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Abstract

Deconvolving heterogeneous tumour samples to identify constituent cell populations with differ-
ing copy number profiles using whole genome sequencing data is a challenging problem. Copy
number calling algorithms have differential detection rates for different sizes and classes of
copy number alterations. This paper describes how uncertainty in classification and differential
detection rates can introduce biases in measures of clonal diversity. A simulation strategy is
introduced that allows differential detection rates to be adjusted for and this process is shown

to minimise bias.

Background

Somatic copy number alterations (SCNAs) and genomic instability are a hallmark of many can-
cers [21]. These somatic changes can lead to the loss or gain of function where the underlying
genes affected have a regular tumour suppressor or oncogenic promoting activity. Genome-wide
identification of SCNAs in cancers has been enabled by the use of high-throughput genomic
technologies including microarray-based comparative genomic hybridisation (aCGH), single nu-
cleotide polymorphism (SNP) microarrays [1, 21] and, more recently, whole genome sequencing
(WGS) [11, 9]. The focus of this article will be on whole genome sequencing analysis.

A wide variety of advanced bioinformatics tools have been developed to support these ap-
plications [12, 3, 4, 6, 20, 7, 10, 19, 13]. These tools tackle a number of computational and
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statistical modelling challenges involved in the analysis of heterogeneous cancer data. These
include tackling technical issues (“noise”) such as variation due to local genomic GC content,
sequence mapping errors, read errors, etc. Furthermore, the purity and ploidy of a tumour
sample are typically unknown quantities and correctly estimating these parameters can have a
substantial impact on the interpretation of the data.

Copy number analysis of heterogeneous tumour samples involves four tasks: (i) identification
of genomic segments with homogeneous data features, (ii) classification of each segment with the
type of copy number alteration involved, (iii) quantifying the prevalence of the copy number
alteration (the proportion of cells in the tumour sample that exhibits each event) and (iv)
determining the cellular constitution of the tumour sample (the number of different cell types
and the copy number aberrations contained by each cell type). The first three of these tasks
have received much attention but the investigation of tumour sample constitution is relatively
under-developed and a topic of ongoing current research interest. Copy number calling differs
from the identification of single nucleotide variants similarities as copy number aberrations affect
genomic regions as supposed to specific loci. This introduces an additional spatial dimension
to the problem.

Inferring tumour sample constitution is a challenging problem as current sequencing tech-
nologies and protocols are unable to determine the cell-of-origin for sequence reads (except
in the special case of single cell sequencing where cells are physically separated [22, 18, 8]).
Consequently, if a tumour is heterogeneous and contains a mixture of cell types, the observed
sequence data only provides an aggregated measure of the combined effect of all the cell types
in the sample. Success in the statistical deconvolution of heterogeneous tumour samples has
predominantly arisen from the analysis of single nucleotide variants (SNVs) using high-depth
targeted or exome sequencing in conjunction with computational methods [5, 16, 13]. For
constituent populations that are separated by copy number aberrations, THetA (Tumor Het-
erogeneity Analysis) [10] was developed recently to infer the collection of constituent genomes
and their proportions in a tumour sample using a maximum likelihood-based statistical decon-
volution framework that considers read depth information from segmented tumour genomes.
Deconvolved cancer genomes can be used to provide insights into tumour heterogeneity and the
evolution of a tumour. The consequences and implications of genetic heterogeneity in cancer
have received much interest recently [2, 15, 17].

Whilst computational methods have been widely developed to detect copy number aber-
rations from whole genome sequencing data, the ability to thoroughly validate computational
investigations is being outpaced by the decreasing costs and widespread availability of high-
throughput sequencing facilities. Complimentary techniques, such as fluorescence in situ hy-
bridisation (FISH), are labour-intensive, costly and too low-throughput to comprehensively
validate the many findings reported from WGS studies. State-of-the-art single cell techniques
themselves suffer from technical limitations (e.g. whole genome amplification biases, allelic
dropout) and therefore do not necessarily represent a gold standard for very high resolution

analysis. This is in contrast to the validation of SNVs where Sanger sequencing, PCR and
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targeted sequencing can be used to easily and rapidly verify the existence of putative muta-
tions. As a consequence, with copy number aberrations, there is an increased reliance on raw
computational findings in comparison.

The purpose of this investigation is to consider this reliance rigorously. We ask how biases
and uncertainties in the performance of a copy number calling algorithm could impact on
downstream analyses with a particular focus on the identification of sub-clonal copy number
aberrations and measures of clonal diversity that maybe derived from these findings. We
will demonstrate that there are intrinsic detection limits in the identification of copy number
aberrations and that failing to account for differential detection rates of a copy number caller
can lead to inflated measures of clonal diversity. We then suggest a simulation strategy that
can be adopted to account for this to produce robust measures of clonal diversity. The study
provides a cautionary tale about the need for the propagation of uncertainty information in
genomic data analysis especially where statistical tools might be built upon the output of
another.

In order to explore the details of the deconvolution problem, an existing statistical mod-
elling framework is utilised to illustrate the potential issues. The model integrates multi-scale
genome segmentation, absolute allelic-specific copy number classification, ploidy estimation and
the computation of the prevalence of copy number events in heterogeneous tumours. These sta-
tistical methods are implemented in a software package called OncoSNP-SEQ2, an update of an
earlier version of the software [19]. However, it should be stressed that the purpose of this study
is not to evaluate the relative performance of the copy calling method itself but to highlight
the processes that might be involved in determining how the characteristics of a chosen copy
number caller might impact on downstream analyses. These issues are intrinsic to the scientific

problem and would be universally applicable to other methods.

Results

Methods Overview

Figure 1 shows an example genome-wide copy number analysis provided by OncoSNP-SEQ2.
OncoSNP-SEQ2 adopts a multi-scale segmentation strategy to generate a series of copy num-
ber profiles of increasing resolution. Each series is associated with a rank level. Low ranked
segmentations are produced using high penalty scores on segments thus resulting in “smoother”
segmentations and generally contain larger SCNAs affecting large or whole chromosomal seg-
ments. Higher ranked segmentations are generated using lower penalty scores and contain
increasingly smaller aberrations. Copy number calls produced by OncoSNP-SEQ2 consist of a
set of segments where, for each segment, the total and minor copy number are reported as well
as the prevalence of the SCNA in increments of 10%. Each call is associated with the rank of
the segmentation in which that particular SCNA first arose. Later, in the simulation studies,
we will filter calls by their ranks to vary the false positive detection rate of the calling method.
Further details of OncoSNP-SEQ2 are provided in Materials and Methods.
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Power to detect sub-clonal aberrations

We first performed a study to establish the differential detection rates of OncoSNP-SEQ2 using
simulated datasets containing sub-clonal events of various sizes and prevalences. Whole genome
sequencing data series (approximately 60X) was obtained from a chronic lymphocytic leukemia
patient (CLLO77) sequenced as part of a whole genome sequencing study [14] and allele-specific
count data was obtained from approximately 1M SNPs. The sample series contains three
substantial sub-clonal copy neutral LOH (CN-LOH) events on chromosomes 19 and 20 that
were visually verified. These CN-LOH events were present in approximately (A) 30, (B) 60%
and (C) 90% of cells respectively (see Figure 2(a-c)) and read counts for SNPs contained within
these regions were extracted.

Next, three sets of 100 simulated tumours were generated. Each set of tumours contained
the original CLLO77 data from chromosomes 1-18 along with ten inserted CN-LOH events of
various sizes obtained by resampling SNP data from one of the three verified CN-LOH events.
Resampling from real events gave us the best chance of mimicking real-life observations of
actual structural alterations. OncoSNP-SEQ2 was used to analyse each simulated data set.
The true positive detection rate was measured as the average proportion of inserted CN-LOH
events identified. An event was considered correctly classified if, at least, 50% of SNPs in the
region were correctly called. The false positive rate was computed as the average proportion of
SNPs, outside of the inserted CN-LOH regions, that were called as copy number alterations or
LOH events.

Figure 3 shows that the power to detect sub-clonal events depends quite critically on the size
of the CN-LOH event, its prevalence and the resolution of the copy number analysis. CN-LOH
events that were larger and more prevalent in the tumour samples were more frequently detected
and correctly classified even when using low ranked calls that produced low false positive rates.
In contrast, smaller and /or less prevalent CN-LOH events could only be identified if much higher
false positive rates are tolerated using higher ranked segmentations. The CN-LOH events at
30% prevalence were virtually undetectable unless they spanned five thousand SNPs.

These results are unsurprising since small, low-prevalence sub-clonal CN-LOH events are
difficult to distinguish from random signal fluctuations that commonly arise in current whole
genome sequencing data due to technical sequencing artefacts. Furthermore, CN-LOH events
can only be identified through changes in allele fractions at SNPs and not variation in read
depth. At 60X, there is considerable variability in allele fractions and a large number of data
points are required to distinguish a low-prevalence CN-LOH region from a normal region of
heterozygosity. Higher depth sequencing would improve detection rates but the cost of current
technologies means it is unreasonable to sample large numbers of tumours using coverages much

above the 60X used in our simulations.
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Bias in clonal diversity estimates

After establishing that there are clear differential detection rates in the calling algorithm, we
questioned whether the use of high resolution copy number analyses could introduce a bias
in measures of clonal diversity for this tumour. A simple measure of clonal diversity that
is applicable here would be the number of distinct prevalence states identified in the tumour
sample as this would indicate the presence of multiple sub-populations in the sample. We tested
this by examining a set of 100 simulated tumours where each tumour contained a mixture of the
three CN-LOH event types. We analysed each simulated tumour sample with OncoSNP-SEQ2
and counted the number of distinct prevalence states detected. Counts were then stratified by
the minimum event size and the rank of the segmentation in which the event was found.
Figure 4 shows that when using low-rank calls it was not always possible to identify the
presence of all three CN-LOH event types in the simulated tumours. The identification of three
distinct prevalence states was a relatively infrequent occurrence and it was more common to
find just one or two of the prevalence states. It was also common to fail to detect any sub-clonal
abnormalities. With higher ranked calls and allowing for smaller copy number aberrations it
was possible to detect the existence of more prevalence states often above the three known to
exist in the data. The increased number of prevalence levels gives an apparent appearance of
high clonal diversity but this is likely to be purely artefactual. Relaxation of the stringency
constraints has led to more than three distinct prevalence levels being identified in the tumour
samples due to the inclusion of false positive calls. As previously established, power to detect
small, low-prevalence CN-LOH events incurs a heavy price in greatly increased false positive

rates.

Estimating differential detection rates

We next sought to determine if there are intrinsic limits in the detection rates of all classes of
SCNAs besides CN-LOH. In order to answer this question, we conducted a simulation study
to assess the recall accuracy for simulated SCNAs as a function of size, prevalence and class of
aberration. As it is not practically possible to find real examples covering all possible SCNA
classes and prevalence, our strategy was to generate blocks of data under the probability model
used by OncoSNP-SEQ2. We then reclassified, under the same model (this would be the optimal
classifier), to find if the original copy number class and prevalence used to generate the data
could be recalled.

Specifically, total read depth and reference allele fraction data was simulated for a number
of classes of SCNAs spanning blocks of varying number of SNPs and at different prevalence
levels (see Table 2). For each simulated data block, the likelihood of the data was computed
under each of the possible copy number classes and prevalence levels. If the most likely copy
number class and prevalence matched the true values used to simulate the data matched then
the class of the SCNA was said to have been successfully recalled. Note that in these simulations

whole genome data was not simulated. Blocks of data corresponding to individual events were
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generated and classified without the need to do joint segmentation.

Figure 5 shows the recall rates obtained via our simulation study for correcting recalling copy
number only and for copy number and prevalence. Recall rates were near 100% for simulated
SCNAs that were 100% prevalent (present in all cells of the tumour sample) and spanned
hundreds of SNPs. However, it was more difficult to correctly classify both copy number state
and prevalence than just to identify the copy number state alone. As the prevalence and/or
size of the copy number event diminishes, recall rates fell and for most events there was a
threshold size and/or prevalence at which recall accuracy degraded rapidly. For example, the
copy number classes 4n-Dup and 5n-Dup (I) could not be recalled at below 50% prevalence.
Note that at prevalences below 50% the expected data distribution for these classes overlap
with those of the 3n-Dup class with high prevalence. Prior information in OncoSNP-SEQ?2
is set to prefer higher prevalence states so the 3n-Dup class is preferentially chosen over the
others.

Some interesting oddities were also noted, for example, copy number events classed as
5n-Dup (I) (involving genotypes AAAAA, AAAAB, ABBBB, BBBBB) at prevalences of 0.6
had zero recall rate. This is because at this prevalence level the allelic fraction and expected
read count for the 5n-Dup (I) class is nearly identical to that of a 4n-Dup class event (AAAA,
AAAB, ABBB, BBBB), e.g. for the AAABB genotype with prevalence 0.6, the B allele fraction
is given by (0.6 x 24 0.4 x 1)/(0.6 x 54 0.4 x 2) ~ 0.26 and 0.6 x 54 0.4 x 2 = 3.8 times
the haploid coverage which (when observed with noise) is close to the values of (0.25,4) for a
AAAB genotype.

Adjusting for differential detection rates reduces bias in clonal diversity

measures

The previous simulation results demonstrate that there are intrinsic limitations in detection
rates. These limitations varied with the type of copy number class, size of event and its
prevalence. With higher copy number classes, prior preferences towards high prevalence states
could cause gross misclassifications. With this knowledge, we returned to the multiple sub-clone
simulations and devised an approach to eliminate the false positive calls that were leading to
strong biases in clonal diversity. The objective was to use the differential detection rates
established in the previous section to select only those copy number classes and corresponding
prevalence levels where there was high probability of successful recall. As a consequence,
we removed all SCNA calls whose predicted type, size and prevalence had less than a 90%
theoretical recall rate.

Figure 6 shows that when we account for the differential detection rates the number of
estimated prevalence levels was substantially reduced even when high-ranked segmentations
and small SCNA calls were used (contrast with Figure 4) whilst, at the same time, the number
of simulated tumours with three detected prevalence levels (the true number) is increased.
Therefore, by accounting for differential detection rates, it is possible to allow high resolution

copy number analysis whilst minimising the occurrence of false positive calls that can inflate
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measures of clonal diversity. It is important to note that the filtering criteria are not based on
arbitrary heuristics but optimally matched to the specific detection characteristics of the copy

number caller.

Discussion

This study has shown that characterising the heterogeneous copy number landscape of a tumour
requires careful thought. The signal processing necessary to detect copy number aberrations
from whole genome sequencing data has certain intrinsic limits that are determined by the
type, size and prevalence of the copy number aberrations.

It is a simple principle that a copy number caller cannot be relied upon to detect small,
low-prevalence copy number alterations as reliably as large, whole chromosomal changes and
therefore some account of these differential detection rates should be taken in downstream
analyses. If all copy number calls are mistakenly treated as equally reliable then we have
shown that there maybe negative consequences for measuring clonal diversity as false positive
calls may drive up the apparent degree of heterogeneity in the tumour sample.

We have shown that, using a simulation-based strategy, it is possible to measure the detec-
tion characteristics of a copy number caller and correct for these potential biases. Although the
strategy was only applied to OncoSNP-SEQ?2 it is a generic approach that could be adapted to
the particular features of any copy number calling method. This is a task that is best under-
taken by individual development teams as different copy number callers can use the same raw
sequence information in different ways. Whilst the focus here has been on SNP information
other callers use other combinations of read-depth, split-reads, mate-pair, etc and it is not
possible for us to assess all of these approaches.

Additionally, the focus of this article has been on the deconvolution of single tumour samples,
but many of the issues extend to multi-sampling designs as well. Measures of clonal diversity
based on copy number differences between tumour samples could be biased by false positive
copy number calls due to differential detection rates. In this case sample-to-sample variability
adds an additional dimension to be consider. The practices and strategies discussed in this

study could also be applied to correct for these artefacts.

Conclusion

This study has shown that the reliance on computational methods for dissecting tumour het-
erogeneity from whole genome sequencing data should be reinforced by physical validation
techniques where possible (e.g single cell analysis or FISH). If computational findings are to be
relied upon with out validation, differential detection rates by copy number calling algorithms
should be measured and this information used to filter copy number calls in order to avoid bias

in downstream analyses such as the assessment of clonal diversity.
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Materials and Methods

Statistical Model Overview

Qualitative description of the model construction and further mathematical descriptions are
given later in Materials and Methods. OncoSNP-SEQ2 uses two coupled hidden Markov pro-
cesses: one to model the changes in copy number states at different loci along the genome and
the other to denote the prevalence of the copy number alterations in the tumour sample. The
use of Markov chains as a statistical model of the latent, unobserved copy number states is a
standard approach for this problem, however, we believe that the use of a secondary chain to
model the sub-clonal structure is a novel construction. This second chain has 10 states corre-
sponding to prevalence levels 0, 10,20, ..., up to 90%. The use of dual-coupled Markov chains
allows OncoSNP-SEQ2 to cluster data into similar copy number and prevalence classes whilst

enforcing first-order spatial continuity.

Assumptions

We assume the presence of K distinct copy number profiles in a tumour sample that contains
an unknown number of sub-clonal populations. The quantity K is an unknown. Note that K is
not necessarily the number of distinct cell types since sub-clones may genetically differ in other
ways, e.g. single nucleotide variants, small insertion-deletions, transactions, etc. However, for
brevity, in the following discussion we ignore the distinction unless otherwise stated.

We will always assume that one of the K cell types corresponds to the normal, germline
copy number profile. The model presented here can be naturally extended to model germline
alterations by having a specific Markov chain for the germline copy number sequence but
this adds unnecessary complexity and, for simplicity, we will always assume the germline cell
type to be devoid of copy number alterations. Since many cancer sequencing studies will
involve sequencing of normal-tumour pairs, distinguishing germline and somatic copy number
changes can be effectively done via independent copy number analysis of the normal sample
and removing or highlighting these changes when considering the tumour samples.

Finally, at each locus, we shall assume that only one type of somatic copy number alteration
may exist amongst the K profiles. This limiting assumption disallows the presence of a deletion
and duplication at the same location in different clones but greatly reduces the dimensionality of
the problem to a tractable complexity level. Furthermore, as the sequencing data can measure
the aggregated effect across all cell types, it would not be possible to predict the presence of
distinct cell types with different copy number changes at the same locus from a single tumour

sample.

Data

The data is assumed to be presented in a generic format consisting of two measurements at

a series of SNPs: (i) the reference allele count and (ii) the total read count (optionally a
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standardised depth of coverage measure in non-overlapping windows centred on the SNP could
be used in addition to the total SNP read count). In the following simulations we use the set
of SNPs present on the Illumina Human Omni-Quad 1M SNP genotyping array but any high
density set of SNPs with minor allele frequency greater than 5% will suffice (heterozygotes are

desirable in order to add allele-specific information).

Modelling sub-clonal architecture

The derivation of our statistical model is illustrated in Figure 7. The genome-wide sequence of
somatic copy number alterations is modelled as an S-valued Markov chain, Z. This sequence
comprises the union of all the somatic copy number alterations across the K cell types because
of our starting assumptions. In many standard HMM approaches, the copy number sequence
Z is normally the primary and sole target of inference given observed sequence data Y and the
Markov assumptions allow a first-order degree of spatial continuity to be enforced.

In this model, we wish to account for the fact that some cellular sub-populations may or
may not feature the copy number alterations specified in Z. At each locus, given Z, each cell
type can either possess a copy number alteration (feature) or not. Therefore the somatic copy
number profile of the K cell types can be represented as a K x N binary feature allocation
matrix, X, where N is the number of loci. In order to enforce first-order spatial continuity we
specify that each row of X is modelled as a binary Markov chain. Each cell type is present
in the tumour sample with proportions Wy, ..., Wx_;. The first row of X is always zero as
it corresponds to the germline profile and thus W, has the special interpretation of being the
degree of normal contamination.

Note that whilst this describes a possible model of the underlying sub-clonal architecture
because current sequencing technologies do not provide cell-of-origin information for each se-
quence read, the expected allele-specific read counts and coverage levels are a function only of
the genotype/copy number and the overall prevalence of the alteration at each location in the
tumour sample. Hence, in order to explain the observed sequence data Y, the feature allocation
matrix X is not directly required. It is only necessary to know the type of copy number alter-
ation (Z) and the prevalence given by the sequence U = XW. We will discuss in the following
why the quantity U is important for developing efficient, practical algorithmic implementations

in the following.

Implementation issues

Typically, the number of populations K and their proportions are unknown a prior: and are
parameters to be inferred from the observed data. One formal (Bayesian) approach for com-
paring models of varying complexity is to compute the marginal likelihood of each model
Pr(Y|K = k), k =1,..., K4 whilst integrating out uncertainty over all unknown parame-
ters. This is computationally achievable in our model for small values, e.g. K., = 4 by using
low-dimensional quadrature to marginalise over the weights W and using dynamic program-

ming algorithms to exactly compute the marginal likelihoods Pr(Y|W, K') by enumerating all
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paths over the Markov structure. However, this approach is computationally demanding and
becomes rapidly prohibitive as the model complexity increases exponentially with the number
of cell types.

In order to develop a more tractable approach, we recognise that the observed data Y is
only a function of Z and the sequence U = XW. As X is a binary feature matrix and each
row is modelled as a Markov chain, the sequence U is also a Markov chain with 2% states
corresponding to all the possible feature allocation combinations of W (e.g. for K = 3, the
states are 0, Wy, Wy, Wy, Wy + Wi, Wy + Wo, Wi + Wo, Wy + Wy + Wy = 1). The exponential
growth in the state space as a function of the number of cell types K is precisely why exact
enumeration is computationally intractable for all except very small values of K. However, this
observation that U forms a Markov chain allows us to develop an approximate algorithm whose
computational costs are invariant to the number of cell types.

The principle underlying this method is to approximate the marginal distribution of U using
a Markov chain with a dense, but fixed, state space, for example, with ten states corresponding
to prevalences 0,0.1,0.2,...,0.9. Statistical inference can then be conducted for (Z,U) only
since knowledge of these is sufficient to fit the model to the observed data. Values of (X, K, W)
can be retrospectively inferred from the posterior assignments to these states if desired. In
essence we apply a two-level clustering approach that clusters loci into both discrete copy
number and prevalence states. This model differs from the previous incarnation of OncoSNP-
SEQ [19] where the prevalence levels were treated as independent random variables and hence

a prevalence level could not be directly associated with any SCNA.

Prior calibration

OncoSNP-SEQ2 method computes the probability of the data under different combinations of
haploid coverage and normal cell contamination values (see Figure 8). The haploid coverage and
the degree of normal cell contamination determine the expected number of reads associated with
a unit copy number change and hence their values directly impact the absolute copy number
estimates. Local modes in the probability distribution over these parameters are automatically
identified and, for each mode, a genome-wide copy number profile is reported. For many
complex tumours, it is common to find multiple local modes in the probability distribution
each corresponding to a different interpretation of the sequencing data.

In OncoSNP-SEQ2, it is possible to calibrate the prior information to bias towards certain
copy number configurations. For instance, in Figure 8, OncoSNP-SEQ2 identifies five local
modes suggesting that there maybe up to five distinct copy number configurations that could
plausibly fit the observed data. In an unbiased analysis, where no prior information is supplied,
the near-tetraploid copy number configurations are the most probable. However, CLL genomes
are generally near-diploid and by adjusting the bias toward diploidy it was possible to force
near-diploid solutions to be the most probable. In this case, the diploidy parameter was chosen
as the minimal amount necessary to switch the most probable mode from a tetraploid to diploid

state and this calibration was used in the subsequent simulations.

10
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Mathematical Specification

Prior model

Let Z = {Z;}!, denote the copy number state at n SNPs and U = {U;}!", denote the
proportion of tumour cells having the corresponding alteration given in Z at each SNP. These
hidden states are unobserved and form a coupled Markov process such that the transition

probabilities have the form:

log Pr(Z;, Us|Zi—1, Ui—1, A, @) o log p(u;) + log p(z;)+

(

0, if uj =ui1,2 = 21,
=\, if w; = w1, 2 # 2z,
—o, if w; # U1, 2 = 21,
\—()\—l—¢), if w; # w1, 2 # 2i1.

where p(u;, z;) denote global priors on the prevalence and copy number states and (), ¢) are the
transition penalties for changes in Z and U respectively. Note that in actual implementation we
define separate sequences for each chromosome but for brevity of presentation here we assume
a single sequence. We use global priors of the form logp(z;) o —)\3|C§f) — 2| where C, is the
copy number associated with state z to bias the solutions towards diploidy when A3 > 0 and a
Beta prior for p(u;).

Furthermore, let G = {G;}?_, denote the genotypes of the SNP, the state space of G;
depends on Z;, e.g. if Z; is a normal copy number two state then G; € {AA, AB, BB} or if Z;
is a duplication state then G; € {AAA, AAB, ABB, BBB}. Table 2 illustrates genotypes and

their respective probabilities for illustrative copy number states.

Observation model

The observed data is aset Y = { K, D;, R;}I_, that denotes the alternate allele counts, the total
number of reads at each SNP ¢ and the average coverage at a set of non-overlapping windows
centred on each SNP. For paired normal-tumour data, two observation sequences are observed
and unobserved normal and tumour genotypes are coupled in the model. In our simulations,
we assume that D; = R; and utilise only the total read count overlapping the SNP as a measure
of local coverage. However, in general, the full set of sequencing reads can be used.

We model the distribution of the alternate allele count K; given the total read count D; is

given by a Binomial distribution with density
di\ 4, di—k;
f(ki;diaghziaui:E) - k. pgi,zi(]- _pgi,zi)

where pg, ., = (1 — €)py, ., + €(1 — Dy, ;) is the probability of observing the alternate allele, € is

11
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the global read error rate and the expected alternate allele probability is given by

t Rt n RN
T Bgi,Zi + B

9iyZi

Lt nen
mCl +mpC2

Pgizs =

where 7! = (1—wug)u; proportion of tumour cells with an alteration, 7 = ug+(1—ug)(1—wu;) the
proportion of cells without the alteration, (B} ., B;.) denotes the number of B alleles associated
with the tumour and normal genotype for the g-th genotype state of the z-th copy number state
and (C%, C?) denote the tumour and normal copy numbers.

The distribution of R; is approximated by a Student-t distribution with density

9(7"1‘|Zz‘7 Ug,y Up, h7 0-27 V) =

v+1
2

(g
Nz

1 (m — h[mtCt + w?cz%])Q
14— i i
1%

)
3) o
where h is the haploid coverage and o2 defines the variability of the read coverage. For our

simulations we shall assume a sufficiently high sequencing coverage (> 60X which is typical in

cancers) so that this continuous approximation applies well to discrete data.

Posterior Inference

We use a grid search method to evaluate identify the most probable joint sequence (Z,4) for
different values of baseline coverage h and normal cell contamination u using the Viterbi algo-
rithm and evaluate its likelihood p(Z, @|h, ug, y, ) where 6 denotes all other model parameters.
From the likelihood grid generated, we identify global maxima and local maxima and report
the copy number states and degree of abnormality for each relevant configuration of (h,ug) and

its associated likelihood.

Multi-scale Copy Number Calling

The j-th ranked segmentation is obtained by using the Viterbi algorithm to find the most

probable sequence (z, u):

N
(2V),49) = argmax(log f(y|z, u) +log p(z, ulAD, 69) = o Y 1(20L, # 207))]

1=2

where we use a range of values for A = ¢ between 10 and 10® and Xy = 1. The final term
is a penalty parameter that couples adjacently ranked segmentations to enforce continuity of

breakpoints across different segmentations.
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Parameter Settings

By default we set v = 4 for robustness and set 0? = ﬁ o (ri — 7;)* where 7 is a locally
smoothed version of r. The read error probability is given by € = 0.01. These parameters can
be learnt from data but results are generally robust with these default parameters. Transition
penalties A = 30 and ¢ = 30.

Code availability

The software OncoSNP-SEQ?2 is available from:
https://sites.google.com/site/oncosnpseq/
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Figure 1: Example Copy Number Analysis. (a) Genome-wide read coverage and allele
fractions, (b) probability map showing log-likelihood of different normal contamination and
haploid coverage levels with three peak values identified and ordered by likelihood value and
(c) low, medium and high-resolution copy number segmentations (black - total copy number,
blue - minor copy number, red - loss-of-heterozygosity).
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Table 1: Multiplicity of sub-clonal architectures. Two alternate
tures that are compatible with the same observed cellular prevalences (0/1 indicates the ab-
sence/presence of an event in that cell type). Both configurations share two common cell types
both differ in the third cell type.

sub-clonal architec-

Configuration | Cell Type | Proportion A Even%Type o
1 0.05 1 0 0

1 2 0.3 1 0 1

3 0.6 1 1 0

4 0.05 0 0 0

1 0.35 1 0 0

2 2 0.3 1 1 1

3 0.3 1 1 0

4 0.05 0 0 0

Prevalence ‘ 0.95 ‘ 0.6 ‘ 0.3 ‘

Table 2: Copy number states. Example copy number states and associated genotypes.

Z | Ct G Genotype Prob. Description

110 n/a n/a Homozygous deletion
211 A'B 1/2,1/2 Hemizygous deletion

3| 2 AA, AB, BB 1/3,1/3,1/3 Normal

4| 2 AA, BB 1/2,1/2 Copy-neutral LOH

51 3 AAA, AAB, ABB, BBB 1/3,1/6,1/6,1/3 Single-copy duplication (3n-I
6| 4 AAAA, AAAB, ABBB, BBBB 1/3,1/6,1/6,1/3 | Unbalanced double duplication (:
74 AAAA, AABB, BBBB 1/3,1/3,1/3 Balanced double duplication (4
8 | 5 | AAAAA, AAAAB, ABBBB, BBBBB | 1/3,1/6, 1/6, 1/3 | Unbalanced double duplication (51
9| 5 | AAAAA, AAABB, AABBB, BBBBB 1/3,1/3,1/3 Balanced double duplication (5n-]
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(b) (©)

Allele Fraction

Allele Fraction

Chromosome

Figure 2: Simulated genomes. (a-c) Three CN-LOH events identified in patient CLLO77.
(d) Simulated genome containing randomly inserted CN-LOH events resampled from the ex-
tracted events (red). Sizes of inserted events are exaggerated here for the purposes of graphical

illustration.
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Figure 3: Detection Rates. Detection results for copy-neutral LOH events of various lengths
(d) used in the simulated data sets. LOH events had prevalences of (yellow) 90%, (red) 60%
and (black) 30% respectively.
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Figure 4: Prevalence Levels. Distribution of the number of detected prevalence levels across
100 simulated samples. Calls were stratified by rank (1 - Low resolution, 7 - High resolution)
and minimum length of copy number event (d).

21


https://doi.org/10.1101/004655

bioRxiv preprint doi: https://doi.org/10.1101/004655; this version posted April 30, 2014. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

i A A A A
v N/ VA A A
SN =R/
v N A AL
v N W WL
v 0 W O TN
bal O W 0 TN

0 02040608 1 0 02040608 1 0 02040608 1 0 02040608 1 0 02040608 1 0 02040608 1 0 02040608 1 0 0.20.40.60.8 1

Prevalence Prevalence

Prevalence

Prevalence

Prevalence

Prevalence

Prevalence

Prevalence

Figure 5: Theoretical Recall Rates. Plots showing optimal recall rates for different cate-
gories and sizes of copy number alterations at different prevalences. Recall rates are shown for
(black) correct copy number recall and (red) for correct copy number and prevalence calls.
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Figure 6: Adjusted Prevalence Levels. Distribution of the number of detected prevalence
levels across 100 simulated samples adjusted for differential detection rates. Calls were stratified
by rank (1 - Low resolution, 7 - High resolution) and minimum length of copy number event

(d).
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Figure 7: Model illustration (Number of cell types, K = 5). A binary matrix is used to
represent whether each cell type possesses a copy number alteration at a particular SNP. The
proportion of the sample containing each cell type is given by a K-valued vector W. The
copy number alteration type at each SNP are contained in a sequence Z. The sequence U
represents the total proportion of the sample containing the copy number alteration. The
observed sequence data can be explained with Z and U only and this is exploited in our model.
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Figure 8: Prior calibration. Prior preferences strongly influence which copy number con-
figuration will be reported to be most probable. When no preference is specified for diploidy
(A3 = 0) the configuration with highest likelihood has a tetraploid state (left). A suitable cali-
bration for the diploidy parameter can be obtained by selecting a parameter value (A3 = 0.05)
that makes the diploid state the most probable for tumour samples where the ploidy is known

(right).
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