
Running head: REVERSIBLE-JUMP INFERENCE OF ADAPTIVE SHIFTS1

A novel Bayesian method for inferring and interpreting the2

dynamics of adaptive landscapes from phylogenetic comparative3

data4

Josef C. Uyeda1 & Luke J. Harmon1
5

1Institute for Bioinformatics and Evolutionary Studies & Department of Biology,6

University of Idaho7

KEYWORDS: Comparative methods, Reversible-jump, Ornstein-Uhlenbeck, Macroevolution, bayou8

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 23, 2014. ; https://doi.org/10.1101/004465doi: bioRxiv preprint 

https://doi.org/10.1101/004465
http://creativecommons.org/licenses/by-nd/4.0/


Abstract9

Our understanding of macroevolutionary patterns of adaptive evolution has greatly increased with the10

advent of large-scale phylogenetic comparative methods. Widely used Ornstein-Uhlenbeck (OU)11

models can describe an adaptive process of divergence and selection. However, inference of the12

dynamics of adaptive landscapes from comparative data is complicated by interpretational difficulties,13

lack of identifiability among parameter values and the common requirement that adaptive hypotheses14

must be assigned a priori. Here we develop a reversible-jump Bayesian method of fitting multi-optima15

OU models to phylogenetic comparative data that estimates the placement and magnitude of adaptive16

shifts directly from the data. We show how biologically informed hypotheses can be tested against this17

inferred posterior of shift locations using Bayes Factors to establish whether our a priori models18

adequately describe the dynamics of adaptive peak shifts. Furthermore, we show how the inclusion of19

informative priors can be used to restrict models to biologically realistic parameter space and test20

particular biological interpretations of evolutionary models. We argue that Bayesian model-fitting of21

OU models to comparative data provides a framework for integrating of multiple sources of biological22

data–such as microevolutionary estimates of selection parameters and paleontological23

timeseries–allowing inference of adaptive landscape dynamics with explicit, process-based biological24

interpretations.25

Introduction26

The phenotypic adaptive landscape has been widely used as the conceptual foundation for studying27

phenotypic evolution across micro- to macroevolutionary scales(Arnold et al. 2001). The concept has28

been applied to microevolutionary studies of selection (Lande and Arnold 1983), studies of29

paleontological time-series (Simpson 1944, 1953; Hunt et al. 2008; Reitan et al. 2012) and to stochastic30

models of trait evolution fit to phylogenetic comparative data (Hansen 1997; Butler and King 2004;31

Hansen et al. 2008; Uyeda et al. 2011; Eastman et al. 2013). Consequently, the adaptive landscape has32

the potential to unite micro to macroevolution into a single cohesive theoretical framework (Arnold33

et al. 2001; Hansen 2012). However, a major disconnect between microevolutionary and34

macroevolutionary formulations of adaptive landscapes is that microevolutionary studies typically35

examine static landscapes, whereas macroevolutionary patterns result from the dynamics of adaptive36

peak movement over long evolutionary timescales (Gavrilets 2004; Hansen 2012). While37

macroevolutionary models fit to phylogenetic comparative data almost certainly describe the38

cumulative dynamics of adaptive landscapes, these phenomenological models are disconnected from39

adaptive landscapes at shorter timescales, and thus, become difficult to interpret in terms of biological40
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processes. Synthesis will require a unification of theory and data across scales that allows inference of41

the dynamics of the movement of adaptive landscapes directly from macroevolutionary data (Uyeda42

et al. 2011).43

Existing models of adaptive evolution at macroevolutionary scales typically rely the44

Ornstein-Uhlenbeck (OU) model of trait evolution (Hansen 1997; Butler and King 2004), which has a45

strong connection to the concept of adaptive landscapes (Lande 1976). Fitting OU models to46

macroevolutionary data allows researchers to test hypotheses regarding the existence of distinct47

phenotypic optima between groups of species (Butler and King 2004; Beaulieu et al. 2012) and more48

generally, infer evolutionary regressions between phenotypic traits and predictor variables (Hansen et al.49

2008; Hansen and Bartoszek 2012). Hansen (1997) introduced the method to phylogenetic comparative50

methods as a means to test specific adaptive hypotheses–such as the hypothesis that phenotypic optima51

for browsing vs. grazing horses are different. Butler and King (2004) extended this method to test52

among competing adaptive hypotheses and provided a widely used implementation as an R package53

(ouch). However, ouch and other software typically require a priori assignment of adaptive hypotheses54

to the phylogeny, with optima “painted” onto branches according to the researcher’s pre-existing55

hypotheses (but see Ingram and Mahler 2013). Following model-fitting by maximum likelihood, model56

selection is used among hypothesized scenarios and the best-fitting model is chosen (Butler and King57

2004). However, it can be difficult to ascertain whether the specific hypothesis chosen by the researcher58

is a good hypothesis, or simply better than the tested alternatives. Furthermore, to infer the dynamics59

of adaptive landscapes themselves, we do not wish to assume a limited set of hypotheses a priori, but60

to estimate the dynamics of phenotypic optima directly from the data. This of course does not mean61

that we want to throw away biologically informed hypotheses. Rather, we seek a framework for62

evaluating whether a priori hypotheses adequately describe the statistical patterns in the data.63

Incorporating biological realism into comparative models remains a challenging goal.64

Statistical models fit to phylogenies are inherently phenomenological, and may be consistent with65

multiple biological interpretations. For example, Brownian motion (BM) processes can result from66

neutral genetic drift of trait means, neutral drift of adaptive peaks, or drifting adaptive zones (Lande67

1976; Felsenstein 1985, 1988). Rate tests derived from these models have generally rejected genetic68

drift as a model for macroevolutionary patterns (Turelli et al. 1988; Lynch 1990; Hohenlohe and Arnold69

2008), and simple drift of adaptive peaks seems inconsistent with observed microevolutionary and70

macroevolutionary data (Estes and Arnold 2007; Uyeda et al. 2011). As with BM models, OU models71

have an explicitly microevolutionary interpretation in terms of the process of stabilizing selection and72

genetic drift on static adaptive landscapes (Lande 1976). Alternatively, these optima may represent73

adaptive zones within which adaptive peaks drift stochastically, or even broad ranges around which74
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dynamically evolving adaptive zones evolve (Hansen 1997). The boundaries between these latter75

interpretations can become fuzzy, and while a tendency for a species to return to an optimal state is76

suggestive of adaptive evolution, it remains unclear how fitted models reflect evolutionary processes77

and patterns. Because of this difficulty, previous authors have tended to use terms such as “adaptive78

regimes” or ”selective regimes” to describe optima fit via OU modeling. These terms only vaguely79

connect model parameters to the process of adaptive evolution. More specific interpretations of these80

models will require methods that can more explicitly connect to microevolutionary and paleontological81

data.82

We present a Bayesian framework for studying adaptive evolution using multi-optima OU83

models that attempts to provide solutions to these challenges. We implement a reversible-jump84

algorithm that jointly estimates the location, number and magnitude of shifts in adaptive optima from85

phylogenetic comparative data (Green 1995; Huelsenbeck et al. 2000, 2004; Eastman et al. 2011, 2013;86

Rabosky et al. 2013). We use simulations to demonstrate the effectiveness of this method at identifying87

the location of shifts and estimating parameters. Furthermore, we demonstrate how the method can be88

used to compare specific hypotheses, and how informative priors can be incorporated from different89

data sources to test mechanistic interpretations of phylogenetic patterns of trait divergence. We90

incorporate these methods into a flexible software package, bayou, for the R statistical environment (R91

Core Team 2014).92

Our approach has a number of distinct advantages over existing methods. First, the93

reversible-jump framework will produce a full posterior of credible models and parameter values and94

therefore incorporates uncertainty in regime number, placement and parameter estimates. This is95

particularly important when modeling OU processes, as these models often have flat ridges on96

likelihood space, particularly for the correlated parameters α and σ2 (Ho and Ané 2013). However,97

some parameter values along these ridges are inconsistent with particular biological interpretations of98

the model. A natural way of restricting model exploration to interesting regions of parameter space is99

to place priors on the parameters. We compare model fits between biologically informed a priori100

hypotheses of adaptive evolution against the full posterior of credible models using marginal101

likelihoods. From these comparisons, we can conclude whether a particular hypothesis captures the102

relevant signal of adaptive peak movement in the data. Furthermore, we show how alternative priors103

and parameterizations of OU models based on different biological interpretations can be compared, and104

suggest how additional sources of data may be incorporated into analyses. By using informative priors,105

we can incorporate data on microevolutionary biological processes (e.g. strength of natural selection,106

population size, genetic variance) and/or constrain the dynamics of the model to be consistent with107

patterns observed at other biological scales (e.g. stasis, rapid evolution over short timescales, etc.). By108
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doing so, we obtain a clearer picture of what our comparative models are actually measuring and how109

we can interpret macroevolutionary patterns.110

Methods111

We model phenotypic evolution across phylogenies as an Ornstein-Uhlenbeck (OU) process, which is a112

mean-reverting continuous-time stochastic process with three parameters describing per unit time113

magnitude of uncorrelated diffusion (σ2), the rate of adaptation (α) and the optimum value of the114

process (θ) according to the stochastic differential equation:115

dz = α(θ − z) + σdW (1)

where dW is a continuous-time Wiener process and z is the trait mean. If α = 0, the process116

reduces to a Brownian motion model of trait evolution. The parameter α is measured in inverse time117

units while the parameter σ2 is in units of squared trait units per unit time. An easier way to interpret118

α is by reparameterizing the value as the phylogenetic half-life (Hansen et al. 2008), which is defined as119

ln(2)/α and is measured in time units. It can be interpreted as the amount of time it takes for the120

expected trait value to get halfway to the phenotypic optimum. Small values of phylogenetic half-life121

(i.e. large values of α) also have the effect of eroding covariance between species following speciation. A122

model with a phylogenetic half-life much greater than tree height will thus resemble a BM process,123

whereas a phylogenetic half-life much shorter than the youngest split on a phylogeny will resemble a124

white noise process (i.e. residual trait values are completely uncorrelated). We will refer to both α and125

phylogenetic half-life throughout the manuscript, as doing so will make certain patterns more clear and126

interpretable. In addition, a useful compound parameter for OU processes is the stationary variance127

[Vy = σ2/(2α)], which is the equilibrium variance of an OU process evolving around a stationary128

optimum θ.129

Multi-optima OU models are modifications of the standard OU model in which adaptive130

optimum, θ, varies across the phylogeny according to discrete shifts in adaptive regimes (Hansen 1997;131

Butler and King 2004). However, unlike most previous implementations, we do not fix the number of132

shifts or their locations on the phylogeny. Instead, we implement a reversible-jump algorithm that133

estimates the number, location and magnitude of shifts in adaptive optima, while jointly sampling OU134

parameters. Although we focus on shifting values of θ across the phylogeny, our method can be135

extended to allow other parameters to differ among regimes (i.e. α and σ2, Beaulieu et al. 2012).136

Reversible-jump Model137
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We consider a fully resolved phylogeny with N taxa. We follow Hansen (1997) and Butler and King138

(2004) and model a multi-optima OU model with discrete adaptive states θ = {θ0, ..., θK}, where θ0 is139

the optimum at the root and K is the number of shifts between adaptive optima. The locations of140

shifts between adaptive states is given by a vector of shift locations mapped onto the phylogeny141

L = {L1, ..., LK} with each Li corresponding to beginning of an adaptive regime assigned to the142

optimum θi. Given these parameters, the distribution of tip states Y is multivariate normal with an143

expectation:144

E[Y |Y0, α,L,θ] = Wθ

where Y0 is the root state and W is a matrix of weights used to calculate the weighted average of145

adaptive optima, discounted by an exponentially decreasing function that depends on the rate146

parameter α and the elapsed time since the species evolved under a given adaptive optimum (For a full147

explanation and derivation, see Hansen 1997; Butler and King 2004). The elements of the148

variance-covariance matrix for Y are:149

V ar[Yi|Y0, σ2, α] =
σ2

2α

[
1− e−2αt0,i

]
and150

Cov[Yi, Yj |Y0, σ2, α] = e−αtij
σ2

2α

[
1− e−2αt0,ij

]
where t0,i is the time from the root to species i, tij is the total time separating species i and j, and t0,ij151

is the total time separating the root and the most recent common ancestor of species i and j.152

To calculate the likelihood, we assume that Y0 = θ0. Alternatively, the likelihood can be153

calculated assuming a stationary distribution or by estimating Y0. However, we found that assuming a154

stationary distribution resulted in poor mixing when α was small (which is typical during the155

beginning stages of the MCMC). We use a pruning algorithm to speed computation and calculate156

conditional likelihood (as in FitzJohn 2012). We use a reversible-jump algorithm to search among157

varying shift numbers (extitK) and shift locations (L) (Green 1995; Huelsenbeck et al. 2000, 2004;158

Eastman et al. 2011; Rabosky et al. 2013). The reversible-jump framework of Green (1995) uses a159

Metropolis-Hastings algorithm to explore models with varying dimensionality through the course of the160

MCMC. The amount of time the MCMC spends in a given model is proportional to its posterior161

probability, thus providing inference on the best supported regime shift placements and magnitudes,162

while accounting for model uncertainty in all estimated parameters. Proposals in the MCMC are163
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accepted with the general probability:164

R = min(1, LikelihoodRatio× PriorRatio× ProposalRatio× Jacobian)

The proposal ratio and the Jacobian together compose the “Hasting’s ratio”, which is dependent on the165

specific proposals used, as described below.166

Proposals167

The proposals to the parameters α, σ2 and θi do not change the dimensionality of the model, and can168

therefore be updated using standard MCMC proposal mechanisms. We update the parameters α and169

σ2 using a multiplier proposal mechanisms, while θi parameters are updated using a sliding-window170

proposal (described in Eastman et al. 2011).171

The dimensionality of the model can change via either a birth or a death step, which adds or172

subtracts a regime shift from the model, respectively. A branch is chosen from the phylogeny at173

random. If the branch currently contains a shift, then a death step is proposed. If the branch does not174

contain a shift, a birth step is proposed. During a birth step, a location for the shift is drawn from a175

uniform distribution over the length of the branch. The value of the adaptive optima before and after176

the shift are simultaneously updated according to the following proposal. A random uniform number177

(u) between (-0.5,0.5) is drawn. New values of θ are obtained by splitting the value of this random178

uniform number proportionally to the amount of branch length across the entire tree inherited by each179

optimum after splitting:180

θ′j = θj − uδr′j+1

181

θ′j+1 = θj + uδr′j

Where r′j is the proportion of the branch lengths across the tree that will evolve under θ′j and r′j+1 is182

the proportion of branch lengths that will evolve under θ′j+1, and δ is a tuning parameter. Thus,183

whichever optimum inherits the most branch length will have the most conservative proposal, while the184

optimum that inherits smaller amounts of branch length will have more liberal proposals (i.e. its value185

will change the most). The new optimum θ′j+1 cascades down the phylogeny until it reaches a tip, or a186

pre-existing shift. The acceptance ratio for the move from parameter set ΘK → ΘK+1 is then (Green187

1995; see Online Appendix I for the derivation, which follows Jialin 2012):188

A(ΘK ,ΘK+1) =
p(Y |θK+1)p(K + 1)(K + 1)p(θ′i)p(θ

′
i+1)δ

p(Y |θK)p(K)(2N − 2−K)p(θi)
(2)
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Death steps operate in reverse, collapsing two regimes into a single regime. The new value of189

this proposed regime is a weighted average of the previous two regimes according to the equation:190

θ′j = θjrj + θj+1rj+1

Consequently, proposed values of optima during death steps are deterministic weighted averages, and191

the acceptance ratio is simply the inverse of equation (2).192

In addition to birth and death proposal mechanisms for adding and subtracting regime shifts,193

we allow shifts to slide along branches without changing the number of parameters in the model with194

two different proposal mechanisms. The first (slide1) allows the position of the shift to move within a195

branch via a sliding-window proposal mechanism. Proposals are reflected back at the nodes so that the196

proposed shift location remains on the same branch. A second proposal allows shifts to slide up or197

down onto neighbouring branches (slide2). When this move is proposed, the total number of allowable198

shifts are counted across the tree for all K shifts. Moves are not allowed to branches that already199

contain shifts, or tipward at the tips and rootward at the root. Each allowable move has an equal200

probability of being chosen. For example, a shift surrounded by three empty branches (two tipward and201

one rootward) has three times the probability of being chosen for the proposal than a shift surrounded202

by only one empty branch and two branches with existing shifts. Once a branch with a shift is chosen,203

one of the available neighbouring branches is chosen with equal probability. The proposed location of204

the shift on the new branch is drawn from a uniform distribution and regimes are cascaded tipward205

until reaching an existing shift.206

The proposal probability for the regime birth-death move was set at a fixed value (in our study207

we used φbd = 0.45). The remaining proposal probability was divided between the five other proposal208

mechanisms: the two sliding shift proposals (slide1 and slide2) and proposals to α, σ2 and θ. We209

placed equal proposal weight on updating α and θ, which were set to 3.5 times the proposal weight of210

updates to σ2 and the two sliding shift proposals. We chose these values based on preliminary211

explorations which indicated that these proposal probabilities resulted in roughly equal effective sample212

sizes for all parameters. Thus, for 0 < K < Kmax, we set φα = φθ = 0.1925 and213

φσ2 = φslide1 = φslide2 = 0.055. When K = 0, both slide1 and slide2 are disallowed, and the proposal214

probabilities for these two moves are divided evenly between the updates to α, σ2 and θ.215

Each shift in our model leads to a unique adaptive optimum. In other words, we do not allow216

convergence of adaptive regimes in our reversible-jump model (though such models may be fit in bayou217

with a fixed number of parameters without a reversible-jump proposal). This is because satisfying the218

“detailed balance condition” of the reversible-jump MCMC requires both forward and reverse proposals219
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to calculate the acceptance probability (Green 1995). However, under convergent regimes, a new shift220

added to the tree can actually reduce the number of shifts (K) by replacing multiple downstream221

transitions to θi in a single move. Since the reverse move would require several proposal steps rather222

than one, satisfying the detailed balance condition is substantially more complex. It is likely that clever223

proposal mechanisms can be designed to adequately explore across models with and without convergent224

regimes with sufficient mixing, but we leave this to future work. Regardless, our primary goal is not to225

estimate the amount of convergence (which remains quite challenging for single-trait datasets, but see226

Mahler et al. 2013), but instead to provide a flexible Bayesian framework for exploring among227

alternative hypotheses and for incorporating prior information to test specific biological interpretations228

of comparative models. Furthermore, the amount of convergence can be assessed post-hoc by the degree229

of overlap among regimes, or by comparing the marginal likelihoods among fixed convergent regimes.230

Priors231

We placed a prior on the number of shifts between adaptive regimes using a conditional Poisson232

distribution, with a maximum number of shifts equal to half the number of tips in the phylogeny.233

Informative priors for this distribution may be taken, for example, from the duration of chronospecies234

or genera in the fossil record. These may suggest the typical duration of a static adaptive regime.235

Alternatively, a given adaptive hypothesis may suppose only a few adaptive shifts across a radiation of236

species.237

We placed a normal prior on adaptive optima. Setting a prior on adaptive optima allows us to238

avoid fitting models in unrealistic regions of parameter space that allow species to track unrealistically239

distant adaptive optima. For example, if we are studying primate body size evolution, it may be240

reasonable to take the prior for the adaptive optima of body sizes by using the distribution of body241

sizes across all terrestrial mammals. Alternatively, we may place the prior based on how distant the242

optima will be from any extant species. Thus, the prior on the optima would be based on both the243

observed range of phenotypes in the data being studied plus the prior belief in how distant any given244

species is from its adaptive optimum. In our model, shifts between adaptive regimes can occur in any245

region of parameter space. Future implementations could penalize unreasonably large shifts between246

adaptive regimes by modeling shifts in optima as a compound point process. Landis et al. (2013)247

proposed fitting models that include these so-called “Levy processes” that model rare jumps in248

phenotypic space where the rate and magnitude of jumps follow a regular stochastic process model.249

Integrating Levy models and OU models would add considerable realism to models of phenotypic250

evolution and allow statistical inference on the rates and distribution of the shifts themselves, but is251

beyond the scope of the current paper.252
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Finally, we assign an equal probability of each branch having a shift, with no more than one253

shift allowed per branch. A more realistic model may allow the probability of shifts between regimes to254

occur proportional to the length of the branch, and to allow multiple shifts per branch. We leave these255

enhancements to future work. Shifts may occur anywhere on a branch with a uniform probability256

distribution, thereby allowing uncertainty in the location of the shift to affect estimation of other257

parameters.258

Simulation study259

To assess the performance of the method given the assumptions we have made above, we conducted a260

simulation study. Phylogenies were simulated under a pure-birth process using the R package TreeSim261

(Stadler 2011) with 64 tips (except for when the effect of sample size was being examined, see below)262

and a constant birth rate of 0.1. For all simulations, the resulting phylogenies were scaled to unit263

height and starting parameters were drawn from the prior distribution to initialize the chain. Two264

independent chains were run for at least 200,000 generations, with a thinning interval of 20 and the265

first 60,000 generations discarded as burnin. We estimated Gelman’s R-statistic for each parameter,266

which compares the within- to between-chain variance to evaluate convergence (Gelman and Rubin267

1992). Values of R close to 1 indicate that the two chains are not distinguishable, whereas high values268

(we used a cutoff of R = 1.1) indicate non-stationarity of the chains.269

We tested the performance of the method across a range of parameter values varying a single270

parameter at a time and using broad, weakly informative priors. For the standard simulation we used271

α=3 (phylogenetic half-life = 23.1% of the total tree height), σ2 = 3 (stationary variance = 0.5), K =272

9 (10 selective optima including the root) and a root value of 0. Shifts were randomly placed on273

available branches at regular intervals separated by 0.1 units of tree height. At each shift, new optima274

were drawn from a normal distribution with mean = 0 and sd = 3. Each parameter was varied275

independently for a series of simulations while all others were held constant at the above values.276

Parameters were examined over the following ranges: Phylogenetic half-life (ln(2)/α; in units of tree277

height) = (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1, 2, 10), σ2 = (0.1, 0.5, 1, 2, 3, 5, 10, 25, 50), clade278

size = (32, 64, 128, 256, 512, 1064) and K = (1, 5, 7, 8, 9, 10, 11, 13, 20, 50).279

We used the simulation-based posterior quantile test of Cook et al. (2006) to validate our280

implementation. This powerful method relies on the distributional properties of Bayesian posteriors281

when simulation parameters are drawn from the prior distribution. Specifically, if the software and282

model are correctly formulated, then posterior quantiles should contain the true parameter value in the283

corresponding percentage of simulations (e.g. a 50% posterior quantile will contain the true parameter284
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value in 50% of the simulations). Although validation using the posterior quantile test does not285

guarantee that an implementation is correct, it is a highly sensitive method of testing the null286

hypothesis that the software is working correctly (Cook et al. 2006). Parameters were simulated from287

the prior distribution, which were set as follows: P(α)∼ LogNormal(ln µ=0.25,ln σ=1.5); P(σ2) ∼288

LogNormal(ln µ=0.25,ln σ=0.1); P(θi) ∼ Normal(µ = 0, σ = 3); P(K) ∼ Conditional Poisson(λ = 10,289

Kmax = 32). Data were simulated for each set of parameters on a simulated phylogeny (following the290

same simulation parameters described above) and posterior distributions were estimated. The quantile291

of the true parameters are determined within the estimated posterior distribution. If the posterior292

distribution is estimated correctly, then the distribution of these quantiles across simulations should293

follow a uniform distribution (Cook et al. 2006). We tested each of the parameters α, σ2, K and θ0294

(the root optimum) for deviations from a uniform distribution using a Kolmogorov-Smirinov test.295

Significant deviations would indicate that the method incorrectly estimates the posterior distribution.296

We used these same simulations from the posterior quantile test (in which simulation297

parameters were drawn from the prior distribution) to evaluate the performance of the method in298

assessing the location of shifts and magnitude of shifts. Thus, we assessed the power of the method to299

detect shifts across a broad range of possible parameter combinations. Posterior probabilities were300

calculated for each branch by counting the proportion of posterior samples with a shift on that branch,301

after excluding the burn-in phase. Consequently, a posterior probability of 0.5 would indicate that half302

the posterior sample contained that shift on a given branch. We then plotted the posterior probability303

of each branch against two values. The first we term “regime divergence” and is defined as the log of304

the ratio between the shift magnitude and the stationary variance of the OU process. The second we305

term the “scaled age” of the shift, which is the log of the ratio between the age of the shift (in time306

units before present) and the true phylogenetic half-life value. We expect a relationship between these307

two ratios and our power to detect shifts because 1) higher values of regime divergence indicate a more308

dramatic shift relative to the variation within a selective regime and 2) the scaled age is a measure of309

how recent the shift is relative to the speed of the OU process. A very low scaled age value would310

indicate that very little time has elapsed for the descendants of this shift to adapt to the new regime,311

thus resulting in low power to detect the shift. Conversely, high values would indicate that ample time312

has elapsed for species to equilibrate on their new adaptive optimum. We estimated a contour plot of313

the posterior probability values for all branches across simulation against regime divergence and scaled314

age by kriging. In addition to the above analyses, we conducted a number of additional simulations to315

assess the power of the method to accurately recover shift number, magnitude and location, including316

an extensive prior sensitivity analysis for the prior on the number of shifts. A detailed description of317

these simulations can be found in the Online Appendix III.318
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Testing specific biological interpretations of evolution319

One of the strengths of OU models is that the process and parameters describe the dynamics of320

adaptive evolution in biologically interpretable quantities. However, whether or not we can interpret321

OU models fit to the deep timescales of phylogenetic comparative data as–for example–stabilizing322

selection and genetic drift, has generally been addressed with only qualitative arguments. The utility323

(and in some cases drawback) of the Bayesian approach is that it allows/requires the use of priors on324

parameter values. We use this feature in bayou to allow the specification of informative priors on325

parameter values that correspond to particular biological interpretations of the OU process. For326

example, rather than specifying a prior on α and σ2, we may instead have prior information on327

phylogenetic half-life or stationary variance. Reparameterization of the model in this way would328

provide a useful way to incorporate prior information on the width of niches, adaptive peaks, adaptive329

zones or the rate of adaptation toward a phenotypic optimum.330

We use the quantitative genetic model of Lande (1976), who showed that genetic drift around a331

stationary Gaussian adaptive peak results in a OU process with parameters:332

∆z =
h2VP

ω2 + VP
(θ − z) +

√
h2VP
Ne

dW (3)

where h2 is the trait heritability, VP is the phenotypic variance, ω2 is the width of the adaptive333

landscape, and Ne is the variance effective population size. We allow specification of this model in334

bayou and use informative priors on these parameters to constrain the model to realistically reflect this335

particular biological interpretation. Note that the branch lengths of the phylogeny should be expressed336

in number of generations in order to fit such a model. Furthermore, we assume that all parameters are337

constant across the phylogeny, an assumption that is likely to be violated.338

To test the utility of this method, we compared models fit using either an unconstrained339

standard OU parameterization (OUFree) or a quantitative genetic Lande model parameterization (QG)340

with priors taken from compilations of empirical estimates typical for linear body size traits on the log341

scale [Table 1; similar to the approach of Estes and Arnold (2007), but in an explicitly Bayesian342

framework]. While the priors for the OUFree model were chosen to have a majority of the prior density343

centered on values of parameters typical of comparative data, effort was made to make them broad344

enough to also have a some significant prior density on the values generated under Lande-model priors.345

As before, we simulated 64-taxa trees, but scaled trees to 50 million years old and a generation time of346

5 years. Simulated data were drawn by drawing parameter values from either the QG or OUFree prior347

distributions. We included normally distributed measurement error in both the simulation and348
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estimation of the data, with a error variance of σ2
ε = 0.052.349

To compare model fits to the simulated data, we estimated marginal likelihoods under each350

model using stepping-stone sampling of models fit to either the OUFree or QG parameterizations (Fan351

et al. 2011). These marginal likelihoods were then used to compute Bayes Factors for model selection352

(Kass and Raftery 1995). Briefly, the stepping-stone method runs a sequence of MCMC simulations to353

estimate “power posterior” distributions sequentially stepping from a reference distribution (we used354

uncorrelated multivariate distributions with parameters estimated from the posterior distribution) to355

the posterior distribution (Fan et al. 2011). Each power posterior is used as an importance density to356

estimate a series of ratios of normalizing constants, the product of which provides the ratio of the357

known reference distribution and the marginal likelihood (Xie et al. 2011). We used a total of 12 steps358

along the path from the reference distribution to the posterior for each stepping-stone MCMC and ran359

each step for 500,000 generations. This was done for 10 datasets simulated from the prior for each360

model. Distributions of Bayes Factors were then compared across model fits to evaluate the degree of361

support for a specific biological interpretation of the model under different simulation parameters.362

Test Case: Chelonian carapace evolution363

The wide variation in body sizes across extant chelonians (tortoises and turtles) has been hypothesized364

to result from a number of causes, including gigantism resulting from marine and island habitats that365

are thought to remove evolutionary constraints on body size (Arnold 1979). Jaffe et al. (2011) explored366

the evolution of the length of the carapace (i.e. the dorsal shell) in a phylogeny of 226 extant chelonians367

using traditional likelihood approaches by fitting multi-optima OU models to the data using ouch368

(Butler and King 2004). The best-fitting model in Jaffe et al. (2011) assigned four separate regimes to369

freshwater, mainland-terrestrial, island-terrestrial, and marine species of turtles (which they called the370

’OU2’ model; we will refer to the model as the OUhabitat model). This model was compared to a371

limited set of alternative hypotheses, including BM, a single-optimum OU model, and several models372

which collapsed various combinations of the four regimes in the OUhabitat model. From these results,373

Jaffe et al. (2011) concluded that there was a strong signal in the data supporting a shift to larger size374

optima in chelonians in marine and island habitats. Parameter estimates from the study suggest that375

body size evolves slowly toward these new optima, with phylogenetic half-lives on the order of 15-20376

million years ( 7-10% of tree height). This same dataset served as a test case for a reversible-jump377

algorithm that explored the potential for shifts in BM rate parameters (Eastman et al. 2011). The378

relaxed BM model (rBM) uses a reversible-jump framework to find shifts in evolutionary rates in a379

manner very similar to bayou. For the Jaffe dataset, Eastman et al. (2011) found shifts in evolutionary380
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rates between several groups of turtles and tortoises, including increased rates in Testudinidae381

(tortoises) and Emydidae (pond turtles). Note that we discovered an error in the acceptance ratio of382

the rBM model in previous versions of the R package auteur (Eastman et al. 2011). We provide the383

corrected acceptance ratio for the rBM model in Online Appendix II, which has been updated for the384

implementation of the rBM model in the R package geiger (versions 1.99 and greater, Harmon et al.385

2008). Because the Eastman et al. (2011) model detects rate-shifts not mean-shifts, it is not well-suited386

for testing hypotheses about directional adaptation in a clade to an optimal state. We instead fit a387

related, recently developed model of phenotypic shifts in a BM framework that combines ”jumps” or388

mean-shifts with a standard BM (bm-jump model, Eastman et al. 2013). Note that this model is389

distinct from the models implemented in bayou, because mean-shifts under the bm-jump model come390

from a distinct distribution and are best thought of as temporary shifts to high rates of evolution. By391

contrast, OU models use the same α parameter to control the rate of adaptation to a new optimum392

before and after a shift, and therefore cannot combine rapid jumps in mean with BM-like evolution.393

We use the Jaffe et al. (2011) dataset to demonstrate the utility of bayou, and to compare to394

existing approaches. We analyzed the OUhabitat model in bayou by constraining the location of shifts395

and regimes to be the same as the model of Jaffe et al. (2011), except we allowed the location of the396

shift to move freely along the branch (rather than constraining it to occur at the nodes). We replicated397

maximum likelihood estimates for the OUhabitat model to obtain comparable estimates of parameters398

using the R package OUwie (Beaulieu et al. 2012). We then compared this to an unconstrained bayou399

model that allows shifts to be assigned freely among the various branches. Note that these models are400

not nested, because in the OUhabitat model regimes are convergent, whereas in the unconstrained401

model, each shift is given its own unique adaptive regime. Priors on the parameters in all runs were402

assigned as follows: P(α)∼ LogNormal(ln µ=-5,ln σ=2.5); P(σ2) ∼ LogNormal(ln µ=0,ln σ=2); P(θi)403

∼ Normal(µ = 3.5, σ = 1.5); P(k) ∼ Conditional Poisson(λ = 15, kmax = 113).404

We compared these models by comparing the posterior probabilities of shifts on each branch in405

the bayou unconstrained run to the locations of the shifts in the OUhabitat hypothesis. Furthermore, we406

evaluated overall model support for the constrained vs. the unconstrained model by using407

stepping-stone sampling using the method of Fan et al. (2011) to estimate Bayes Factors. Note that408

Bayes Factors can be sensitive to prior specification, especially when one model has a very specific prior409

specification (e.g. the location and number of shifts are fixed, as in the OUhabitat model) and the410

alternative has a very vague prior (as in the unconstrained bayou model). Specifically, vague priors are411

expected to produce lower marginal likelihoods than more specific priors, and thus these tests favor412

constrained models. Furthermore, the OUhabitat model has fewer parameters than the unconstrained413

bayou model with the same number of shifts due to evolutionary convergence.414
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In addition to comparing the unconstrained and constrained model in a Bayesian framework,415

we compared our method to the method of Ingram and Mahler (2013) as implemented in the R package416

SURFACE. Our unconstrained model is analogous to the forward-addition procedure of SURFACE, and417

thus we compare parameter estimates and shift locations in both the forward and reverse steps of the418

SURFACE algorithm independently. These two methods differ in that the SURFACE algorithm of Ingram419

and Mahler (2013) relies on stepwise-AIC rather than Bayesian reversible-jump methods to find the420

location of shifts. While stepwise-AIC methods attempt to find the single, best-fitting model, our421

method integrates over uncertainty in regime placement and returns a posterior of shift locations that422

well-describe the data. Finally, we fit the BM-jump model of auteur, which fits jumps to a background423

of constant-rate BM (Eastman et al. 2013). As we described above, this is similar to the bayou model,424

but differs in that jumps are realized instantaneously rather than approaching at a rate determined by425

α. Thus, these two models may be expected to find similar shift locations and have relatively426

comparable parameter estimates. As with the bayou implementation, we place a conditional Poisson427

prior on the number of shifts (“jumps”) at λ = 15.428

Results429

Simulation study430

Under most simulation conditions, convergence was reached within 500,000 generations (i.e. Gelman431

and Rubin’s R reached below 1.1 for all parameter values). When convergence failed to occur within432

this time frame, it tended to be when shift magnitudes were large relative to the stationary variance of433

the process (i.e. high regime divergence). This results in steep likelihood peaks and a tendency to get434

trapped under non-optimal configurations of shifts. A potential solution to this issue, besides running435

longer and more chains, would be to use Metropolis-Coupled MCMC, which improves mixing by436

implementing “heated” chains that explore the likelihood surface more efficiently. Interestingly, these437

instances in which mixing is poorest and convergence is most problematic are the instances in which438

the model finds the strongest support for regime shifts and estimates their location most reliably439

(although it may get caught in less parsimonious likelihood peaks than the simulated model).440

Nonetheless, the model effectively identifies the presence of adaptive peaks shifts, although it may have441

difficulty determining the exact order of shifts among branches in these instances.442

Overall, simulations indicated that parameters are estimated with reasonable accuracy. The443

diffusion rate parameter σ2 tends to be slightly underestimated, especially for low phylogenetic half-life444

values (i.e. values less than most of the splits in the tree) and overestimated when phylogenetic445
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half-lives are much longer than tree height (Figure 1, A & D). However, for half-life values ranging446

from around 0.1-2 times tree height, σ2 is estimated reasonably with a slight bias toward447

underestimation (Figure 1, D). Phylogenetic half-life tends to be overestimated over most of this range448

as well (Figure 1, B & E). These two effects balance out, however, and produce reasonable estimates of449

stationary variance. Increasing number of tips greatly improves estimates of both σ2 and α and reduces450

bias (Figure 1, J & K). For small numbers of tips (e.g. 32), there is a tendency to fit models with451

higher values of phylogenetic half-life (more BM-like) models. This is likely because many shifts occur452

on branches leading to singletons, resulting in very little power to distinguish the effect of rate453

parameters (α and σ2) from shifts (θ).454

We show that inference becomes problematic when the ratio of the number of tips to the455

number of shifts decreases below 4, and recommend at a minimum ∼ 50 tips. The number of estimated456

shifts seems are particularly sensitive to the prior when using the conditional Poisson as the prior,457

despite some influence of the data on the estimation of the number of shifts (Figure 1, C, F, I & L;458

Online Appendix III). When the number of shifts are large, the method generally results in459

underestimation of the true number of shifts. This is particularly true when more permissive priors are460

used (e.g. negative binomial or discrete uniform, Online Appendix III). However, even when the461

number of shifts is not reliably estimated, parameter estimates for α, σ2 and branch-specific posterior462

probabilities were not substantially affected until the number of shifts was large (e.g. 20 shifts on a463

64-128 taxa phylogeny, Figure 1, G-I; Online Appendix III).464

Inferences based on branch-specific posterior probabilities were not affected by mis-estimation465

of the total shift number, as long as the prior allowed a sufficient number of shifts to explain the true466

model (Online Appendix III). Rather than producing a large number of strongly supported467

false-positives, strong priors with a large number of expected shifts (e.g. conditional Poisson with468

λ = 20) resulted in diffusely elevated branch posterior probabilities across all branches when no high469

magnitude shifts were present. By contrast, when the prior allows only a few shifts, complex models470

are poorly fit and the models tend to collapse to BM-like models with mis-estimated parameters. Thus,471

priors that favor complex models have little effect on inference of shift location and magnitude, whereas472

conservative priors tend only to fit models with very few shifts, and severely mis-estimate parameters473

for complex models (see Online Appendix III).474

Branches on which a shift was simulated have much higher posterior probabilities than475

branches in which no shift occurred in the true simulation model, even when the number of shifts is476

over or under-estimated (Figure 2). This is particularly true for small σ2 and low phylogenetic half-life477

(Figure 2A & B). This is because low values of σ2 results in very little trait variation within regimes478

relative to the divergence between regimes (high regime divergence), and low values of phylogenetic479

15

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 23, 2014. ; https://doi.org/10.1101/004465doi: bioRxiv preprint 

https://doi.org/10.1101/004465
http://creativecommons.org/licenses/by-nd/4.0/


half-life result in rapid adaptation to regimes (high scaled age). As phylogenetic half-life approaches 1480

(i.e. the tree height), the power to detect shifts is reduced nearly to 0 under the simulation parameters481

we examined. The number of tips did not significantly affect the posterior probability of correctly482

identifying a shift (Figure 2D). This is likely because the expected number of tips evolving under a483

randomly placed adaptive regime increases slowly with increasing number of tips, meaning that adding484

tips does relatively little to improve estimates of shift parameters (i.e. assuming equiprobable shift485

locations among branches–regardless of the phylogeny size–results in approximately 50% of randomly486

placed shifts being placed on terminal branches that contain only one descendant, Ho and Ané 2013).487

Furthermore, as the number of tips increased, the prior probability of a given branch having a shift488

decreased. When errors were made and branches with a true shift were assigned low posterior489

probabilities, this was generally because the shift was assigned with high posterior probability to a490

neighbouring branch.491

Simulation of parameters from the prior distribution and subsequent simulation was carried492

out for 1118 simulations run for 200,000 generations to evaluate posterior quantiles of the simulated493

parameter values (Cook et al. 2006). A total of 938 of the simulation runs resulted in Gelman’s R494

statistics less than 1.1 and were used in subsequent analyses. Posterior quantiles of the simulated495

parameter values for the root (θ0), the number of shifts (K) and σ2 were not significantly different from496

a uniform distribution, as expected if these parameters are estimated accurately and without bias.497

Posterior quantiles for the α parameter deviated significantly from a uniform distribution (p = 0.01,498

Table 2), tending to be slightly under-estimated (∼ 54% of true parameter values were estimated to be499

in the upper 50% quantile of the posterior distribution). This significant deviation may have been500

affected by issues with convergence rather than implementation error, as α tended to converge slower501

than other parameters and runs that failed to converge (∼ 16.1% of simulation runs) had significantly502

larger values of α (p < 0.05), suggesting that systematic removal of non-convergent runs could affect503

the distribution of posterior quantiles. Regardless, the distribution for α was nonetheless qualitatively504

quite similar to a uniform (Figure 4). Overall, the method appears to perform quite well at recovering505

accurate posterior distributions for the estimated parameters.506

Branches with shifts tend to have high posterior probabilities if the shift magnitude is high507

relative to the stationary variance and when the age of the shift is much older than the phylogenetic508

half-life (Figure 3). Specifically, a shift that is 1 phylogenetic half-life old and 1 standard deviation509

from the stationary distribution away from the previous optimum will have an estimated posterior510

probability of having a shift of around 0.2, or slightly more than twice the prior probability of a branch511

having a shift (Figure 3).512
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Modeling biological interpretations513

Models simulated under Lande model (QG) priors were decisively favored under a QG514

parameterization as opposed to an OUFree in 9 out of 10 simulations, with exceedingly high Bayes515

Factors (Figure 5, mean = 4746.5, sd = 6166.4). Around half of these simulations failed to converge516

across chains (Gelman and Rubin’s R > 1.1) after 500,000 generations, and therefore a total of 20517

simulations were required to obtain 10 well-estimated Bayes factors. Models simulated under OUFree518

priors typical of comparative data also resulted in decisive support in all 10 simulations against the519

Lande model, but Bayes Factors were not nearly as high as those simulated under the Lande model520

(Figure 5, mean = 46.6, sd = 15.7). The asymmetry results from the known effect of vague priors on521

Bayes Factors (Kass 1993) when compared to highly specific models. Even so, we observe that we can522

easily reject certain parameterizations and prior sets over alternatives.523

Chelonia carapace evolution524

The unconstrained bayou model identified a number of highly supported shifts in the posterior525

distribution (Figure 6). In particular, strong shifts were detected for increased carapace length in the526

clades that include softshell turtles (family Trionychidae), sea turtles (superfamily Chelonioidea), the527

genus Batagur, the Malaysian giant turtle (Orlitia borneensis) and two clades of tortoises (Figure 6).528

Decreases in size were found in the clade leading to tortoises and most modern turtles, as well as a few529

moderately support shifts across the tree, such as the tortoise clade including Geochelone elegans and530

Geochelone platynota. Posterior distributions of parameter values were much narrower than the prior531

distributions, and indicate substantial information in the data driving the estimation of these532

parameters. Phylogenetic half-lives were relatively short compared to the height of the tree (posterior533

median = 3.94 my) indicating that after accounting for adaptive regimes, very little phylogenetic534

covariance remained among species in the phylogeny. This is in contrast to the OUhabitat model, which535

estimated significantly higher values of phylogenetic half-life and lower values of σ2 (Figure 7).536

Support for the unconstrained bayou model over the Bayesian OUhabitat model was very537

strong, with a 2 ln BF = 15.24 (Kass and Raftery 1995, ; Table 3). Only one shift (leading to sea538

turtles) identified in the OUhabitat model was identified as strongly supported in the posterior of the539

unconstrained bayou model (Figure 6), while SURFACE and auteur’s bm-jump model found more540

comparable shift locations. We conclude that while the OUhabitat model is better than many models, it541

is not a representative model from the posterior distribution obtained from bayou. Instead, the542

hypothesis proposed by Jaffe et al. (2011) captures only a few of the relevant statistical features of the543

data. The OUhabitat model also had higher estimates for both the phylogenetic half-life and for544
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stationary variance, likely because multiple adaptive regimes were combined into single adaptive545

regimes, resulting in inference of broader adaptive zones, and a weaker rate of adaptation.546

SURFACE runs identified most of the same shifts that were found in bayou, as well as547

considerable amounts of convergence. However, more shifts were identified, likely due to the prior on548

the number of shifts (SURFACE identified 33 shifts, while the prior on the number of shifts in the bayou549

runs was only 15). Estimates of adaptive optima, θ, were extremely distant in the best-fitting SURFACE550

models, and estimates of phylogenetic half-life were correspondingly considerably larger than the551

estimates from bayou (Table 3).552

Discussion553

Bayesian Inference of Adaptive Regimes554

In this study, we have shown how Bayesian inference of adaptive regimes fit to multi-optima OU555

models provides a flexible framework for testing evolutionary hypotheses. Bayesian OU models have556

had limited application to trait evolutionary studies (but see Reitan et al. 2012, for layered OU models557

applied to fossil timeseries data), but offer a number of distinct advantages over existing methods.558

First, our method integrates over uncertainty in regime placement and allows inference of the559

location, magnitude and number of adaptive shifts. Based on our simulation results we find that560

inference on the number of shifts is more difficult as estimation of this parameter tends to heavily561

influenced by the prior distribution. However, other parameters in the model are well-estimated and562

the method correctly identifies the location of most shifts in the phylogeny so long as the number of563

shifts is not large (K > 25% the number of tips). The probability of correctly identifying a shift564

increases with the magnitude and age of adaptive regimes. Because low magnitude, recent shifts of565

little effect can always be added to the model, inference should focus on the branch posterior566

probabilities themselves rather than the total shift number (see Online Appendix III).567

Second, the great advantage of OU models is their compatibility with our understanding of the568

evolutionary process (Hansen 1997; Hansen et al. 2008). On the other hand, many of the statistical569

properties of OU models can complicate inference resulting from inconsistent estimators and lack of570

identifiability (which has been shown for the case when the root state is drawn from a stationary571

distribution, see Ho and Ané 2013). We show how Bayesian implementation of these models allows a572

full exploitation of the biological realism of OU models by allowing the use of informative priors that573

constrain the model to biologically realistic values while simultaneously alleviating the some of the574

statistical issues of OU model-fitting, such as the existence of likelihood ridges that extend into regions575
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of unrealistic parameter space. Furthermore, we demonstrate how the model can be used to explicitly576

test alternative biological interpretations by testing alternative parameterizations of the models. Note577

that no method, however, will retrieve an automatic determination of whether a model is correct or578

not, only whether the correlative pattern and model is consistent with a given biological interpretation.579

The discretion of the researcher is needed to adequately interpret the reasonableness of the results580

produced by bayou.581

Just as a clear understanding of the mechanisms behind molecular evolution have582

revolutionized methods of phylogenetic inference (Kimura 1980, 1984; Felsenstein 1981), additional583

sources of data can trigger effective, and informative, methods of inference for phenotypic traits584

(Pennell and Harmon 2013). Our results demonstrate how models consistent with a quantitative585

genetic interpretation can be identified statistically from other interpretations of OU models. Our586

comparisons of simulated OUFree vs. QG models are somewhat contrived in that parameters were587

drawn directly using informative priors that were subsequently used as priors for model-fitting—an588

optimal scenario that is unrealistic when fitting real data. Furthermore, priors for the QG model were589

set to correspond to parameters estimated for body size data, a trait known to be unlikely to follow the590

QG model over million-year timescales (Lynch 1990; Hansen 1997; Butler and King 2004; Uyeda et al.591

2011). Consequently, it is unsurprising we can obtain such dramatic support for the generating model592

when comparing QG and OUFree parameterizations. Nevertheless, the QG model may be appropriate593

to apply to traits that are known to be more constrained, have lower additive genetic variances, if594

selection is known to be quite weak or if the underlying dynamics of adaptive landscapes are595

well-described by the model of peak movement. The potential for incorporating prior information is596

not limited to QG data. OU models have been effectively implemented to fit to fossil timeseries on597

timescales intermediate between microevolutionary, and phylogenetic scales (Hunt 2007, 2008, 2013;598

Reitan et al. 2012). The possibility of uniting these different data sources using either a single,599

phylogeny-based modeling framework, or by using the results of models fit to fossil data to inform the600

priors for comparative data (for example) provides rich avenue for unification of microevolutionary,601

fossil and macroevolutionary data.602

Some may view the reversible-jump framework proposed in this study to be a data-mining tool603

that will lead to over-fitting of non-biologically relevant statistical noise. We agree that biologically604

informed a priori hypotheses should not be thrown out in any analysis and should be preferred to a605

posteriori, non-biologically based statistical models. However, we demonstrate one way to unite these606

approaches by comparing biologically informed a priori hypotheses to the posterior distribution of the607

unconstrained model. We tested the best-fitting model of a previous study (Jaffe et al. 2011) to608

demonstrate how a priori hypotheses can be compared to a posteriori hypotheses obtained in the609
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reversible-jump framework. We find that the best-fitting model of chelonian carapace length evolution610

found in Jaffe et al. (2011) captures only one of the highly supported optima-shifts in the posterior611

distribution (Figure 6). The posterior obtained via reversible-jump inference is much more strongly612

supported based on Bayes Factors even given the high penalty assigned to models with vague priors613

(Kass 1993). Comparing biologically informed hypotheses to the posterior distribution of statistically614

supported hypotheses provides a useful metric for determining the adequacy of our model in explaining615

the data. Furthermore, we can generate additional hypotheses based on the inadequacy of the a priori616

hypotheses to explain the existence of distinct adaptive regimes for certain clades. For example, in the617

Chelonia dataset we examine here we find that there is a strongly supported adaptive shift in the618

softshell turtles (Trionychidae) that is not captured by the OUhabitat model of Jaffe et al. (2011).619

Based on this observation, we can conclude that the simple freshwater-marine dichotomy does not620

capture the underlying causal forces behind carapace length evolution. Instead, optimal body size may621

be better explained by other factors. For example, a shift to a larger phenotypic optimum may be622

accompanied by shifts to more aquatic lifestyles (irrespective of salinity) by releasing species from623

constraints imposed by the physical environment. Furthermore, it has been hypothesized that larger624

body sizes in chelonians may require higher environmental temperatures to enable high enough625

mass-specific metabolic rates to sustain growth (Makarieva et al. 2005; Head et al. 2009). Thus, a626

combination of an aquatic lifestyle and warm temperatures may favor shifts toward larger body sizes.627

An important implication of our analysis is that the biological interpretation of a model may628

change the posterior distribution of model fits. For example, species of turtles may cluster broadly into629

adaptive zones defined based on aquatic or non-aquatic habits, and such transitions may be rare630

enough that OU model with a handful of shifts and weak parameters for α and σ2 could adequately631

describe evolutionary patterns. However, support for such a pattern does not exclude the possibility632

that at shorter timescales, species evolve according to a pulsed pattern of shifts in adaptive optima633

separate by million-year periods of phenotypic stasis [i.e. the pattern of stasis that lead to Eldredge634

and Gould’s (1972) proposal of punctuated equilibrium, but see Pennell et al. 2013]. If such a stasis635

model were enforced through informative priors, we would expect high values for α and σ, as well as636

more numerous shifts. Both evolution within these broad adaptive zones and intervals of stasis may be637

occurring simultaneously, and there may be statistical signals for both processes that are detectable in638

phylogenetic comparative data. bayou provides a flexible means of fitting these biological639

interpretations, and testing for specific processes and patterns of interest.640

Our method helps alleviate many of the challenges inherent to fitting OU models to641

phylogenetic comparative data. Inference of OU models is often challenging due to ridges in likelihood642

space, which result in poor convergence and difficult to interpret parameter estimates. We emphasize643
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the importance of examining the full posterior distribution, rather than point estimates, when644

interpreting model fits and the statistical signal of adaptive evolution in comparative data. For645

example, Ingram and Mahler’s 2013 SURFACE method, as in bayou, searches for an optimal arrangement646

of adaptive regimes across the phylogeny. However, because of ridges in likelihood space in the chelonia647

dataset we examined, SURFACE gave highly unrealistic estimates of the values of the adaptive optima.648

This is because there are a range of correlated values of α, σ2 and θ1, ..., θK that give essentially the649

same likelihood. Thus, the ML estimate in SURFACE combines extremely distant optima (ranging from650

-422.6 to 111.2; Table 3) with much weaker estimates of α (phylogenetic half-life of 92.6 vs. 3.94 in651

bayou) to obtain very high log-likelihoods relative to other methods (Table 3, Figure 6). bayou avoids652

these difficult to interpret results by using informative prior information to exclude biologically653

unreasonable models. Although this introduces some subjectivity, most biologists would agree that we654

can reasonably reject the idea that any extant species of chelonians are adapting to an optimal655

carapace length of e111.2 = 1.96x1043 km long (i.e. larger than the diameter of the observable universe).656

Since fitted model parameters are correlated, unreasonable estimates of adaptive optima also affect657

estimation of α, σ2 and the location of shifts. By simply setting a reasonable prior on this one set of658

parameters (θ1, ..., θK), we show that the estimation of α and σ collapses from a ridge to a narrow peak659

of values (Figure 7). Thus, while both methods can infer the location of shifts in adaptive optima660

without a priori specification, bayou allows for the inclusion of informative priors and returns a full661

posterior of credible models; while SURFACE allows for convergent regimes (the “backwards” selection662

step) which is currently not implemented in the reversible-jump framework of bayou.663

Our analysis of simulations results gives considerable insight into best practices in fitting OU664

models to phylogenetic comparative data. While bayou does not estimate the number of shifts with665

much power, it is nonetheless possible to distinguish models with little statistical support for adaptive666

peak shifts vs. models with strong evidence of optima shifts. For example, as the true model667

approaches BM (i.e. high phylogenetic half-lives) or the number of shifts goes to 0, the posterior668

support for any particular branch greatly decreases, eventually reaching the probability of a random669

branch having a shift given the prior density (Figure 1; Online Appendix III). Thus, if no branch has670

high posterior support relative to the prior density, we conclude there is little evidence for an adaptive671

shift (regardless of the mean number of shifts inferred in the posterior distribution). In fact, there is672

relatively little cost to placing a high prior on the number of shifts for inference of phylogenetic673

half-life, σ2, and the location and magnitude of optima shifts, whereas conservative priors will often674

result in mis-estimation of these parameters if the true model is complex. Therefore, we recommend675

using priors that favor a moderate to large number of shifts rather than using more conservative priors676

(see Online Appendix III). Furthermore, if the posterior for phylogenetic half-life includes values higher677
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than the phylogenetic tree height, this indicates that the model is very BM-like and it is unlikely that678

shifts will be estimated. This is because optima shifts are expected to only weakly affect the679

distribution of the data. As a simple heuristic, we obtained reasonable estimates of parameters when680

the phylogenetic half-life is between the youngest split in the phylogeny and the total tree height.681

Half-life values substantially less than the youngest split in the phylogeny indicate that after682

accounting for optima shifts, residual variation within regimes is not phylogenetically correlated (white683

noise). By contrast, phylogenetic half-lives much higher than tree height indicate strong phylogenetic684

signal even after accounting for shared adaptive optima, which is suggestive of BM-like evolution.685

A number of extensions are possible within our proposed method, and is a first step toward a686

much more expansive suite of models. Using likelihood approaches, OU models have been expanded to687

include randomly evolving continuous predictors (Hansen et al. 2008), multivariate evolution of688

correlated traits (Bartoszek et al. 2012), varying α and σ2 parameters across the tree (Beaulieu et al.689

2012; Lapiedra et al. 2013) and identification of convergent regimes (Ingram and Mahler 2013; Mahler690

et al. 2013). Expanding these models to a Bayesian framework would carry many of the same691

advantages we describe in this study. Furthermore, we emphasize the importance of developing models692

that describe the dynamics of adaptive landscapes themselves, and suggest anchoring these models in693

empirical datasets through the use of informative priors will greatly improve our understanding of694

macroevolutionary dynamics.695
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Table 1: Prior distributions for OUFree and QG models used in simulation study modeling different
biological processes. Models are simulated and fit to the data from these priors, intended to reflect values
typical for linear ln(body size) related measurements in a clade 50 my old that spans two magnitudes in
size. Measurement error (ME) is simulated and fit to be ∼Norm(µ = 0, σ2

ε = 0.052).
Parameter Prior Quantiles (1%, 50%, 99%) Ref
Model: QG

h2 ∼Beta(a = 15, b = 20) (0.25; 0.43; 0.62) Mousseau et al. 1987
VP ∼LogNorm(lnµ = −5, lnσ = 0.8) (0.0322; 0.0822; 0.2082) Uyeda et al. 2011

ω2/Vp ∼LogNorm(lnµ = 4, lnσ = 1.5) (1.67; 54.6; 1,790) Estes and Arnold 2007
Ne ∼LogNorm(lnµ = 10, lnσ = 2) (210; 22,000; 2.31E6) Estes and Arnold 2007

Phy half-life (y) - (21.2; 459; 15,200)√
Vy + σ2

ε - (0.05; 0.05; 0.079)
Model: OUFree

α ∼LogNorm(lnµ = −3, lnσ = 3) (4.6E-5; 5.0E-2; 53) Hansen 2012*
σ2 ∼LogNorm(lnµ = 0, lnσ = 2) (9.5E-3; 1; 105)

Phy half-life (my) - (0.013; 13.9; 1,487)√
Vy + σ2

ε - (0.069; 3.17; 210)
Both models

θ ∼Norm(lnµ = 0, lnσ = 0.5) (-1.2; 0; 1.2)
K ∼CondPoisson(λ = 15, Kmax = 32) (7; 15; 25)

*This prior on α puts about ∼20% of the probability density on a phylogenetic half-life less than the
average youngest splits in the simulated phylogenies (∼1 my, white noise-like evolution) and ∼30% of
the probability density above the tree height (50 my, i.e. BM-like evolution).

Table 2: Posterior quantiles for parameter values and p-values from a Komolgorov-Smirnov test. Runs
that did not converge were removed from the analysis.

N 2.5% 25% 50% 75% 97.5% p-value
Log Likelihood 938 0.03 0.26 0.53 0.76 0.98 0.17

Log Prior 938 0.02 0.30 0.57 0.80 0.98 0.00
α 938 0.02 0.26 0.54 0.78 0.99 0.01
σ2 938 0.02 0.26 0.52 0.74 0.98 0.78
K 938 0.03 0.27 0.51 0.76 0.99 0.42

Root θ0 938 0.02 0.22 0.51 0.76 0.98 0.29
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Table 3: Comparison of model fits to Chelonia carapace length data (Jaffe et al. 2011). The range of
θ values are taken from either the posterior distribution (for Bayesian analyses) or from the range of
estimates for individual optima from the ML analyses.

Variable bayou OUhabitat (ML) OUhabitat (bayou) SURFACE Fwd SURFACE Bwd bm-jump
No. of shifts 16* 16 16* 33 33 16*
No. of θ 17* 4 4* 33 13 -
lnL -90.9* -137.8 -137.1* 34.3 30.7 -97.3*
Marginal lnL -143.6 - -151.2 - - -
ln 2/α (my) 3.94* 17.6 16.7* 92.6 85.2 -
σ2 (per my) 0.0568* 0.0285 0.0298* 0.00325 0.00341 0.00381*
Vy 0.16* 0.36 0.36* 0.21 0.22 -
Range of θ (2.08, 5.12) (3.11, 4.82) (3.23, 5.19) (-422.6, 111.2) (-387.9,102.5) -

*Median of posterior distribution
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Figure 1: Results of simulation study varying the parameters σ2 (row 1, A-C), phylogenetic half-life
(ln(2)/α; row 2, D-F), the number of shifts on the phylogeny (K; row 3, G-I) and the number of tips in
the phylogeny (row 4, J-L). Solid black points indicate the true value used to simulate the data, dotted
lines indicate the median posterior mode across simulations. Priors for parameters are as follows: α ∼
LogNormal(ln µ = 0.25, ln σ = 1.5), σ2 ∼ LogNormal(ln µ = 0, ln σ = 5), θ ∼ Normal(µ = 0, σ = 3),
K ∼ Conditional Poisson (λ = 9, Kmax = ntips / 2).
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Figure 2: Estimation of branch posterior probabilities using the same simulations as in Figure 1 for
varying values of (A) σ2, (B) phylogenetic half-life, (C) number of shifts (K) and (D) number of tips. For
each plot, boxplots indicate the distribution of posterior probabilities of a shift occurring on branches
that either contain no shift in the true model (left side of each panel) or contain a shift (right side).
Locations of shifts were chosen randomly across the phylogeny, and magnitudes were determined by
optima drawn randomly from a normal distribution.
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Figure 3: Relationship between regime divergence ((θ2 − θ1)/
√
Vy), the scaled age of the shift (shift

age/phylogenetic half-life) and the posterior probability of detecting a shift. All branches from each 64-
taxon tree were plotted to estimate this surface using ordinary kriging to visualize the relationship. Prior
probability of a branch being selected is 0.0827. Branches without shifts were given a small divergence
value (log(0.01)) and correspond to the left-most data in the plot.
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Figure 4: Cumulative distribution plots for posterior quantiles for selected parameters. If posteriors
are estimated accurately, then the quantiles of true values of the parameters across simulated datasets
should be uniformly distributed (Cook et al. 2006) and follow the dotted lines, which indicate the expected
cumulative distribution function for a uniform distribution. Each MCMC was run for 200,000 generations
and the first 30% of the samples were discarded as burnin. Runs in which Gelman’s R failed to reach
below 1.1 at the end of the run were removed. A total of 938 simulations were used after removing runs
that did not reach convergence.
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Figure 5: Model comparison for biological interpretations of OU models. Models were simulated either
under diffuse priors typical of comparative data (OUFree, left) or under realistic priors for the Lande
model (QG, right). Both OUFree and QG models were then fit to the data, and marginal likelihoods
were estimated using stepping-stone modeling to obtain Bayes Factors (BF). 2 ln BF are shown, with
values above 0 (dotted gray line) indicating that the true model was favored. A total of 10 simulations
were run under each model (see text for details).
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Figure 6: Model fits of multi-optima OU models using different methods. Circles at the nodes in A)
and C) indicate by their size the posterior probability of shift locations from the reversible-jump model
implemented in bayou, with the larger phenotypic values for optima being indicated by yellow and smaller
optima indicated by red. Circles in B) and D) are the posterior probability of a shift in a constant-rate
BM model with jumps fit using the bm-jump model in auteur. Branch painting in A) and B) is the
OUHabitat model (which corresponds to the OU2 model of Jaffe et al. 2011). Regime paintings in C)
and D) correspond to the best fitting model from SURFACE using forward stepwise addition (Ingram and
Mahler 2013).
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Figure 7: Posterior distributions for parameters estimated using bayou under a reversible-jump (Red)
and fixed OUhabitat (Blue) models to the chelonia carapace data. Parameters estimated include A)
phylogenetic half-life B) σ2 and C) the distribution of phenotypic optima (θ). Dotted lines indicate prior
density, black solid line in C) indicates the distribution of phenotypes in the data.
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