance is a secondary factor. To assess this, we compute the spectral
gap as a global measure characterizing the average time needed by a plot to reach the shade
tolerance equilibrium after a random perturbation. Formally, this metric is defined as 1−λ2,
where λ2 is the second highest eigenvalue of the transition matrix (Levin et al., 2009). For
a province, high values of this metric mean that the time needed to reach shade tolerance
equilibrium is long, which is interpreted as a weak shade tolerance driver for succession. We
computed this metric only for provinces for which we can have a reliable estimate of the
transition matrices (Figure 8 in main text and Table 1 in Appendix 5).

In the ecoregion classification, we characterize the shade tolerance distributions as either
“wide” or “narrow” according to their value compared to the median distribution width
(Table 1 in Appendix 5). Similarly, we distinguish between “fast” and “slow” convergence
toward equilibrium based on the relative spectral gap value compared to the median spectral
gap. We were thus able to delimit different kinds of ecoregions based on their shade tolerance
dynamics (Figure 8).

We can distinguish three main types of ecoregion. First, some ecoregions are clearly
driven primarily by environmental factors not related to light, and thus do not exhibit
different shade tolerance across plots. These regions correspond to the “narrow” shade
tolerance distributions in Figure 8 (e.g. deserts in 321, 315 and similar). Second, some
ecoregions have succession only driven in a minor way by shade tolerance, with other factors
being more important. These regions are characterized by a “slow” convergence toward
shade tolerance equilibrium after a disturbance in Figure 8 (e.g. more fire resilient species in
fire-driven environments such as 231, 232 and 411). Third, ecoregions that associate both (a)
a spatial mosaic of patches with different shade tolerance index and (b) a fast convergence
back to shade tolerance equilibrium after a random perturbation, constitute the most suitable
provinces to embed the shade tolerance based theory of succession (mostly in north-central
and northeastern parts of the USA). Overall, in Figure 8, the succession is orange plots are
driven mainly by shade tolerance; red and dark green plots are driven secondarily by shade
tolerance; light green plots are driven mostly by other tolerances.
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Figure 8: Classification of ecoregions based on shade tolerance distribution width and spectral gap.
Top: the disparity of shade tolerance is measured as the interval width containing 95% of the shade
tolerance index. Middle: the spectral gap of the transition matrices quantifies the convergence rate
after a disturbance, where low values mean that one plot is quick to reach equilibrium after the
occurrence of a random disturbance. Bottom: classification of ecoregions. Provinces where forest
succession is primarily driven by shade tolerance exhibit a wide distribution of shade tolerance index
as well as a fast convergence toward shade tolerance equilibrium.20
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We have applied our shade tolerance classification at the level of the provinces (Figure
8), however the classification provide clear distinctions at higher levels of the biogeographic
hierarchy, at the division and domain levels (Figure 2 in Appendix 4; Bailey, 1995). This
is an impressive evidence that shade tolerance driven succession is strictly linked with large
scale climatic factors and biogeography. Indeed, the biogeographic division of the US forests
into domains, divisions and provinces is based on different principles than the shade tolerance
based classification (Bailey, 1995, 2004). The shade tolerance classification classification also
explains some relationships between spatial distributions of different stand-level character-
istics presented in Figure 5. One immediate observation is the clear transitional patterns
within the Humid Temperate Domain (200) of Eastern US. Indeed, forests in the Warm
and Hot Continental Divisions (210, 220) are driven by shade tolerance succession (Figure
8) and consist of highly diverse forest stand mosaics with respect to biomass, biodiversity
and stand age distributions (Figure 5, Appendix 1). On the other hand, forests in the Sub-
tropical Division (230) are not driven by shade tolerance succession and consist mostly of
shade intolerant young stands differing in biomass (Figure 5). Lower Mississippi Riverine
Forest Province (234) is an obvious exception in this division, as this truly unique province
is located in Mississippi River floodplain and consists of low forested terraces and swamps
(Bailey, 1995).

Mountain provinces are typically distinct in their classification from surrounding provinces.
In particular, M211 (Adirondack - New England Mixed Forest - Coniferous Forest - Alpine
Meadow Province) and M221 (Central Appalachian Broadleaf Forest - Coniferous Forest -
Meadow Province) are classified as not being driven by shade tolerance whereas other north-
eastern ecoregions are classified as being driven by shade tolerance. The vegetation of these
two mountain areas is specifically determined by vertical zonation Bailey (1995), where very
close patches may be affected by very different climatic conditions, indicating the prevalence
of other tolerances over shade tolerance. In addition, mountain forests have different under-
story light regimes and recruitment patterns, for example, a substantial fraction of moun-
tain forests in New England (M211) is completely dominated by conifer species ranked as
shade tolerant. Overall, mountain forests in New England and several other mountain areas
across different domains, such as Mountain Provinces in the Mediterranean Division (M260)
and Arizona-New Mexico Mountains Semidesert-Open Woodland–Coniferous Forest–Alpine
Meadow Province (M313) - appear in the same narrow distribution and fast convergence
group (Figure 8). At the same time mountain forests of Oregon and Washington (M240,
Marine Division Mountain Provinces), located in the western part of the Humid Tempera-
ture Domain, display a distinctive pattern of wide distribution and slow convergence. The
low number of available remeasured plots (less than 150) in northern provinces within the
Dry Domain did not allow us to conclusively employ our methodology. In particular, the
Temperate Steppe Division (330) as well as its mountain provinces (M330) were not clas-
sified using the spectral gap criterion (Figure 8). Forests in the southern part of the Dry
Domain (Figure 8), such as Tropical Subtropical Steppe and Desert Divisions (310, 320), are
classified as not being driven by shade tolerance, consistently with their low biomass, low
diversity and relatively old stands completely dominated by shade intolerant species (Figure
5).

Qualitatively, the regions proposed to be shade tolerance driven exhibit also regular
transition matrices, with high values concentrated primarily on the main diagonal, and
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secondarily on the upper diagonal above it (Figure 7). We also compared our conceptual
model with the dynamics of shade tolerance index using the chronosequence approach (Figure
1 in Appendix 5). The obtained regressions complement our classification by demonstrating
that ecoregions with narrow distributions do not display the expected decrease in the early
stages followed by an increase during the understory reinitiation (Figure 2).
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4 Discussion

The shade tolerance index introduced in this paper is designed as a quantitative measure of
forest succession according to the classic theory based on gap dynamics and replacement of
shade intolerant by shade tolerant species. This study shows that this index can be utilized
to understand the forest stand dynamics in ecoregions where the classic theory is validated,
as it represents forest succession scale. In particular, our results demonstrate that this index
is in agreement with the continuum index developed by Curtis and McIntosh (1951) as well
as the gap model simulation (Strigul et al., 2008). However, there are several challenges
in the interpretation of the shade tolerance index results, which are related to existence of
different successional pathways, disturbance regime complexity, spatial heterogeneity and
non-stationarity of environmental variables.

The shade tolerance axis computed for southern Wisconsin data is amazingly similar
to the continuum index axis developed by Curtis and McIntosh (1951). In the work cited
the authors have derived the continuum index and the climax adaptation numbers based
on extensive empirical observations of forest succession patterns in southern Wisconsin and
measurements of species relative abundance within the stand without using the concepts of
shade tolerance and gap dynamics. The shade tolerance index is based on the mechanistic
succession model, as opposed to an empirically defined continuum index. Several attempts to
redefine the continuum index following Curtis and McIntosh (1951) in other ecoregions have
produced mixed results, unsuccessful (Buell et al., 1966) and successful (Nakamura, 1985).
The major problem when developing a continuum index is the existence of several alternative
successional pathways which coexist within the same mosaic of forest stands (Buell et al.,
1966, Kessell and Potter, 1980). Indeed, Curtis and McIntosh (1951) considered only one
successional pathway to create their continuum index and they were successful, as this was
the primary successional pathway in southern Wisconsin (Buell et al., 1966). Similarly,
Nakamura (1985) has successfully applied similar technique to study the only Larix-Abies-
Tsuga successional pathway on the Mount Fuji forest. However, Kessell and Potter (1980)
demonstrated the existence of two distinct successional pathways that branch from the same
conditions, and obviously the continuum index cannot be constructed in this case. Overall,
the existence of several successional pathways is considered as a major challenge for modeling
of forest succession (Leps, 1988, Ashton, 1992, Ashton et al., 2001, Pickett et al., 1987,
Johnstone and Chapin III, 2006). The advantage of the shade tolerance index is that it is
based on a mechanism operating independently from the species composition of forest plots.
The index can be used to describe the successional patterns in ecoregions where several
alternative species replacement pathways coexist. In this case, a direct inversion of the
shade tolerance index is not possible as different plots may have the same shade tolerance
index level and very different species composition.

Our study of the FIA database led to the observation of highly conserved correlation
patterns across time and space (Figures 6 in main text and Figures 3, 5 and 4 in Appendix
4). It is worth emphasizing that (a) the correlation structure is similar across different
ecoregions, and that (b) it is not affected by the change in the forest sampling protocol
that was adopted nationwide in 1999. It is further highly remarkable that the correlation
structure is amazingly similar to the one obtained in Eastern Canada in a previous work
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(Lienard et al., 2014), despite substantial differences between the two forest inventories
(e.g. climatic variables, species compositions, permanent plot designs, sampling protocols,
experimental method used to determine the age of trees, stand biomass calculation). Overall,
the preserved correlation patterns point toward important structural similarities between
forested ecosystems in most of North America, and support the view that the shade tolerance
index is a meaningful dimension that completes the usual indicators of biomass, basal area,
implied stand age, and biodiversity.

We study the dynamics of the shade tolerance index in a Markov chain framework ap-
plied to the forest stand mosaic (Strigul et al., 2012, Lienard et al., 2014). Our approach is
however fundamentally different from prior works using Markov chains to model succession
as a change of species composition. For example, traditional Markov chain models (Usher,
1979) are based on expert knowledge of species transitions; empirically-based models (Wag-
goner and Stephens, 1970, Stephens and Waggoner, 1980) are deduced from a substantial
collection of species observations under the assumption that the Markov chain is stationary;
mechanistically-based models (Horn, 1974, 1981) predict overstory changes using a detailed
survey of the understory. Markov chain models were also applied on longer time scale to pre-
dict forest type transitions (Logofet and Lesnaya, 2000, Korotkov et al., 2001). In contrast
with the prior models, we consider the shade tolerance index instead of the specific species
composition, as the former measure describes a forest stand in a more generic way than the
latter. In particular, this approach allows the comparison of succession in ecoregions with
highly different species composition.

Our analysis indicates that the classic succession theory is not universally valid for all
ecoregions (Figure 8). Moreover, it reveals that shade tolerance driven succession is linked
with climatic and landscape factors that determine the division level classification of ecore-
gions (Bailey, 1995, 2004). The most evident result concerns the eastern part of the Humid
Temperate Domain, where we report a North–South monotonic transition from shade tol-
erance driven succession to other types of forest succession. This transition pattern is even
more explicit if we exclude from consideration mountain areas, where the patch mosaic anal-
ysis should be modified to include altitude related climatic variables (Section 3.2 and Figure
2 in Appendix 4). We hypothesize that the observed transition is caused by the climatic
transition to more arid conditions (Bailey, 1995). This is partially supported by the fact
that shade tolerance ranking is negatively correlated with the drought tolerance ranking
(Niinemets and Valladares, 2006). Another supporting fact is that southernmost forests in
the Dry domain are completely dominated by shade intolerant species (see Section 3.2). Our
classification method is data dependent and we were able to investigate provinces with more
than 150 resampled plots available. This restriction did not allow us to make a definite state-
ment about shade tolerance driven succession in the western part of the Humid Temperate
Domain and Nothern part of the Dry Domain where mountain areas are extended. However,
the classification based on only one criterion, the width of the shade tolerance distribution
(Figure 8), indicates that shade tolerance may play an important role in these ecosystems.
Overall, our analysis demonstrates that shade tolerance succession can be quantified at the
landscape scale and connected with climatic variables. We also anticipate that this methods
can be generalized and applied to other successional mechanisms.

The gap dynamics and replacement of shade intolerant species by shade tolerant species
is the essential successional mechanism employed in forest gap models such as JABOWA-
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FORET, SPACE, ZELIG and SORTIE models, their modifications and alternatives (Shugart,
1984, Huston and Smith, 1987, Busing, 1991, Pacala et al., 1993, Pacala and Deutschman,
1995, Acevedo et al., 1995, Bugmann, 2001, Busing and Mailly, 2004, Strigul et al., 2008,
Strigul, 2012). These models simulate forest succession using the growth/mortality trade-off
between fast growing shade intolerant early successional species and slower growing shade
tolerant species as a mechanism of tree replacement and canopy recruitment (Shugart, 1984,
Kobe et al., 1995, Deutschman et al., 1999). In particular, the computer model that we
used (Strigul et al., 2008) follows idealized succession dynamics that rely mostly on gap-
filling mechanisms and light-driven competition. Scaling methods approximating forest gap
dynamics also employs the shade tolerance driven forest dynamics as the primary successional
mechanism. Kohyama (1993, 2006) has employed the patch-mosaic concept for scaling forest
gap dynamics to the landscape level. In the Kohyama model the forest succession is driven
by the simple birth-and-disaster process presented as the conservation equation proposed
by Levin and Paine (1974). The current study may call for substantial modifications of
individual based models and for their validation in ecoregions where shade tolerance is not
the main mechanism of succession.
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5 Conclusion

In this paper, we have reappraised the classic theory that shade tolerance is a main de-
terminant in forest succession. The shade tolerance axis defined according to the classic
succession paradigm demonstrates amazing similarities with other successional models such
as the empirically defined continuum index which captures successional patterns in southern
Wisconsin, and the successional dynamics of the two-species system of White Pine—Eastern
Hemlock in the northeastern US. We further studied the spatiotemporal correlations be-
tween shade tolerance and other stand level characteristics across the US ecoregions using
a data-intensive approach, and found that the shade tolerance index is uncorrelated with
biomass, basal area, implied stand age, and biodiversity. The shade tolerance index allows
us to test the validity of shade tolerance driven succession in particular ecoregions. Based
on the distribution of shade tolerance across stands as well as their convergence rate toward
equilibrium, we derived a classification of US ecoregions. Shade tolerance driven succession
appears to be strictly connected with climatic variables. The importance of this successional
mechanism decreases along the transition from North to South within the eastern part of
the Humid Temperate Domain, and, evidently, shade tolerance is not related to successional
patterns in arid ecosystems such as the southern part of the Dry Domain.
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APPENDIX 1

Statistical Analysis of Forest Inventory Data and Computation of

the Shade Tolerance Index
Supplement to the article “An appraisal of the classic forest succession paradigm with the

shade-tolerance index.”

Jean Lienard 1, Ionut Florescu2, Nikolay Strigul1∗,

1- Department of Mathematics & School of Art and Sciences, Washington State University
Vancouver.

2- Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ,
USA

∗- nick.strigul@wsu.edu

1 Statistical analyzes of the FIA database

The Forest Inventory and Analysis (FIA) is a forest survey program of the US department of
Agriculture (Forest Inventory and Analysis Program, 2010). In this study employs a freely
available FIA database that was downloaded from: http://www.fia.fs.fed.us/. Standard
stand-level characteristics (biomass, stand age, and basal area) were computed according to
the FIA manual (Forest Inventory and Analysis Program, 2010), other commonly used forest
characteristics (Gini-Simpson and Shannon diversities) were computed according the proce-
dures described elsewhere (Strigul et al., 2012, Lienard et al., 2014), and the computation of
the original shade tolerance index is described in the next section. In particular, we extracted
the following information about the trees of each plot, from Table TREE:

• The status of each tree (STATUSCD). We analyzed only trees with this variable set to 1
as we consider only live trees in this study.

• The carbon estimate above ground (CARBON AG) and below ground (CARBON BG). These
variables are used to deduce the biomass as: 2 × (CARBON AG + CARBON BG).

• The diameter at breast height (DIA), used to compute the basal area as: π× DIA 2.

• The tree species (SPCD), used to link with the shade tolerance ranking table, provided
as a supplemental file.

• For the analysis of plot dynamics, we used the year of the survey (INVYR), as well as
locations variables used in the computation of a unique identifier for each plot (PLOT,
COUNTYCD, UNITCD, STATECD).

• The scaling factor (TPA UNADJ), allowing to normalize plots of different sizes.

We also extracted information of plots from Table COND:
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• The stand age (STDAGE), which is computed as the average of trees in a stand. We
refer to this variable as the implied stand age in the text of the manuscript.

• The soil type (PHYSCLCD), used to select plots located on mesic soils.

In addition to these variables, we extracted from Table PLOT the following:

• Latitude (LAT) and longitude (LON) of plots.

• The ecoregion code (ECOSUBCD), from which we retained only the first four characters to
derive Bailey’s provinces (including a possible starting space, e.g., “M211” or “ 211”).
See Figure 1 in Appendix 4 for a map of the provinces as reported in the database.

The Gini-Simpson diversity index (Simpson, 1949) is equal to 1 −
∑

s∈S

(
](s)
](T )

)2
, with S

being the set of species in a stand, ](s) being the number of trees with species s and ](T )
being the total number of trees. The Shannon diversity index (Shannon and Weaver, 1949)

is equal to −
∑

s∈S
](s)
](T )

ln
(

](s)
](T )

)
, with the same notations. Both the Gini-Simpson and the

Shannon indexes are in the 0-1 range, where high values indicate a high species heterogeneity.

2 Computation of the shade tolerance index using FIA

data

We have explored several alternatives to calculate Ωj, the abundance of tree species for a
stand: 1) number of trees (canopy or understory) of the species j, 2) sum of the basal areas
of the species j trees (total, canopy or understory), 3) biomass of the species j, 4) area
of canopy occupied by species j. However, we discovered that these estimates are highly
correlated (Appendix 4). Therefore is sufficient to compute only one of alternative Ωj. In
this study, we employed the abundance based on the sum of basal areas for the following
reasons: a) the sum of basal areas is widely used in forestry for this purpose, b) statistically
basal area is often related to crown area, and, therefore, the sum of basal areas can be also
related to the canopy area occupied by species j (which is not recorded in the FIA dataset),
c) this parameter is easy to calculate from the FIA dataset.

All the tree species in the FIA database were classified according to the shade tolerance
tables (Baker, 1949, Burns and Honkala, 1990, Humbert et al., 2007) in 5 categories with
respect to the shade tolerance: very intolerant, intolerant, intermediate, tolerant, and very
tolerant. We assume that the scale of shade tolerance is linear and the classification of shade
tolerance uniformly partition this scale, similarly to Humbert et al. (2007), Kunstler et al.
(2009), Valladares and Niinemets (2008). Then we assign the following numbers to the shade
tolerance classes: very intolerant = 0, intolerant = 0.25, intermediate = 0.5, tolerant = 0.75,
and very tolerant = 1. The shade tolerance rankings for North American tree species along
with the species code from the FIA database is provided in a comma-separated file (online
Appendix 6).

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2014. ; https://doi.org/10.1101/004994doi: bioRxiv preprint 

https://doi.org/10.1101/004994


3 Statistical description of US forests across ecoregions

Table 1: Shade tolerance index distribution across US provinces.

Province Min. 1st Qu. Median Mean 3rd Qu. Max.

211 0 0.525 0.6794 0.6615 0.8273 1
212 0 0.261 0.4882 0.491 0.7258 1
221 0 0.3913 0.4982 0.4985 0.6006 1
222 0 0.3458 0.4863 0.4691 0.5908 1
223 0 0.3316 0.4349 0.4311 0.5196 1
231 0 0.2552 0.327 0.3496 0.4282 1
232 0 0.2795 0.3887 0.3971 0.5 1
234 0 0.3203 0.4393 0.4297 0.527 1
242 0 0.4829 0.5138 0.5534 0.6491 1
251 0 0.3498 0.4603 0.4538 0.5378 1
255 0 0.25 0.3306 0.3347 0.4569 1
261 0.07565 0.5 0.5876 0.6367 0.8038 1
262 0.119 0.1331 0.25 0.3391 0.5 0.6936
263 0.09627 0.5993 0.7001 0.7028 0.8333 1
313 0 0.007809 0.0791 0.1314 0.2243 0.75
315 0 0 0 0.1114 0.1719 1
321 0 0 0 0.07703 0.01074 1
322 0 0 0 0.04668 0.02958 0.7153
331 0 0.06614 0.25 0.2444 0.2776 1
332 0 0.1287 0.378 0.3534 0.5424 1
341 0 0 0.008568 0.09427 0.118 1
342 0 0.003473 0.25 0.2192 0.25 1
411 0 0.5 0.5 0.5331 0.5958 0.75
M211 0 0.6618 0.7921 0.7592 0.8878 1
M221 0 0.3925 0.4833 0.4824 0.562 1
M223 0 0.2758 0.3915 0.3745 0.4763 0.8987
M231 0 0.1785 0.2636 0.2782 0.3617 1
M242 0 0.4515 0.5483 0.5623 0.7344 1
M261 0 0.2728 0.4666 0.445 0.5852 1
M262 0 0.146 0.2983 0.3248 0.5 0.75
M313 0 0.043 0.2029 0.1986 0.2825 0.9106
M331 0 0.1087 0.3447 0.355 0.5503 1
M332 0 0.2504 0.4414 0.405 0.5223 0.9818
M333 0 0.3139 0.4959 0.4826 0.6834 1
M334 0 0.25 0.25 0.2625 0.25 0.6526
M341 0 0 0.1007 0.1831 0.313 1
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Table 2: Summary statistics of Biomass (in 103kg/ha) for each US
province.

Province Min. 1st Qu. Median Mean 3rd Qu. Max.

211 0.09628 60.68 111.2 119.3 166.6 528.7
212 0.03543 41.21 76.53 84.58 119 542.5
221 0.08031 73.54 125.9 131.1 178.7 526.6
222 0.05631 39.66 80.04 90.39 127.4 521.1
223 0.08261 58.56 96.3 101.7 135.9 566
231 0.04592 49.93 97.01 105.9 149.7 557.5
232 0.07411 35.8 80.13 97.69 141.2 808.9
234 0.1585 45.57 97.58 116 165.8 870.3
242 0.08631 54.75 144.1 192.2 279.4 973.7
251 0.05393 39.06 73.08 81.18 114.1 578.3
255 0.1218 17.97 43.14 54.51 79.36 308.8
261 0.2588 40.05 125.7 216.6 324.5 1271
262 11 27.37 80.69 84.18 144.3 157.5
263 1.024 125.2 227.4 275.1 360.1 1787
313 0.1743 11.6 24.82 37.13 46.89 464.2
315 0.08919 5.123 11.46 18.71 25.05 191.5
321 0.08249 2.154 5.369 11.19 11.96 360.8
322 0.1633 6.199 13.32 20.59 25.14 133.5
331 0.04699 10.98 25.6 37.13 50.39 302.1
332 0.1892 24.7 48.04 61.57 83.42 608.1
341 0.08775 12.17 24.78 32.78 42.84 337.5
342 0.08842 7.497 16.55 30.76 37.79 377.9
411 0.1656 21.61 56.92 72.16 102.9 312.6
M211 0.04047 72.11 121.2 125.3 171.2 457.7
M221 0.08035 94.63 141.8 146.8 192.5 588.2
M223 0.5212 70.45 107.9 108.9 146.9 378.1
M231 0.1051 47.92 84.5 90.49 125.8 329.1
M242 0.09882 71.22 178.2 247.1 363.4 1651
M261 0.07831 49.36 125.9 174.1 250.2 1287
M262 0.205 16.16 44.43 65.55 98.48 355.7
M313 0.1894 14.17 34.04 51.58 69.75 368.6
M331 0.1049 29.12 62.85 80.99 115.3 500.3
M332 0.08631 37.21 78.85 96.64 133.5 650.1
M333 0.1137 45.97 99.03 121.6 168.8 670.7
M334 0.1024 31.52 57.61 66.83 91.94 275.3
M341 0.1848 16.04 30.98 41.49 54.03 413.3
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Table 3: Summary statistics of Basal area (in m2/ha) for each US
province.

Province Min. 1st Qu. Median Mean 3rd Qu. Max.

211 0.07509 14.47 22.96 22.67 30.36 75.17
212 0.03755 11.75 19.37 19.84 26.98 101.9
221 0.07509 13.19 20.45 20.28 26.73 66.74
222 0.03755 9.036 16.36 16.87 23.57 67.26
223 0.04544 12.09 18.19 17.88 23.46 71.03
231 0.07504 11.93 19.74 19.52 26.54 80.53
232 0.07488 9.098 17.36 18.87 26.42 141
234 0.09386 10.15 18.39 19.51 26.71 130.7
242 0.09386 11.38 23.71 26.94 38.09 105.8
251 0.03755 8.609 15.01 15.53 21.43 86.31
255 0.09386 5.324 11.27 12.35 18.02 57.32
261 0.1136 9.35 20.13 31.18 45.23 138.3
262 1.089 5.561 9.014 16.4 30.75 35.58
263 0.5876 23.87 39.8 42.59 56.86 154.5
313 0.09386 8.185 15.13 17.64 24.69 79.7
315 0.09386 2.876 5.97 8.238 11.52 59.87
321 0.09386 1.736 3.961 6.371 8.279 70.69
322 0.3184 4.724 9.115 12.54 16.43 70.77
331 0.09386 5.157 10.33 12.54 17.77 90.88
332 0.1089 6.418 12.36 14.09 19.75 95.97
341 0.09386 9.174 16.84 19.16 26.65 83.45
342 0.09386 4.411 8.852 12.41 16.7 98.66
411 0.1884 6.892 16.27 19.38 27.69 66.15
M211 0.07509 17.11 24.83 24.47 31.81 64.18
M221 0.07513 17.46 23.66 23.47 29.6 68.54
M223 0.2713 14.66 19.22 19.12 24.36 47.45
M231 0.09386 12.12 18.24 18.24 24.3 49.02
M242 0.1136 16.96 31.7 35.26 49.75 139.1
M261 0.1136 12.66 25.88 29.55 42.74 136.4
M262 0.3692 5.42 10.56 14.76 21.74 62.99
M313 0.2112 9.843 17.68 19.05 26.07 76.69
M331 0.1136 11.54 20.18 22.27 31.17 104.8
M332 0.09386 10.95 19.48 21.23 29.29 108.1
M333 0.1136 11.87 21.73 23.71 32.54 106.6
M334 0.2117 9.553 16.11 16.83 22.45 49.31
M341 0.1136 10.21 18.69 20.6 28.45 92.67
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Table 4: Summary statistics of Average age of trees (implied stand
age) for each US province.

Province Min. 1st Qu. Median Mean 3rd Qu. Max.

211 1 45 65 62.62 82 195
212 1 35 55 54.99 73 272
221 1 43 59 57.54 73 203
222 1 35 51 54.18 70 311
223 1 40 56 56.16 71 162
231 1 16 35 37.65 55 195
232 1 15 33 38.87 55 195
234 1 30 50 46.92 64 170
242 1 21 45 49.64 70 350
251 1 35 50 52.35 68 206
255 1 25 40 41.85 55 130
261 2 74.75 90 113.4 126.2 600
262 50 60 60 70 80 100
263 1 40 55 67.6 80 500
313 2 93 134 141.9 184.5 522
315 1 25 40 45.04 55 550
321 1 25 45 66.68 92 318
322 5 77 110 121.9 160 390
331 1 50 74 75.7 95 328
332 3 35 50 50.94 65 130
341 2 90 130.5 137.9 180 1028
342 4 61 83 98.1 120 380
411 1 30 50 55.46 82 139
M211 1 46 66 65.17 83 238
M221 1 45 64 61.91 80 200
M223 2 50 63 58.54 71 111
M231 1 27 49 46.32 65 115
M242 1 31 65 96.16 120 800
M261 1 62 89 106.3 125 997
M262 2 70 94 110.8 150 325
M313 1 80 103 109.7 134 343
M331 1 67 98 102.2 134 733
M332 2 70 98 104.8 133 494
M333 1 48 79 82.87 109 404
M334 1 67 85 84.21 100 278
M341 2 78.75 118.5 125.7 168 548
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Table 5: Summary statistics of Shannon diversity index for each US
province.

Province Min. 1st Qu. Median Mean 3rd Qu. Max.

211 0 0.8676 1.197 1.148 1.476 2.242
212 0 0.6315 0.9831 0.9409 1.297 2.3
221 0 1.029 1.38 1.311 1.666 2.571
222 0 0.6909 1.089 1.043 1.43 2.465
223 0 1.169 1.512 1.44 1.779 2.694
231 0 0.9968 1.411 1.315 1.725 2.689
232 0 0.5228 0.9988 0.9405 1.395 2.509
234 0 0.7053 1.176 1.094 1.508 2.35
242 0 0.2206 0.6525 0.6472 1.03 1.709
251 0 0.76 1.192 1.134 1.542 2.657
255 0 0.4698 0.8777 0.8464 1.267 2.435
261 0 0 0.5943 0.5254 0.868 1.436
262 0 0 0.153 0.4195 0.8897 1.055
263 0 0.5656 0.8039 0.7863 1.048 1.648
313 0 0.1011 0.5236 0.4721 0.687 1.672
315 0 0 0 0.2756 0.5727 1.607
321 0 0 0 0.2322 0.4978 1.555
322 0 0 0.216 0.303 0.5985 1.446
331 0 0 0.1838 0.3134 0.6277 1.604
332 0 0.3386 0.6913 0.6951 1.053 1.822
341 0 0 0.4325 0.3832 0.6497 1.557
342 0 0 0 0.156 0.1753 1.375
411 0 0 0.4862 0.512 0.8577 1.891
M211 0 0.9022 1.214 1.175 1.49 2.272
M221 0 1.168 1.471 1.412 1.719 2.477
M223 0 1.251 1.547 1.486 1.77 2.421
M231 0 0.9651 1.338 1.263 1.621 2.356
M242 0 0.3185 0.6653 0.6375 0.9483 1.871
M261 0 0.2479 0.6667 0.636 0.9777 1.858
M262 0 0 0.3073 0.3629 0.6277 1.327
M313 0 0.2105 0.6365 0.5933 0.911 1.766
M331 0 0.08903 0.5353 0.4963 0.7655 1.714
M332 0 0.1124 0.5323 0.5088 0.7968 1.7
M333 0 0.3652 0.6894 0.691 1.015 1.871
M334 0 0 0 0.2283 0.4491 1.358
M341 0 0.1884 0.5598 0.4994 0.6906 1.596
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Table 6: Summary statistics of Gini-Simpson diversity index for each
US province.

Province Min. 1st Qu. Median Mean 3rd Qu. Max.

211 0 0.475 0.6209 0.5697 0.7181 0.8788
212 0 0.3529 0.5423 0.4893 0.668 0.8902
221 0 0.5384 0.6753 0.6208 0.762 0.9083
222 0 0.4069 0.5892 0.527 0.7068 0.9011
223 0 0.6036 0.72 0.6665 0.7901 0.9227
231 0 0.538 0.6941 0.6227 0.7799 0.9256
232 0 0.2981 0.5558 0.4815 0.7014 0.9075
234 0 0.415 0.6102 0.537 0.7252 0.8926
242 0 0.1072 0.4087 0.3635 0.5917 0.7844
251 0 0.4451 0.625 0.5588 0.7349 0.9202
255 0 0.2482 0.5 0.4466 0.6616 0.8967
261 0 0 0.3455 0.305 0.4999 0.7388
262 0 0 0.06827 0.2449 0.5161 0.64
263 0 0.3121 0.4952 0.4425 0.5998 0.791
313 0 0.03957 0.32 0.2908 0.48 0.7929
315 0 0 0 0.1671 0.3627 0.7812
321 0 0 0 0.1385 0.3013 0.7615
322 0 0 0.1049 0.1915 0.3912 0.7435
331 0 0 0.08318 0.1924 0.4086 0.7978
332 0 0.1725 0.4444 0.3872 0.595 0.8281
341 0 0 0.2512 0.2459 0.4444 0.78
342 0 0 0 0.09683 0.0811 0.7445
411 0 0 0.2864 0.2928 0.5089 0.8195
M211 0 0.4918 0.6289 0.5844 0.723 0.882
M221 0 0.5958 0.707 0.661 0.7768 0.905
M223 0 0.6358 0.7324 0.6912 0.7902 0.9031
M231 0 0.5297 0.6779 0.6156 0.758 0.8993
M242 0 0.1599 0.4182 0.3648 0.5468 0.8228
M261 0 0.1171 0.4061 0.3559 0.5582 0.8155
M262 0 0 0.1618 0.216 0.4102 0.6798
M313 0 0.0986 0.3969 0.3434 0.5301 0.8178
M331 0 0.0334 0.3171 0.2938 0.493 0.7902
M332 0 0.04519 0.3134 0.2981 0.4974 0.8047
M333 0 0.19 0.4322 0.3839 0.5714 0.8264
M334 0 0 0 0.1386 0.2604 0.7033
M341 0 0.08588 0.3476 0.3074 0.4851 0.7901

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2014. ; https://doi.org/10.1101/004994doi: bioRxiv preprint 

https://doi.org/10.1101/004994


4 Spatial visualization of forest characteristics in decades

Figure 1: Stand-level characteristics of plots for 1968-1982.
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Figure 2: Stand-level characteristics of plots for 1982-1992.
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Figure 3: Stand-level characteristics of plots for 1992-2002.
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Figure 4: Stand-level characteristics of plots for 2002-2012.
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APPENDIX 2

Analysis of Forest Succession in southern Wisconsin
Supplement to the article “An appraisal of the classic forest succession paradigm with the

shade-tolerance index.”

Jean Lienard 1, Ionut Florescu2, Nikolay Strigul1∗,

1- Department of Mathematics & School of Art and Sciences, Washington State University
Vancouver.

2- Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ,
USA

∗- nick.strigul@wsu.edu

Figure 1: Plot locations in southern Wisconsin used in Section 2.3 for the comparison with Curtis
and McIntosh (1951). The overall geographical area considered is similar to the Figure 1 in Curtis
and McIntosh (1951), while the number of plots (n=7017) considered here is substantially larger
than in the original study (n=95).
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Figure 2: Characteristics for the major species in southern Wisconsin (Section 2.3). Bars indicate
the standard error of the mean.
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Figure 3: Characteristics for the lesser species in southern Wisconsin (Section 2.3). Bars indicate
the standard error of the mean.

References

Curtis, J. T. and McIntosh, R. P. (1951). An upland forest continuum in the prairie-forest
border region of Wisconsin. Ecology, 32(3):476–496.

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2014. ; https://doi.org/10.1101/004994doi: bioRxiv preprint 

https://doi.org/10.1101/004994


APPENDIX 3

Succession in White Pine – Eastern Hemlock forests
Supplement to the article “An appraisal of the classic forest succession paradigm with the

shade-tolerance index.”

Jean Lienard 1, Ionut Florescu2, Nikolay Strigul1∗,

1- Department of Mathematics & School of Art and Sciences, Washington State University
Vancouver.

2- Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ,
USA

∗- nick.strigul@wsu.edu

Figure 1: Map of the US showing the location of White Pine – Eastern Hemlock two-species systems
(studied in the comparison with the computer model at Section 2.4).
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Figure 2: Computer simulation of one hectare containing White Pine – Eastern Hemlock forests
(1 hectare, 1000 years), as in Figure 3 in main text, but with the x-axis representing time after a
major disturbance. Left: shade tolerance index. Right: cumulative basal area of white pines (blue)
and eastern hemlock (red).
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APPENDIX 4

Correlation Analysis of Forest Stand Characteristics across the US

ecoregions
Supplement to the article “An appraisal of the classic forest succession paradigm with the

shade-tolerance index.”
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1- Department of Mathematics & School of Art and Sciences, Washington State University
Vancouver.

2- Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ,
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1 Bailey’s provincial subdivision of the US

Figure 1: Bailey’s provinces (Bailey, 1995), as reported in the FIA database (first four characters
from column ECOSUBCD of table PLOT). Each dot corresponds to one measured stand; different colors
were randomly chosen to allow the distinction between provinces. The number of plots per ecoregion
can be found in Table 1.
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Figure 2: Ecoregion divisions of the US forested ecosystems (see also Bailey, 1995, and Figure
1 in this appendix). The first digit “2” indicates divisions inside the Humid Temperate Domain
(e.g. 210), “3” inside the Dry Domain and “4” inside the Humid Tropical Domain. Dashed areas
correspond to mountain provinces.
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2 Correlations of different forest characteristics depend-

ing on computation methods

Figure 3: Correlations in the whole dataset using Pearson’s coefficients represented graphically
(upper diagonal) and numerically with 95% confidence interval (lower diagonal) (Friendly, 2002).
Abbreviations: N.Tr is the number of trees per hectare; Tot.Sp is the species richness; STDAGE is
the stand age as reported in the FIA database; BIOMASS is the total biomass per hectare; BA is the
Basal Area per hectare; Si.Nr, Si.DB and Si.BIO are the Gini-Simpson diversity indexes based
on number of trees, basal area and biomass respectively; similarly, Sh.Nr, Sh.DB and Sh.BIO are
Shannon diversity indexes, and Sc.Nr, Sc.DB and Sc.BIO are Shade tolerance indexes. The shade
tolerance indices calculated with different species abundance measures (number of canopy trees,
biomass, and basal area) are highly correlated, with a Pearson’s coefficient r > 0.8, and therefore
only one of these variables can be employed.
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3 Temporal analysis of the correlations

Figure 4: Correlations in the whole dataset broken down by years. The lower panel represents the
yearly correlation coefficients as a function of time, with y-axis ranging from -1 to 1; the upper
diagonal are histogram of the correlations represented in the lower diagonal. Years 1975, 1976 and
2013 were excluded as they contained less than 500 observations. Abbreviations are as in Figure 3.
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4 Spatial analysis of the correlations

Figure 5: Correlations in the whole dataset broken down by ecoregion, similarly to Figure 4.
Provinces 262 and 263 were excluded because they contained less than 500 observations. Abbre-
viations are as in Figure 3.
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APPENDIX 5

Supplementary Results for the classification of the US Ecoregions
Supplement to the article “An appraisal of the classic forest succession paradigm with the

shade-tolerance index.”
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1 Methodology to estimate the transition matrices

It is challenging to estimate the transition probabilities of shade tolerance in a Markov
chain model based on forest inventory data, because the sampling interval of plots is highly
irregular. To overcome this difficulty, we employed here the original methodology developed
in Lienard et al. (2014). Specifically, we applied Gibbs sampling, a Monte Carlo Markov
Chain implementation (Robert and Casella, 2004) to estimate the transition probabilities,
with the specific guidelines provided by Pasanisi et al. (2012). We provide in the following
a brief description of the algorithm; please refer to Lienard et al. (2014) for an extended
description.

First, we constructed a temporal sequence Sp of the shade tolerance index for each plot
p, by inserting the discretized value of shade tolerance index s(p,i) measured in the i-th year,
at position i of Sp. Each temporal sequence Sp is mostly composed of unknown values, as
only a fraction of the forest plots were surveyed each year. We then reduced the sparseness
of these sequences by averaging the values in 3-year bins (a valid dimensionality reduction
given that only % of the database recordings were spaced of less than 3 years). We further
extracted sub-sequences of length 5 (thus spanning 15 years) that fulfilled three criteria:
(a) each subsequence starts with a known value, (b) each subsequence contains at least
two known values. Let Y be the matrix constructed using all the sub-sequences, with rows
corresponding to successive measures of different plots and columns corresponding to different
time steps. The initialization of Gibbs sampling consists of replacing the missing values in
Y at random, resulting in so-called augmented data Z [0]. Then, the two following steps are
iterated H = 500 times:

1. in the parameter estimation step, we draw a new transition matrix Φ
[h]
i conditional

on the augmented data Zh−1:

Φ
[h]
i |Z [h−1] ∼ Dir(γi,1 + w

[h−1]
i,1 , ..., γi,r + w

[h−1]
i,r ) (1)

with Dir is the Dirichlet distribution, γ are biasing factors set here uniformly to 1 as
we include no prior knowledge on the shape of the transition matrix (Pasanisi et al.,
2012), and wi,j are the sufficient statistics defined as

wi,j =
∑

t ∈ years

∑
k ∈ plots

1{yk,t−1=si & yk,t=sj} (2)

2. in the data augmentation step, we draw new values for the missing states:

for the earliest data t = 1, P(z
[h]
k,1 = sj|z[h−1]k,2 = si,Φ

[h]) ∝ Φ
[h]
j,i (3)

for the latest data t = T, P(z
[h]
k,T = sj|z[h]k,T−1 = si,Φ

[h]) ∝ Φ
[h]
i,j (4)

otherwise, P(z
[h]
k,1 = sj|z[h]k,t−1 = si1 , z

[h−1]
k,t+1 = si2 ,Φ

[h]) ∝ Φ
[h]
i1,j
× Φ

[h]
j,i2

(5)
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We performed the whole procedure R = 100 times. We ignored the first B = 100 “burn-
in” iterations, leaving R × (H − B) = 4000 transition matrices for each ecoregion. The
standard errors of the mean of the transition probabilities were consistently small, so we
were finally able to derive the matrices of Figure 7 in main text (as well as Figures 2 and 3
in this appendix) as the mean values.
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2 Shade tolerance classification across the US

Table 1: Shade tolerance indicators summarized for each US province.

Province Plots Resampled plots Distribution width Spectral gap

232 91856 60751 0.5 0.069
212 82401 36975 0.9 0.023
231 54649 35165 0.6 0.081
M221 23137 13696 0.7 0.060
223 24766 10578 0.8 0.035
221 20646 9491 0.8 0.035
222 23594 9462 0.9 0.033
211 14060 6003 0.8 0.034
M211 10345 4712 0.6 0.047
251 9855 3478 0.8 0.040
234 2605 1062 0.8 0.064
M231 2040 980 0.7 0.059
M223 1268 677 0.7 0.047
M331 5470 616 0.7 0.032
255 2846 542 0.7 0.085
332 1565 479 0.7 0.052
313 3499 452 0.4 0.058
M261 4755 374 0.7 0.049
341 2338 353 0.4 0.046
411 585 328 0.7 0.113
M341 2472 313 0.7 0.054
331 1819 295 0.7 0.043
M334 634 295 0.5 0.073
M242 5148 224 0.9 0.094
M313 2130 174 0.5 0.052
M332 4416 146 0.7 NA
321 1509 91 0.4 NA
322 470 65 0.4 NA
342 927 42 0.6 NA
263 418 34 0.6 NA
M333 3105 33 0.9 NA
M262 250 13 0.7 NA
242 544 13 0.8 NA
261 144 7 0.8 NA
262 5 0 0.5 NA
315 3597 0 0.8 NA
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3 Dynamics of relative shade tolerance index

To investigate the dynamics of shade tolerance index in the early years of each area delimited
in Section 3.2, we first computed for each ecoregion the value of shade relatively to their first
value (that is, the average value of shade tolerance index for stands that are one year old),
and pooled together ecoregions belonging to the same area (with either “wide” or “narrow”
distribution, and either “fast” or “slow” convergence). We further modeled the dynamics
with a piecewise linear model with two segments, by fitting them to the formula:

y =


αx if x < m

αm+ βx otherwise

As we aligned the shade tolerance index to be 0 for the earliest stand age, this formula
constraints the starting value y = 0. We performed the optimization using the Gauss-Newton
algorithm, initialized with reasonable starting guesses (Bates and Watts, 1988). After conver-
gence, all parameters α, m and β were found to be significantly different from 0 (one-sample
two-sided t-tests, n between 7753 and 181718, p < 0.001). Due to the spread of the shade
tolerance index, the fits were overall poor, with residual standard errors between and 0.135
and 0.260: while the established piecewise linear models are useful to highlight trends in the
dataset, they should be used with caution when deriving quantitative predictions of shade
tolerance index from the stand age.

The conceptual model predicts a decrease of the first stages followed by an increase
(Figure 2 in main text). Specifically, ecoregions with a wide distribution of shade tolerance
index exhibit the expected pattern regardless of their convergence speeds (bottom panels of
Figure 1). Their computed inflection point, around 16-18 years, is further consistent with the
study of the White Pine-Eastern Hemlock forests in Section 2.4. Ecoregions characterized
as having a narrow distribution and a slow convergence exhibits an early decrease of shade
tolerance, however there is barely any following increase (top-right panel of Figure 1, the
β slope is one order of magnitude lower than the other parameters). Finally, the area
characterized by a narrow distribution and a fast convergence exhibit a pattern exactly
opposite to what we expect in the shade tolerance driven succession, with an early increase
followed by a decrease.
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Figure 1: Relative shade tolerance index per area (in black, the error bars are standard errors of
the mean) and piecewise linear regression (in red) with α being the slope of the first segment, β the
slope of the second segment and m the age of the inflection point.
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4 Transitions matrices computed on data subsets

Figure 2: 3-year transition matrices computed on the subset of plots with a stand age less than 20
years. The transitions are obviously much more noisy than the ones obtained on the full dataset
(Figure 7 in main text), which is expected due to the very limited number of re-sampled young plots.
Except for ecoregion “M211”, the early decrease of shade tolerance index predicted in the conceptual
model is apparent in the matrices, with probabilities of decrease (transitions under the diagonal)
superior to the probability of increase (transitions above the diagonal). The notations are similar
to the ones in Figure 7 in main text.
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Figure 3: 3-year transition matrices computed on the subset of plots with a stand age more or
equal to 20 years. The transitions mostly match the ones obtained on the full dataset (Figure 7
in main text), confirming that transitions in the early stages (Figure 2 in this appendix) are not
overall substantially contributing to the transition matrices. The notations are similar to the ones
in Figure 7 in main text.
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