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Abstract.— A number of methods have been developed for modeling the evolution of a11

quantitative trait on a phylogeny. These methods have received renewed interest in the12

context of genome-wide studies of gene expression, in which the expression levels of many13

genes can be modeled as quantitative traits. We here develop a new method for joint14

analyses of quantitative traits within and between-species, the Expression Variance and15

Evolution (EVE) model. The model parameterizes the ratio of population to evolutionary16

expression variance, facilitating a wide variety of analyses, including a test for17

lineage-specific shifts in expression level, and a phylogenetic ANOVA that can detect genes18

with increased or decreased ratios of expression divergence to diversity, analogous to the19
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famous HKA test used to detect selection at the DNA level. We use simulations to explore20

the properties of these tests under a variety of circumstances and show that the21

phylogenetic ANOVA is more accurate than the standard ANOVA (no accounting for22

phylogeny) sometimes used in transcriptomics. We then apply the EVE model to a23

mammalian phylogeny of 15 species typed for expression levels in liver tissue. We identify24

genes with high expression divergence between-species as candidates for expression level25

adaptation, and genes with high expression diversity within-species as candidates for26

expression level conservation and/or plasticity. Using the test for lineage-specific expression27

shifts, we identify several candidate genes for expression level adaptation on the catarrhine28

and human lineages, including genes putatively related to dietary changes in humans. We29

compare these results to those reported previously using a model which ignores expression30

variance within-species, uncovering important differences in performance. We demonstrate31

the necessity for a phylogenetic model in comparative expression studies and show the32

utility of the EVE model to detect expression divergence, diversity, and branch-specific33

shifts.34

(Keywords: comparative expression, expression adaptation, plasticity, Ornstein-Uhlenbeck35

model, population variance)36

Quantitative phylogenetic methods account for non-independence relationships37

between species using several approaches such as independent contrasts (Felsenstein 1985)38

and generalized least squares (Grafen 1989; Martins and Hansen 1997; Rohlf 2001). These39

methods have provided frameworks for a variety of phylogenetic approaches which consider40
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variance within species (for a review, see Garamszegi 2014). For instance, the phylogenetic41

mixed model considers both gradual evolutionary drift and within-species variance (Lynch42

1991; Housworth et al. 2004). Another approach transforms comparative quantitative data43

to account for phylogeny before performing ANOVA (Butler et al. 2000). Still other44

methods compare ANOVA results based on raw phylogenetic data to those based on data45

simulated under a phylogenetic model to create an appropriate null distribution46

(Garland et al. 1993; Harmon et al. 2008; Revell 2012). Sophisticated extensions of47

quantitative evolutionary models allow evolutionary scenarios including varying rates of48

phenotypic evolution (Pagel 1999; O’Meara et al. 2006). These quantitative trait evolution49

methods have been used effectively for a variety of phenotypic, particularly morphological,50

traits.51

The emergence of transcriptome-wide comparative gene expression studies including52

multiple individuals per species (Kalinka et al. 2010; Brawand et al. 2011; Perry et al.53

2012; Necsulea et al. 2014) has presented a new challenge to quantitative evolutionary54

methodology. Like traditional morphological traits, expression levels can be considered a55

quantitative trait that evolves over a phylogeny. Expression levels are particularly56

interesting as relatively malleable basic genetic traits, creating a convenient point of57

intervention for adaptation (Whitehead and Crawford 2006; Gilad et al. 2006a; Fraser58

2011). By examining comparative expression levels, we can identify fundamental changes59

that underlie adaptation to environmental factors. This invites quantitative genetic60

investigation of evolutionary modality (drift, stabilizing selection, adaptive shift, etc.). In61

addition to a clear genetic basis, expression levels have strong environmental components62

(Idaghdour et al. 2010; Pickrell et al. 2010). Changes in expression level may reflect genetic63

adaptation fixed within individuals, or plastic (rapidly changeable) response to64

environmental variables. This plasticity allows examination of the relationship between65

expression plasticity and adaptability. Finally, the large numbers of measurements across66
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genes in transcriptome-wide expression studies present new analytical opportunities.67

Despite the extensive literature of quantitative phylogenetic methods, many early68

large-scale comparative expression analyses used traditional ANOVA to detect genes with69

unusually high expression divergence between-species, given the expression variance70

within-species (Nuzhdin et al. 2004; Gilad et al. 2006b; Khaitovich et al. 2006;71

Whitehead and Crawford 2006). These analyses typically assume independence between72

species. While technically untrue, this assumption has no impact for phylogenies of two73

species and may have limited impact for the small numbers of species analyzed. However,74

as more species are considered in recent studies, the difference in shared evolutionary75

history between closely and distantly related species increases, and a complex covariance76

structure emerges. In current comparative expression datasets across larger phylogenies,77

the assumption of species independence does not hold, necessitating more sophisticated78

methods taking into account evolutionary relationships (Felsenstein 1985).79

More recent comparative expression studies have employed classical quantitative80

trait evolutionary models, particularly the model of constrained trait evolution proposed by81

Hansen (1997) and expanded in later work (Butler and King 2004; Hansen et al. 2008).82

This flexible model has been applied to describe the evolution of gene expression under83

neutral expression level diffusion, constrained diffusion (expected under stabilizing84

selection), and species-specific expression level shifts (Bedford and Hartl 2009). These85

models are used to calculate the expected species average expression levels and expression86

covariance between species under a particular evolutionary scenario. Likelihood ratio tests87

can then be formulated to distinguish unconstrained random trait evolution, constrained or88

stabilized trait evolution, and branch-specific shifts in trait evolution, as has been89

successfully analyzed in a number of datasets (Bedford and Hartl 2009; Kalinka et al. 2010;90

Perry et al. 2012; Schraiber et al. 2013). However, these methods are limited by their91

inability to model non-phylogenetic variance (Oakley et al. 2005) and are not designed to92
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investigate evolutionary expression variation in relation to expression variance93

within-species.94

A number of augmentations to these models allow within-species variance as an95

error term (Martins and Hansen 1997; Lynch 1991; Gu 2004; Ives et al. 2007; Felsenstein96

2008; Hansen and Bartoszek 2012; Rohlfs et al. 2014). Several models of phenotypic drift97

parameterize within-species variance (Lynch 1991; Housworth et al. 2004; Felsenstein98

2008), while other analyses show how this substantially improves ancestral state estimation99

(Martins and Lamont 1998; Ives et al. 2007) and evolutionary inference100

(Harmon and Losos 2005; Ives et al. 2007; Revell et al. 2008). Within-species variance has101

additionally been parameterized in an evolutionary model allowing for constrained trait102

evolution (Rohlfs et al. 2014).103

We build upon these models to create the unified Expression Variance and104

Evolution (EVE) model, describing both phylogenetic expression level evolution between105

species and expression level variance within-species. Expression levels vary among106

individuals in a population or a species. This expression level variance is caused by genetic107

and environmental differences among individuals. It may be low if the gene has an108

important function, is expressed constitutively, and does not respond to environmental109

changes. Such genes might be genes involved in important cellular functions such as cell110

cycle control. Genes that have high expression level variance are genes that either harbor111

segregating adaptive variation affecting expression levels, or more likely, respond to various112

environmental cues. Such genes might, for example, include genes involved in immunity113

and defense against pathogens. Our method allows for expression level evolution under114

neutrality or selective constraint with a flexible model (Hansen 1997; Butler and King115

2004; Hansen et al. 2008), while adding in within-species variance (as was previously done116

under drift (Lynch 1991; Housworth et al. 2004; Felsenstein 2008)). The EVE model117

re-parameterizes a previous model which allows within-species variance simply as an error118
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term (Rohlfs et al. 2014). By contrast, in the EVE model, we parameterize the ratio of119

expression variance within-species to evolutionary variance between-species, facilitating120

rigorous novel analyses directly aimed at this ratio. This can be considered a phylogenetic121

analogy to test for drift via ratios of between- to within-population variance Lande (1979);122

Ackermann and Cheverud (2002); Marroig and Cheverud (2004). We develop this123

phylogenetic framework with genome-wide expression data in mind, exploiting the large124

number of expression measurements over the same individuals. Yet, the EVE model could125

be used for any set of quantitative traits, including morphological traits.126

The EVE model enables an expression analogy to classic genetic neutrality tests127

considering polymorphism and diversity, namely, the HKA test (Hudson et al. 1987). In128

this test, the ratio of polymorphism within-species to divergence between-species is129

compared among different genes in the genome. Under neutrality, this ratio should be the130

same (in expectation) for all genes in the genome. However, for genes affected by selection,131

the number of polymorphic sites within-species may be increased or decreased relative to132

the number of fixed differences between-species, depending on the directionality and133

modality of selection (see e.g., Nielsen 2005).134

Analogously, in our model, we parameterize the ratio of within-species expression135

variance to between-species expression evolutionary variance using a parameter β defined136

over the phylogeny. This parameter represents the ratio of within- to between-species137

variance, which should be approximately constant for a given phylogeny over different138

genes if only constant stabilizing selection (or no selection) is acting on the trait (Lande139

1976). We can now construct likelihood ratio tests aimed at detecting if β varies among140

genes. Let G = g1, g2, ..., gk be the set of all k genes for which expression values have been141

obtained, and let the value of β for gene i ∈ G be βi. To test if βi is elevated compared to142

the rest of the genes, we then calculate the likelihood under the null hypothesis of a143

constant value of β among genes, i.e. βi = βshared for all genes i ∈ G. We compare it to the144
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alternative hypothesis of βi 6= βshared−i, where βshared−i is a value of β shared for all genes145

in G except gi. The resulting likelihood ratio test statistic, formed in the usual fashion, by146

comparing the log likelihood maximized under the union of the null and the alternative147

hypothesis, to the log likelihood maximized under the null hypothesis, is then chi-square148

distributed with one degree of freedom under standard regularity conditions.149

As a practical matter, we assume that the value of β estimated for βshared is150

approximately the same as the value of β estimated for βshared−i for any i. This assumption151

is reasonable when there are many genes and the estimate of βshared is not dominated by152

any particular gene. Using this assumption leads to considerable reductions in153

computational time. In the following, we will therefore in the notation not distinguish154

between βshared and βshared−i.155

If the null hypothesis is rejected because βi is significantly larger than βshared,156

expression divergence between-species is elevated in gene i relative to the level of157

within-species variance. This would suggest that gene i may be subject to species or158

branch-specific directional selection on expression level. Genes with an unusually low ratio159

(βi < βshared) show proportionally high expression diversity within-species, suggesting160

conservation of species average expression levels, with expression variation in response to161

either environmental factors or diversifying selection within species. This test can also be162

thought of as an alternative phylogenetic ANOVA test as it is essentially an analysis of163

expression variance within- versus between-species, accounting for varying evolutionary164

relationships between species. In statistical terms, the analogy is to a one way ANOVA165

where species define the discriminating factor and the test determines if species share the166

same mean, but where evolutionary dependencies between species are accounted for.167

Since phylogenetic information is included in the EVE model itself, a wide variety of168

evolutionary scenarios may be specified by selectively constraining parameters, improving169

flexibility to test different comparative hypotheses. For example, we can test for unusual170
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species or lineage-specific expression variance, as may be observed under recent relaxation171

or increases of constraint on expression level, diversifying selection on expression level, or172

under extreme branch-specific demographic processes. Other tests may be constructed to173

test for differing expression diversity for groups of individuals within each species, for174

instance, evolutionarily conserved age or sex-specific expression variance. All of these tests175

could be performed on a particular gene of interest or on a class of genes of interest, for176

example, a list of candidate genes could be queried for increased expression diversity in177

older individuals. In addition to these novel tests, the EVE model can be used for the same178

tests as other expression evolution models which discount within-species variance. In179

particular, the EVE model can test for lineage-specific shifts in constrained expression180

level, while taking into account within-species variance.181

Here, we explore the performance of two EVE model tests: the test for unusual182

expression divergence or diversity and the test for lineage-specific expression level shifts.183

We use simulations to describe these tests and formulate expectations under the null184

hypotheses. We then apply the tests to a previously published expression dataset of 15185

mammals. We identify a number of genes with high expression level divergence186

between-species as candidates for expression level adaptation to species-specific factors,187

and genes with high expression level diversity within-species as candidates for188

environmentally responsive gene expression (plasticity). Using the test for lineage-specific189

expression shifts, we identify several strong candidate genes for branch-specific expression190

adaptation on the catarrhine and human lineages.191

We compare our results to those obtained using the species mean model described192

by Bedford and Hartl (2008) and recently used in a number of studies (Bedford and Hartl193

2009; Kalinka et al. 2010; Perry et al. 2012). The species mean model considers the194

evolution of the mean expression level for each species, rather than within-species variance.195

This model can describe trait evolution without constraint, with constraint, or with a196
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branch-specific adaptive shift in response to an environmental factor. By comparing the197

likelihood of observed data under different parametric limits, the species mean model can198

be used to identify genes subject to different evolutionary schemes. We find important199

differences between our results and those obtained using the species mean method,200

especially for analyses of species-specific expression shifts (Perry et al. 2012).201

Methods202

The EVE Model for Gene Expression Evolution and Population Variance203

The evolution of quantitative traits by diffusion and constrained or stabilized204

diffusion has been modeled using an Ornstein-Uhlenbeck (OU) process, which can be205

thought of as a random walk with a pull towards an optimal value (Lande 1976; Hansen206

1997; Butler and King 2004; Hansen et al. 2008; Bedford and Hartl 2009; Kalinka et al.207

2010). In an OU model of stabilizing selection on gene expression level, the parameter θi208

can be thought of as the optimal expression level for gene i, σ2

i the diffusion acting on that209

expression level, and αi the rate of adaptation for that expression level (Hansen 1997;210

Butler and King 2004; Hansen et al. 2008; Hansen 2012). Over evolutionary time, the211

stationary variance of species mean expression levels for gene i will be
σ2

i

2αi
, which we refer212

to as the evolutionary variance.213

More recently, several Brownian motion and OU-based models have been214

augmented to include within-species population level variance (Felsenstein 2008; Lynch215

1991; Hansen and Bartoszek 2012; Rohlfs et al. 2014). Accounting for population variance216

is crucial to distinguish evolutionary modalities (Rohlfs et al. 2014).217

The model we describe builds on these OU models for quantitative trait evolution218

with the additional parameter β which describes the ratio of population to evolutionary219
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expression level variance. Within species j the expression level of any individual k is220

distributed as Yjk ∼ N(Yj, β
σ2

2α
), where Yj is the species mean expression level determined221

by the OU process. We call this the EVE model, which describes a linear relationship222

between population and evolutionary expression level variance.223

In his classic paper, Lande (1976) showed that under an OU model of stabilizing224

selection, a linear relationship arises between a quantitative trait’s evolutionary variance225

and population variance within-species. Additionally, the Poisson nature of RNA-Seq and226

gene expression itself means that both evolutionary and population expression variance227

increase with expression mean. With that in mind, our model assumes a linear relationship228

between evolutionary and population expression variance. That assumption is reflected in229

the data, which shows a linear relationship between estimated evolutionary expression level230

variance (
ˆσ2

i

2α̂i
) and estimated population expression level variance (β̂i

ˆσ2

i

2α̂i
) (Figure 1).231

The slope of this linear relationship (parameterized by β) should be consistent232

across genes which have undergone the same evolutionary and demographic processes233

under stabilizing selection. However, in a gene, i, which has experienced directional234

selection on expression level, βi would be lower as compared to other genes in the same235

individuals. The directional selection would drive increased expression divergence236

between-species, while maintaining low expression variance within-species. Similarly, a237

gene with plastic expression may have more variation within-species than between as238

compared to other genes, raising the value of βi. High βi could alternatively be explained239

by diversifying selection on expression level. Since expression levels are quite plastic, this240

explanation seems less plausible without other corroborating information. In this241

manuscript, since the samples we consider are opportunistically harvested, presumably242

under quite varying environmental conditions, we focus on the environmental plasticity243

hypothesis in the interpretation of our results.244
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Likelihood Calculations Under the EVE Model245

The EVE model is similar to other OU-process-based phylogenetic models

(Butler and King 2004; Bedford and Hartl 2009), with the addition of within-species

expression variance in terms of the evolutionary variance. As such, under the EVE model

expression levels across individuals and species, given a fixed phylogeny, follow a

multivariate normal distribution identical to those under species means models at the

species level as

E(Yi) = E(Yp)e
−αitip + θi(1− e−αitip) (1)

V ar(Yi) =
σ2

i

2αi

(1− e−2αitip) + V ar(Yp)e
−2αitip (2)

Cov(Yi, Yj) = V ar(Ya) exp(−
∑

k∈lij

αktk −
∑

k∈lji

αktk) (3)

where Yi is the expression level in species i; Yp is the species mean expression at the246

parental node p of species i; θi, σ
2

i , and αi are the parameter values on the branch leading247

to node i; tip is the length of the branch between i and p; Ya is the expression level at the248

most recent common ancestor of species i and j; and lij is the set of nodes in the lineage of249

Yi not in the lineage of Yj (Rohlfs et al. 2014).250

This multivariate normal distribution describing the species-level expression is

augmented in the EVE model to include individuals within species, so for an individual k

in species i, Yik ∼ N(Yi, βi
σ2

i

2αi
). In this way, the within-species expression variance

parameter described by Rohlfs et al. (Rohlfs et al. 2014) τ 2 is re-parameterized as βi
σ2

i

2αi
.
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The entire multivariate normal distribution can be described as

E(Yik) = E(Yi)

V ar(Yik) = V ar(Yi) + βi

σ2

i

2αi

Cov(Yik, Yil) = V ar(Yi)

Cov(Yik, Yjl) = Cov(Yi, Yj)

based on equations 1, 2, and 3, where i 6= j and k 6= l. With the distribution of expression251

levels under a particular set of parameters defined according to this multivariate normal,252

the likelihood of the data under the model is simply the probability density. Notice that253

sampling and experimental variance is accounted for (and confounded) in the parameters254

governing the distribution of Yik|Yi.255

Maximum Likelihood Procedures256

For the test for individual gene departures from βshared, under the null hypothesis257

each gene i is governed by parameters θi, σ
2

i , and αi, reflecting the evolutionary process of258

each gene based on its degree of expression diffusion and constraint. The population259

expression variance in all n genes is controlled by the single parameter βshared. To more260

computationally efficiently maximize the likelihood over these 3n+ 1 parameters, we use a261

nested structure with Brent’s method (Brent 1973) in the outer loop to maximize over the262

single parameter βshared, and the BFGS algorithm (Broyden 1970; Fletcher 1970; Goldfarb263

1970; Shanno 1970) in the inner loop to optimize over θi, σ
2

i , and αi for each gene. Under264

the alternative hypothesis, the likelihood of each gene i is maximized using the BFGS265

algorithm over θi, σ
2

i , αi, and βi. To compute the likelihood ratio, the likelihoods of each266

individual gene i are computed under H0 : βi = βshared and Ha : βi 6= βshared, where βshared267
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considers all of the genes considered. Note that this experimental set up allows better268

computational efficiency, but relies on βshared over all the genes approximating βshared over269

all the genes excluding gene i for large numbers of genes.270

In the likelihood maximization under the null hypothesis, likelihoods across genes271

are assumed to be independent so that for a particular value of βshared, the likelihood of a272

set of genes is simply the product of the likelihoods of each gene. While this assumption is273

currently typical in this sort of analysis, it leaves something to be desired since the274

evolution of expression levels of inter-related genes are not independent, and nor are the275

particular expression levels measured in an individual which may be responding to the276

environment of that individual. A more rigorous approach would take into account277

complex correlation structures across genes, as has been outlined for some evolutionary278

models (Lande and Arnold 1983; Felsenstein 1985, 1988; Lynch 1991). Unfortunately,279

because of the combinatorial problem of investigating a very large set of possible280

correlation structures, a full likelihood approach that estimates the correlation structure281

directly for thousands of genes is not computationally tractable and possibly may not be282

based on identifiable models. Instead we use the independence model as an approximation.283

If expression patterns are correlated among genes, we can consider this procedure to be a284

composite likelihood method (Larribe and Fearnhead 2011) since the estimating function is285

formed by taking the product of functions that individually are valid likelihood functions,286

but the total product is not necessarily a valid likelihood function. In the case of severe287

dependence between genes, estimates of βshared will tend towards the value for correlated288

genes, leading to over-identification of genes with βi different from the correlated genes.289

For the test of branch-specific expression shift for a particular gene i, under the null290

hypothesis the likelihood of each gene i is maximized over θi, σ
2

i , αi, and βi. Under the291

alternative hypothesis the likelihood of each gene i is maximized with an additional θ292

parameter (θshift branchi and θ
non-shift branch
i ) to allow for the expression shift.293
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Testing for deviations from a constant expression divergence/diversity ratio294

The EVE model can, as previously mentioned, be used to test for deviations from a295

constant ratio of expression to divergence ratio among genes, analogous to the HKA test296

often applied to test for selection at the DNA level. Specifically, a likelihood ratio can be297

formed by comparing the likelihood under a null model where β for all genes equals βshared298

(H0 : βi = βshared) to the likelihood under the alternative model where βi is a free299

parameter (Ha : βi 6= βshared). If the null hypothesis is rejected in a likelihood ratio test, we300

can conclude that βi for a particular gene varies significantly from βshared across the genes.301

A gene where βi < βshared has high expression variance between-species as compared to302

within, or high expression divergence. A gene where βi > βshared has high expression303

variance within-species as compared to between, or high expression diversity.304

An implementation of the EVE model is available in the supplement of this paper.305

Mammalian expression data and phylogeny306

We applied the EVE model to analyze a comparative expression dataset over 15307

mammalian species with four individuals per species (except for armadillos with two308

individuals) which is described in full in Perry et al. (2012). Of the 15 species typed, five309

are anthropoids (common marmoset (mr), vervet (ve), rhesus macaque (mc), chimpanzee310

(ch), human (hu)), five are lemurs (aye-aye (ay), Coquerel’s sifaka (sf), black and white311

ruffed lemur (bw), mongoose lemur (mn), and crowned lemur (cr)), and the remaining five312

are more distantly related mammals (slow loris (sl), northern treeshrew (ts), house mouse313

(ms), nine-banded armadillo (ar), and gray short-tailed opossum (op)). Since many of these314

species are endangered and protected, most samples were collected opportunistically within315

four hours of death. Liver tissue from each individual was typed using RNA-Seq and316

transcriptomes were assembled with a robust de novo technique that was verified on species317
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with reference genomes available (Perry et al. 2012). Expression levels were normalized318

based on each individual, transcript length, GC content, and species (Bullard et al. 2010;319

Pickrell et al. 2010; Perry et al. 2012), as is appropriate for comparative analysis so that320

genes are considered equitably in relation to each other (Dunn et al. 2013). Here, we321

consider a subset of 675 genes with no missing data across all species and individuals.322

Simulated data323

Comparing EVE and ANOVA.— We performed a simulation study to compare the power324

of the EVE method and traditional ANOVA to detect expression divergence325

between-species. Expression was simulated for 100 genes on the phylogeny and number of326

individuals observed experimentally, using the parameter values σ2 = 5, α = 3.0, β = 6,327

and θ = 100 with a total tree height of 0.08. However, one of the simulated genes was328

subject to a branch-specific expression shift on either the opossum, human, or anthropoid329

branches. These simulations were performed for varying strengths of branch-specific shifts330

and for each shifts on each of the three branches considered with 100 simulations in each331

set of conditions. For the opossum branch shift, differences in optimal expression levels332

(∆θ) ranged from 0 to 19; for the human branch shift, values ranged from 0 to 950; and for333

the anthropoid branch shift, values ranged from 0 to 57. These parameter values describe334

relatively weak stabilizing selection with drastic branch-specific optimum shifts. The335

varying optimum shift values were chosen to achieve similar absolute expression level336

changes across the three trials with shifts on differently-lengthed branches.337

Null distribution of LRTβi=βshared
.— We performed a second simulation study to explore338

the null distribution of the test statistic for unusual expression divergence or diversity339

(LRTβi=βshared
). Since the alternative hypothesis has one additional degree of freedom as340

compared to the null hypothesis, the asymptotic distribution for the LR test statistic under341
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the null hypothesis is chi squared with one degree of freedom (LRTβi 6=βshared
∼ χ2

1
).342

However, smaller phylogenies may not be large enough for the asymptotic distribution to343

apply, as has been observed in other comparative methods (Boettiger et al. 2012;344

Beaulieu et al. 2012).345

For our simulations exploring the null distribution of LRTβi=βshared
, we consider a346

phylogeny identical to that from the mammalian dataset from Perry et al. (Perry et al.347

2012), calling that “1x tree” or t1. We additionally consider a “2x tree” or t2 which is348

constructed with two copies of t1 as (t1, t1) with the connecting branches the length of t1349

itself. Similarly, we consider a “3x tree” or t3 as (t2, t1) with the branch to t2 the length of350

t1 and the branch to t2 twice the length of t1, and a “4x tree” or t4 as (t2, t2) with the351

connecting branches the length of t1 (Supplementary Figure ??).352

We performed additional simulations based on a pectinate topography over different353

number of species with the same internal branch lengths (for example, Supplementary354

Figure ??) and a single set of parameters taken from the median parameter estimates from355

the experimental analysis (θ = 0.57, σ2 = 2.66, α = 19.05, and β = 0.39).356

Results357

Comparison to traditional ANOVA358

Both the traditional ANOVA and the EVE ‘phylogenetic ANOVA’ tests were359

performed on simulated data (described above), the later leveraging variance information360

over genes in addition to phylogenetic information. Figure 2 compares the power of the361

‘phylogenetic ANOVA’ and traditional ANOVA. Without taking phylogeny into account,362

the traditional ANOVA interprets species differences attributable to drift as due to363

divergence, leading to uncontrolled false positive rates (Figure 2 at average expression364
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difference of zero). The ‘phylogenetic ANOVA’ gains power for genes with moderate365

expression shifts by considering these shifts in the context of the phylogeny. Among the366

simulations with shifts on different branches, the EVE method has more power to detect367

shifts in the opossum lineage than the human lineage, analogous to power differences across368

branch lengths in sequence-based tests for divergence (Yang and dos Reis 2011). With369

both methods, the shift on the anthropoid lineage which includes five species is more easily370

detected than the single species shifts.371

Determining significant deviations of expression divergence/diversity ratio372

Test expectation under the null hypothesis.—373

At the asymptotic limit, the likelihood ratio test statistic for testing374

H0 : βi = βshared versus HA : βi 6= βshared, LRTβi 6=βshared
, is χ2

1
distributed under the null375

hypothesis. However, when applied to small phylogenies, the distribution of LRTβi 6=βshared
376

may not be near the asymptotic limit, and may deviate from a χ2

1
(e.g., Boettiger et al.377

2012) (see Supplementary Materials). To explore the null distribution of LRTβi 6=βshared
over378

different parameter values and phylogeny sizes, we simulated data under the null379

hypothesis of H0 : βi = βshared for four sets of parameter values (Supplementary Table 1)380

based on the median maximum likelihood estimates from the experimental data, under381

four tree sizes based on the mammalian phylogeny that we subsequently will analyze382

(Supplementary Figure 1 and Supplementary Materials).383

While the null distribution resembles the asymptotically expected χ2

1
for a phylogeny384

like the one analyzed here, we observe some minor deviations (Supplementary Figure 2).385

However, as the size of the phylogeny considered increases, the null distribution approaches386

a χ2

1
, though it converges more slowly under some parameter values. As in previous studies387

examining parameter estimates over phylogeny size (Boettiger et al. 2012), we see that the388
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parameter estimates improve with phylogeny height and number of tips, though some are389

more easily estimable than others (Supplementary Figures 5-10). Yet, note that for the set390

of expression values simulated under a low α value (set 3), the evolutionary variance is very391

high and is not saturated in the phylogeny lengths explored here. In this case, the392

phylogenies with longer branches investigated allow more time for expression levels to vary393

more widely, making parameter and likelihood estimation less accurate. This is a case394

where the null distribution of LRTβi=βshared
is far from the asymptotic expectation.395

We performed further simulations based on a pectinate phylogeny for different396

numbers of species (Supplementary Figures 3, 11). Again, we see that as the phylogeny size397

increases, the simulated null distribution more closely matches the asymptotic expectation.398

It is important to note that the null distribution under a pectinate topology more quickly399

approaches χ2

1
than the other topology because there are more varying branch lengths400

between species in a pectinate phylogeny. Trait evolution methods are powered by multiple401

varying branch length differences between species, making a pectinate phylogeny the most402

informative.403

Parametric bootstrap approach for the null distribution.—404

To account for deviations from the asymptotically expected null distributions of405

LRTβi 6=βshared
, we follow the suggestion of Boettiger et al. (2012) and use a parametric406

bootstrap. That is, for a particular gene, we simulate expression profiles based on the407

maximum likelihood parameter estimates under the null hypothesis. These simulated408

expression profiles are then tested for deviation from the null hypothesis to determine the409

parametric bootstrapped null distribution of LRTβi 6=βshared
,to which the experimental result410

can be compared.411

We performed a parametric bootstrap analysis with 100 simulations for each of the412

genes simulated under the null hypothesis described above. For each gene, we compared413
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the original test statistic (LRTβi 6=βshared
) to the distribution created by these additional414

simulations to determine the parametric bootstrapped p-value. The resulting bootstrapped415

p-values are approximately uniformly distributed between 0 and 1 (Supplementary Figure416

13) as expected. Note that these bootstrapped p-values describe the departure from the417

null for each gene individually; a correction for multiple tests must be included when418

considering p-values across genes. Further, note that the bootstrap approach assumes419

independence between genes, which, while statistically convenient, could cause inaccuracy420

when expression is highly correlated between genes. Generally the parametric bootstrap421

approach is most effective for accurate parameter estimates; in the presence of biased422

estimates and a dependence of the distribution of the likelihood ratio test statistics on423

parameter values, the parametric bootstrap approach can be biased. It is therefore424

worthwhile to test the parametric bootstrap before interpreting results based on it.425

Expression Divergence and Diversity in Mammals426

Assessing expression divergence and diversity.—427

We applied the test of constant expression divergence to diversity ratio to each gene428

in the mammalian dataset. The resulting empirical LRTβi 6=βshared
values increase with429

departure from β̂i = β̂shared (Figure 3). We see much higher values of LRTβi 6=βshared
for low430

β̂i than high β̂i. This is partially explained by error in βi estimates, especially for higher431

values (Supplementary Figures 5, 11). Additionally, under the null hypothesis, some of the432

observed expression variance may be explained by increasing the estimated evolutionary433

variance, so power is reduced for genes with high βi.434

We additionally estimated parametric bootstrapped p-values using 1000 simulations435

for each gene, finding that they roughly follow a uniform distribution with some excess of436

low p-values (Supplementary Figure 15), as is expected under our prediction that most437
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genes are well described by βshared, while for a small number of genes βi 6= βshared. We438

compared those bootstrapped p-values to LRTβi 6=βshared
and found a clear correlation439

(Supplementary Figure 16). Using 1000 simulations, the minimum p-value is 0.001, so more440

simulations would be needed to more accurately assess the degree of departure from the441

null distribution in the tail of the distribution.442

Candidate genes for expression adaptation and plasticity.—443

Genes in the tail of the LRTβi 6=βshared
distribution with high β̂ have conserved mean444

expression levels across species, but high variance within-species. A likely explanation is445

that the expression of these genes is highly plastic and that the genes are responding to446

individual environmental conditions. Among the most significant high β̂i genes, we see447

PPIB, which has been implicated in immunosuppression (Price et al. 1991; Luban et al.448

1993) and HSPA8, a heat shock protein (Daugaard et al. 2007) (Figure 4a). Based on their449

function, the expression levels of both of these genes are expected to vary depending on450

environmental inputs such as pathogen load and temperature. Since most of the samples451

were collected without standardized conditions, these environmental factors are likely to452

vary over individuals.453

Conversely, genes with low β̂ have unusually high evolutionary variance as454

compared to population variance, which is expected in cases of directional selection on455

expression level. The most extreme outlier with low β̂i is F10, which encodes Factor X, a456

key blood coagulation protein produced in the liver (Uprichard and Perry 2002). F10 is457

highly expressed in armadillo as compared to the other mammals considered (Figure 4b).458

High F10 expression in armadillos may be caused by an environmental condition specific to459

armadillos, or by fixed genetic differences. We can not eliminate the possibility of an460

environmental factor underlying high F10 expression in armadillos without conducting461

experiments in controlled conditions. However, it has previously been found that armadillo462
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blood coagulates two to five times faster than human blood (Lewis and Doyle 1964). A463

likely molecular cause is the increased expression of F10 observed here.464

These results, together with the simulation results presented in the previous465

sections, suggest that the phylogenetic ANOVA application of the EVE model provides a466

versatile tool for identifying genes with relative elevated expression variance within-species,467

possibly due to plastic gene expression, or relative elevated expression divergence468

between-species, possibly due to species or lineage specific adaptive changes in gene469

expression. We emphasize that claims of adaptation would have to be followed up by470

additional lines of evidence.471

Testing for Branch-Specific Expression Level Shifts472

The EVE model can be used to formulate hypotheses about branch-specific shifts in473

the expression of gene i by comparing likelihoods under H0 : θ
a
i = θnon-ai versus474

Ha : θ
a
i 6= θnon-ai , where θai is the value of θi at all nodes in the shifted lineage(s), a, and475

θnon-ai is the value of θi at the remaining (non-a) nodes. The corresponding likelihood ratio476

test statistic is asymptotically χ2

1
distributed. The phylogeny used for these analyses seems477

sufficient to achieve that asymptotic distribution for most genes (Supplementary Figure478

17). We performed this test querying expression level shift on both the catarrhine479

(containing humans, chimpanzees, rhesus macaques, and vervets) and human lineages480

(Supplementary Tables 2, 3).481

Candidate genes for adaptation on catarrhine and human lineages.—482

In the test for expression shift in catarrhines (cat), we identify a number of483

interesting outliers (Supplementary Figure 18). The most significant shift is seen in DEXI,484

with higher expression level in catarrhines. This expression shift alone does not allow us to485

distinguish between environmental and genetic causation. However, studies in humans have486
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shown high expression of DEXI to be protective against auto-immune diseases including487

type I diabetes and multiple sclerosis (Davison et al. 2012). If expression function is488

conserved across catarrhines, this suggests that increased DEXI expression in catarrhines489

may play an important role in immune response management.490

Similarly, the test for expression shift on the human (hum) branch revealed491

interesting outliers (Supplementary Table 3), notably, two genes linked to fat metabolism492

or obesity. In the extreme tail of the distribution, we detected human-specific increased493

expression of MGAT1, which aids in metabolism of fatty acids to triglycerides (Yen et al.494

2002), and the expression of which has been associated with excess retention of lipids495

(Lee et al. 2012). Additionally, we see that TBCA, a tubulin cofactor which assists in the496

folding of β-tubulin (Tian et al. 1996), has increased expression in humans. Given that497

reduced expression of TBCA through a heterozygous deletion has been associated with498

childhood obesity in humans (Glessner et al. 2010), it is possible that the human-specific499

increase in TBCA expression assists in metabolism of a high fat diet. However, in both500

cases, it is unclear if the increased expression in humans is an evolutionary shift in501

expression, helping to adapt to a diet more rich in fat, or if the increased expression in502

humans is environmentally responding to the diet. Expression level studies can only503

distinguish between these alternatives if the environmental conditions have been controlled504

between study objects, which for humans is only possible with cell line studies.505

Nonetheless, this new observation of human-specific regulatory changes for genes involved506

in fatty acid metabolism is interesting in light of the corresponding changes diet in humans.507

Another gene with a significant expression shift in humans is BCKDK. BCKDK508

inactivates the branched-chain ketoacid dehydrogenase (BCKD) complex, which catalyzes509

metabolism of branched-chain amino acids (BCAAs). Nonsense and frame shift mutations510

in BCKDK have recently been linked to low levels of BCAAs and a phenotype including511

autism and epilepsy (Novarino et al. 2012). The observed increased human BCKDK512
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expression may slow the metabolism of BCAAs so they can be processed into513

neurotransmitters (Novarino et al. 2012). Again, whether this shift has an adaptive genetic514

basis, or is a plastic response to human-specific conditions remains unclear.515

Comparing results using the EVE model and species mean model.—516

We compared our results for the expression shift tests to those reported in an517

analysis of the same data by Perry et al. (2012) using the species mean model described by518

Bedford and Hartl (2008). The distributions of LRTθcati 6=θnon-cat
i

and LRTθhumi 6=θnon-hum
i

from519

that analysis deviate substantially from the χ2

1
distribution expected under the null520

hypothesis (Supplementary Figure 20). This could be due to a number of possible521

numerical, optimization, or book-keeping errors, as these methods require a number of522

important technical considerations. In a comparison of the rank of expression shift test523

statistics as computed by Perry et al. (2012) and as computed using the EVE model, we524

see a general lack of correlation with some similarity in the extreme outliers discussed in525

that paper (Supplementary Figure 21).526

To investigate if the results in Perry et al. (2012) were due to numerical problems527

we re-implemented the method and compared our results with those previously published528

by Perry et al. (2012). In our implementation, we see that the empirical distribution of529

test statistics are approximately χ2

1
distributed with some excess of high values530

(Supplementary Figure 22) and a much improved correlation to EVE model test statistics531

(Figure 5), suggesting that the strong deviations for a χ2

1
distribution in the Perry et al.532

(2012) results are largely due to numerical or optimization errors.533

We then proceeded to compare the new results under the species mean model to the534

results of the EVE model. While both models identify similar genes with branch-specific θi535

shifts, we see much higher correlation between models for a shift on the catarrhine lineage536

than on the human lineage (Figure 5). Since the species mean model ignores variation537
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within-species, it may identify genes where the mean expression appears to have shifted,538

even if the degree of variance may make that shift seem less extreme. By the same token,539

the EVE method may identify genes with a shift that cannot be explained by the expected540

within-species variance. This difference is most pronounced when considering shift of a541

single species (such as humans) where considering variance within that single species may542

alter the perception of an expression shift.543

Figure 6 shows the three genes with the biggest difference in value of544

LRTθhumi 6=θnon-hum
i

between the EVE and species mean models, that is, the genes that are545

most clearly identified by one model, while missed by the other. The gene TBCA,546

discussed above as a candidate for diet-associated expression adaptation, is a clear outlier547

under the EVE model (LRTθhum
TBCA

6=θnon-hum
TBCA

= 9.5), but is less easily identified using the548

species mean model (LRTθhum
TBCA

6=θnon-hum
TBCA

= 5.5). These results illustrate the importance of549

including within-species variance in the analyses of expression data evolution.550

Discussion551

We have described the EVE model for gene expression evolution which552

parameterizes the ratio between population and evolutionary variance in terms of a553

parameter β so that, in addition to more classic tests for selection on gene expression level,554

hypotheses regarding diversity to divergence ratios can be tested. We have explored a test555

for gene-specific βi, showing that the null distribution of the test statistic LRTβi 6=βshared
is556

asymptotically χ2

1
, though depending on the size of the dataset and the value of the557

parameters, the null distribution may not have converged to the asymptote. We show that558

in these cases, a parametric bootstrap approach can be used to more accurately assess the559

significance of LRTβi 6=βshared
values. Since the parametric bootstrap may be sensitive to560

variance in parameter estimates, it is prudent to verify its effectiveness on a particular data561

set with simulations before using it to interpret data.562

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 2, 2015. ; https://doi.org/10.1101/004374doi: bioRxiv preprint 

https://doi.org/10.1101/004374
http://creativecommons.org/licenses/by-nc-nd/4.0/


The test for gene-specific βi can be thought of as a phylogenetic ANOVA, or as a563

gene expression analog to the HKA test. This enables a previously unavailable line of564

inquiry into gene expression divergence, which may be indicative of expression-level565

adaptation to different environmental factors between species, and gene expression566

diversity, which may be indicative of plastic expression levels responding to environmental567

conditions. By utilizing a comparative approach, we can distinguish between genes which568

have high variance in expression levels within a species simply because expression of this569

gene has little effect on fitness, so is subject to drift, and genes with functional conserved570

expression levels across species along with high expression variance within-species because571

the gene mediates a plastic response to the environment. We have shown that by572

accounting for phylogeny our method has substantially improved power and reduced false573

positive rate as compared to traditional ANOVA, analogous to other results (Martins et al.574

2002).575

In applying the gene specific βi test to a mammalian dataset, we identified several576

candidates for expression level divergence, most notably high expression of F10 in577

armadillos, which may be linked to their phenotype of rapid blood coagulation. We578

additionally identified several candidate genes for environmentally-responsive expression579

levels including PPIB, which helps regulate immunosuppression, and HSPA8, a heat shock580

protein. The identification of these biologically plausible candidates demonstrates the581

effectiveness of our method.582

In addition to the novel test for unusual population or evolutionary variance, we583

used the EVE model to test for branch-specific shifts in expression level, as had been done584

previously with the species mean model (Hansen 1997; Butler and King 2004). Note that585

while the test for expression divergence may detect genes with branch-specific shifts, this586

more targeted test will detect shifts in expression on particular specified lineages. We587

found an increase in DEXI expression in catarrhines, which may have an adaptive role in588
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auto-immune regulation to the catarrhine-specific pathogenic load. In humans, we found589

increased expression of two genes thought to be involved in lipid metabolism (MGAT1 and590

TBCA) and of BCKDK, the low expression of which has been linked to BCAA (necessary591

for neurotransmitters) deficiency, epilepsy, and autism.592

When comparing our lineage-specific expression shift results to those previously593

reported using the species mean model, we observed startling differences. We attribute594

these differences primarily to a numerical or optimization problem in that original analysis,595

highlighting the importance of carefully addressing these issues. We performed an596

additional analysis using the species mean model to create a fair comparison. From that597

secondary analysis, we observe important differences between the EVE model and species598

mean model, most notably when testing for a shift in a single species. By discarding599

population variance, the species mean model may mistake a mild expression shift600

attributable to expected within-species variance for an evolutionary shift. We see this601

illustrated by the identification of an expression shift in humans for TBCA using the EVE602

model, but not using the species mean model.603

As described here, the EVE model assumes one consistent and reliable phylogeny604

for all genes. Incomplete lineage sorting would violate this assumption, leading to605

unpredictable model behavior. To compensate, a Bayesian MCMC approach may be used606

to estimate the probability of expression data under a variety of underlying phylogenies607

using a method such as MrBayes (Ronquist and Huelsenbeck 2003). Additionally, like608

other similar tools, the EVE model and analyses described here do not account for609

expression correlations between genes, but rather, treat each gene independently. Gene610

expression data may be better described using a more complex multivariate approach611

(Dunn et al. 2013). Another important caveat is that while the EVE model is well-suited612

to detect adaptive divergence or plasticity of expression, this does not rule out increases in613

plasticity or canalization as part of the adaptive process (Lewontin 1974; Lande 1976).614
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The analyses described here provide examples of how the EVE model can be615

parameterized to test for expression divergence, diversity, or branch-specific shift. The tests616

for expression divergence and diversity can be used to identify genes with expression617

subject to different types of selection. For phylogenies where some species are known to be618

adapted to different environmental conditions, the branch-specific expression shift test can619

be formulated to identify genes with changes in expression that putatively underlie that620

adaptation. By changing parameter constraints, the EVE model can be used to test a621

variety of additional hypotheses. For example, tests may be formulated for branch-specific622

β values, which may be expected under branch-specific tightening or relaxation of623

constraint, or under unusual branch-specific demographic processes. The EVE model could624

also be used to test hypotheses of gene class-specific (rather than gene-specific) β values,625

which may vary based on gene class function. For example, genes involved in stress626

response may have a higher β value than housekeeping genes.627

Like all comparative expression methods, the EVE method applies to any heritable628

quantitative trait with environmental components, including metabolomics629

(Nicholson and Lindon 2008; Cui et al. 2008; Sreekumar et al. 2009) and genome-wide630

methylation (Pokholok et al. 2005; Pomraning et al. 2009). As larger expression and other631

quantitative trait comparative datasets emerge, the versatile EVE model and framework632

described here will facilitate a wide variety of sophisticated analyses.633
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Figure Captions846

Figure 1: The maximum likelihood estimated per-gene evolutionary variance (
ˆσ2

i

2α̂i
) and pop-

ulation variance (β̂i

ˆσ2

i

2α̂i
) are plotted against each other. The linear regression line is shown.

Figure 2: Power is shown as a function of average expression difference between the species
on the shifted branch and the rest of the phylogeny. Power is shown for traditional ANOVA
(crosses) and the EVE method ‘phylogenetic ANOVA’ (triangles) for shifts on the (a) opos-
sum, (b) human, and (c) anthropoid branches.

Figure 3: The test for a gene with βi varying from β̂shared was computed for each gene. Those
likelihood ratio test statistics (LRTβi 6=βshared

) are plotted against the log of the β parameter

estimated for each gene (log(β̂i)) in a volcano plot. The dashed line indicates the value of
β̂shared.
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Figure 4: Each plot shows the expression profile across the 15 species for gene in the extreme
tails of the empirical distribution of the test statistic for a gene-specific βi differing from
βshared (LRTβi 6=βshared

). (a) shows genes with high β̂i values and (b) shows genes with low β̂i

values.

Figure 5: Each plot shows (a) LRTθcati 6=θnon−cat
i

and (b) LRTθhumi 6=θnon−hum
i

calculated using

the EVE model (y-axes) and species mean model (x-axes) as implemented in this analysis.
The line indicates x = y.

Figure 6: Each plot shows the expression profile for genes identified with an expression shift
in humans by the EVE model, but not by the species mean (SM) model (top row), and
identified by the species mean model, but not by the EVE model (bottom row). Expression
levels in humans are highlighted in pink. Each plot shows LRTθhumi 6=θnon−hum

i
(as LRT) as

computed under the EVE and species mean models.

38

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 2, 2015. ; https://doi.org/10.1101/004374doi: bioRxiv preprint 

https://doi.org/10.1101/004374
http://creativecommons.org/licenses/by-nc-nd/4.0/

