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Abstract

Background: We consider the problem of reconstructing a gene regulatory network structure
from limited time series gene expression data, without any a priori knowledge of connectivity.
We assume that the network is sparse, meaning the connectivity among genes is much less
than full connectivity. We develop a method for network reconstruction based on compressive
sensing, which takes advantage of the network’s sparseness.
Results: For the case in which all genes are accessible for measurement, and there is no
measurement noise, we show that our method can be used to exactly reconstruct the network.
For the more general problem, in which hidden genes exist and all measurements are con-
taminated by noise, we show that our method leads to reliable reconstruction. In both cases,
coherence of the model is used to assess the ability to reconstruct the network and to design
new experiments. For each problem, a set of numerical examples is presented.
Conclusions: The method provides a guarantee on how well the inferred graph structure
represents the underlying system, reveals deficiencies in the data and model, and suggests
experimental directions to remedy the deficiencies.

Introduction

Mathematical modeling of biological signaling pathways can provide an intuitive understanding
of their behavior [1] [2] [3]. However, since typically only incomplete knowledge of the network
structure exists and the system dynamics is known to be sufficiently complex, the challenge has
become to show that the identified networks and corresponding mathematical models are enough
to adequately represent the underlying system. In the last years, many data-driven mathematical
tools have been developed and applied to reconstruct graph representations of gene regulatory
networks (GRNs) from data. These include Bayesian networks, regression, correlation, mutual
information and system-based approaches [4] [5] [6] [7] [8] [9] [10]. Also, these approaches either
focus on static or on time series data. The latter approach has the advantage of being able to
identify dynamic relationships between genes.

However, data-driven reconstruction of the network structure itself remains in general a dif-
ficult problem; nonlinearities in the system dynamics and measurement noise make this problem
even more challenging. For linear time invariant (LTI) systems, there exist necessary and suffi-
cient conditions for network reconstruction [11]. However, for time-varying or nonlinear systems,
there has not been as yet any statistical guarantee on how well the inferred model represents the
underlying system [12] [13] [14] [15]. The recent work [16] addresses the problem of data-driven
network reconstruction, together with measurement noise and unmodelled nonlinear dynamics, yet
this work points out that these complications impose a limit on the reconstruction, and with strong
nonlinear terms the method fails. Additionally, identifying whether important nodes in the graph
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structure are missing, how many are missing, and where these nodes are in the interconnection
structure remains a challenging problem.

Moreover, in order to continue to have an impact in systems biology, identification of the graph
topology from data should be able to reveal deficiencies in the model and suggest new experimental
directions [17]. For example, Steinke et al. [18] presented a Bayesian method for identifying a gene
regulatory network from micro-array measurements in perturbation experiments and showed how
to use optimal design to minimize the number of measurements.

Since biological regulatory networks are known to be sparse, meaning that most proteins inter-
act with only a small number of proteins compared with the total number in the network, many
methods [12] [13] [14] [15] [19] [20] [21] [22] take advantage of the sparsity. The methods typically
use l1-norm optimization, which leads to a sparse representation of the network and improves the
ability to find the actual network structure. Even though many methods [14] [15] show that the
reconstruction results are fairly good, the methods cannot guarantee exact recovery. This stems
from the fact that the so-called incoherence condition is typically not satisfied for the matrix Ω in
a linear measurement model Y = Ωq, where q is the signal to be reconstructed, Y is the measure-
ment, and Ω is known as the sensing matrix. Roughly, incoherence is a measure of the correlation
between columns of the sensing matrix. Since the incoherence condition of the sensing matrix
provides a metric of performance, this is one of the motivating factors for the use of compressive
sensing (CS) [23]. CS is a signal processing technique for efficiently acquiring and reconstructing a
signal by taking advantage of the signal’s sparsity and allowing the entire signal to be determined
from relatively few measurements under a certain condition, i.e., it requires that the incoherence
condition to be satisfied. In the Human Epidermal Growth Factor Receptor2 (HER2) positive
breast cancer signaling pathway that we studied in [24] [25], time series data sets consist of only
8 time point measurements of 20 protein signals, and we would like to use this limited data to
identify a graph structure which could have 20× 20 or 400 edges.

In this paper, we are interested in directed graph representations of signaling pathways. We
develop a new algorithm for GRN reconstruction based on CS. First, we focus on sparse graph
structures using limited time series data with all nodes accessible and no measurement noise.
We test the network reconstruction algorithm on a simulated biological pathway in which the
structure is known a priori. We explain the limitation of the proposed method’s performance
when the dataset naturally has high coherence and propose a way to overcome this limitation by
designing additional effective experiments.

Next, the proposed algorithm is extended to a more general problem: we consider partially
corrupted data with data inconsistencies due to model mismatch, and measurement noise affecting
all the data. Typically, data inconsistencies may result from missing nodes in the model; or in
some cases arbitrary data corruption may result from human errors such as mislabeling or the
improper use of markers or antibodies. The question is whether one can still recover the graph
structure reliably under these conditions. Inspired by a robust error correction method [26], the
exact recovery of the graph structure can be guaranteed under suitable conditions on the node
dynamics, provided that hidden nodes can affect relatively few nodes in the graph structure. Also,
a set of numerical examples is provided to demonstrate the method, including some from an RPPA
(Reverse Phase Protein Array) dataset [27] collected from HER2 positive breast cancer cell lines.

In this paper, the main contributions are the following.

• The CS framework uses the coherence of the sensing matrix as a performance index, which
allows us to assess and optimize mathematically network reconstruction.

• Coherence also provides a guideline for optimizing experiment design for network reconstruc-
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tion.

• By utilizing an error correction method in conjunction with the CS framework, network
reconstruction may be performed even when there are hidden nodes and measurement noise.

Background

Overview: Compressive Sensing

Consider measurements Y ∈ Rm of a signal q ∈ Rn:

Y = Ωq (1)

where Ω ∈ Rm×n is called the sensing matrix.
One key question [28] is how many measurements m are needed to exactly recover the original

signal q from Ω:

• If m > n and Ω is a full rank matrix, then the problem is overdetermined. If m = n and Ω
is a full rank matrix, the problem is determined and may be solved uniquely for q.

• If m < n, the problem is underdetermined even if Ω has full rank. We can restrict q ∈ Rn

to the subspace which satisfies Y = Ωq. However, q cannot be determined uniquely.

For the underdetermined case, the least squares solution q∗ = arg min
q
‖q‖l2 = Ω∗(ΩΩ∗)−1Y is

typically used as the “best guess” in many applications. However, if q is known to be sparse,
meaning that many of its components are zero, one might expect that fewer than n measurements
are needed to recover it. It is thus of interest to obtain a good estimator for underdetermined
problems in which q is assumed to be s-sparse, meaning that s of the elements of q are nonzero. In
principle, the theory of compressive sensing (CS) asserts that the number of measurements needed
to recover q ∈ Rn is a number proportional to the compressed size of the signal (s), rather than
the uncompressed size (n) [29]. To be able to recover q, CS relies on two properties: sparsity,
which pertains to the signals of interest, and incoherence, which pertains to the sensing matrix.

Proposition 1 [28].. Suppose that any 2s columns of an m×n matrix Ω are linearly independent
(this is a reasonable assumption if m ≥ 2s). Then, any s-sparse signal q ∈ Rn can be reconstructed
uniquely from Ωq.

The proof [28] of the above proposition also shows how to reconstruct an s-sparse signal q ∈ Rn

from the measurement Y = Ωq where q is the unique sparsest solution to Y = Ωq:

q∗ = arg min
q
‖q‖l0 subject to Y = Ωq (2)

and ‖q‖l0 :=
∑n

i=1 I(qi 6= 0) is the cardinality of q. However, the l0-minimization is computation-
ally intractable (NP-hard in general). Recent breakthroughs enable approximating l0-optimization
by using l1-minimization which is a convex optimization problem and can be solved in a simple
but effective way by linear programming:

q∗ = arg min
q
‖q‖l1 subject to Y = Ωq (3)

The l1-minimization (3) requires mild oversampling, more specifically, m ≥ c · µ(Φ,Ψ)2 · s log n for
some positive constant c where we have m measurement in the Φ domain under bases Ψ and µ
represents the coherence defined as follows:
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Definition 1 [23].. The coherence of a matrix Ω is given by

µ(Ω) = max
j<k

|〈Ωj ,Ωk〉|
‖Ωj‖2‖Ωk‖2

where Ωj and Ωk denote columns of Ω.

Several theoretical results [30] ensure that the l1-minimization guarantees exact recovery when-
ever the sensing matrix Ω is sufficiently incoherent. For example, we can say that Ω is incoherent
if µ is small. Coherence is a key property in the compressed sensing framework because if two
columns are closely correlated, it would be very difficult to distinguish whether the influence from
the components in the sparse signal comes from one or the other (recall that the measurement
Y(= Ωq) is a linear combination of each columns of the sensing matrix Ω with the components in
q as coefficients). Also, numerical experiments suggest that in practice, most s-sparse signals are
in fact recovered exactly once m ≥ 4s [23]. Here, “exact recovery” means that we find the sparsest
solution (q) such that Y = Ωq.

Therefore, if the sensing matrix Ω satisfies the incoherence condition (m ≥ c·µ(Φ,Ψ)2·s log n, or
in practice, m ≥ 4s), a sufficiently sparse signal q can be exactly recovered from the limited dataset
without any prior knowledge of the number of nonzero elements, their locations, and their values.
On the other hand, if the condition is not satisfied, exact recovery cannot be guaranteed [29] [17].
However, it is possible to use the property of coherence to guide biological experiment design,
basically to collect a more informative dataset. As we will discuss in this paper, this can be done
by inhibiting or stimulating certain genes to manipulate the gene expression.

CS can help reconstruct GRNs

In graph theory, a digraph can be represented by G = (V,E) where V and E represent nodes and
edges respectively. For GRNs, each node represents a gene and each edge represents an influence
map which models how genes affect each other. For example, the interactions could be how genes
inhibit or stimulate each other. Since the connectivities of GRNs are typically unknown, often
the best we can do is to select a set of possible candidate functions encoding possible unknown
connectivities between genes.

In this section, we formulate a data-driven network identification problem into CS framework:
first, we define a dynamical model of gene regulatory network. Then, we encode system dynamics
into the sensing matrix (Ω) and denote unknown connectivities between genes by q, a signal to be
recovered.

A Dynamical Model of Gene Regulatory Networks (GRNs)

We consider a dynamical system described by:

ẋ = f(x) + u + g(xh) + w (4)

where x ∈ Rn denotes the concentrations of the rate-limiting species which can be measured

in experiments; ẋ =
[
ẋ1 ẋ2 ... ẋn

]> ∈ Rn is a vector whose elements are the change in
concentrations of the n species over time; f(·) : Rn → Rn represents biochemical reactions, such as
those governed by mass action kinetics, Michaelis-Menten, or Hill kinetics. Thus, f(·) can include
functions of known form such as product of monomials, monotonically increasing or decreasing Hill
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functions, simple linear terms, and constant terms [19]. u ∈ Rn denotes the control input which
could represent inhibitions and stimulations; g(·) : Rnh → Rn represents influence from hidden
nodes xh ∈ Rnh , which cannot be measured in experiments; nh is the number of hidden nodes and
unknown; and w ∈ Rn represents energy-bounded process noise or measurement noise. Here x, ẋ
which can be can be measured in experiments, and u is assumed to be known.

Since we do not know whether important nodes in the gene regulatory network are missing,
how many missing nodes there are, and how they affect system dynamics (i.e., xh, nh and g(xh)),
we denote a vector of (unknown) influence from hidden nodes’ dynamics by v(, g(xh)); Also,
without loss of generality, since we know u, we define y as follows:

y , ẋ− u = f(x) + v + w (5)

Formulating a Dynamical System as a GRN

The nonlinear function f(x) can be decomposed into a linear sum of scalar basis functions, fb,i(x) ∈
R, where we select the set of possible candidate basis functions:

f(x) =
N∑
i=1

fb,i(x)


qi1
qi2
...
qin

 (6)

where N is the number of possible candidate basis functions and qij are unknown parameters
which reflect underlying structure, i.e., influence of fb,i(x) on the j-th state (ẋj). Typically, we
may choose a larger set than necessary, and allow the CS method to indicate the importance of
each function, as we shall describe. Thus the equation (5) can be written as follows:

y = SqFb(x) + v + w (7)

where Sq =

q11 ... qN1

... ... ...
q1n ... qNn

 =

q>1
...
q>n

 ∈ Rn×N reflects the underlying GRN structure, qi =

[
q1i q2i ... qNi

]> ∈ RN and Fb(x) =
[
fb,1(x), ..., fb,N (x)

]> ∈ RN is the vector field which in-
cludes possible candidate basis functions. In this way, any biochemical reactions can be represented
by a linear map Sq and a function Fb(x) where Sq encodes the underlying graph structure and
Fb(x) includes all possible candidate functions that could be included in the biochemical reactions.

In practice, we can construct Fb(x) by selecting the most commonly used candidate basis
functions to model GRNs, for example, all monomials, binomials, other combinations and Hill
function.

Example 1. Consider the simple nonlinear ordinary differential equations (ODEs):

y1 = ẋ1 = γ1x1 + k1
1

1 + xnact
2

y2 = ẋ2 = γ2x2 + k2
xnihb

3

1 + xnihb
3

y3 = ẋ3 = γ3x3 + k3
1

1 + xnact
1

(8)
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where xi denotes the concentration of the i-th species, ẋi is the change in concentration of the i-th
species, the γi denotes protein decay rate, the ki denotes the maximum promoter/inhibitor strength.
Here, there is no input (u = 0), no hidden node (v = 0) and no process noise (w = 0). Also,
nact represents positively cooperative binding (activation) and nihb represents negative cooperative
binding (inhibition). The set of ODEs corresponds to a topology where gene 1 is activated by gene
2, gene 2 is inhibited by gene 3, and gene 3 is activated by gene 1 as shown in Figure 1 (a). We
can write (8) as follows:

y =

y1

y2

y3

 =

ẋ1

ẋ2

ẋ3

 =

γ1 0 0 0 k2 0
0 γ2 0 0 0 k3

0 0 γ3 k1 0 0


︸ ︷︷ ︸

Sq



x1

x2

x3
1

1+x
nact
1
1

1+x
nact
2

x
nihb
3

1+x
nihb
3


= SqFb(x)

where Sq ∈ R3×6 represents the influence map.
We can also consider a version of (8) in which there exists a hidden node (xh) affecting (x1) as
shown in Figure 1(b), as well as process noise.

y =

ẋ1

ẋ2

ẋ3

 = SqFb(x) + v + w

where v =
[
v1, 0, 0

]>
and w =

[
w1, w2, w3

]>
Formulating GRN into the CS framework

Suppose the time series data are sampled from a real experimental system at discrete time points
tk. By taking the transpose of both sides of equation (7), we obtain

y(tk)> = F>b (x(tk))q + v(tk)> + w(tk)> (9)
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where q = S>q =
[
q1 q2 ... qn

]
∈ RN×n. Assuming thatM successive data points are sampled,

then define:

y ,
[
y1 ... yn

]
=


y1(t1) ... yn(t1)
y1(t2) ... yn(t2)
... ... ...

y1(tM ) ... yn(tM )

 ∈ RM×n

Φ ,


fb,1(x(t1)) ... fb,N (x(t1))
fb,1(x(t2)) ... fb,N (x(t2))

... ... ...
fb,1(x(tM )) ... fb,N (x(tM ))

 =


F>b (x(t1))
F>b (x(t2))

...
F>b (x(tM ))

 ∈ RM×N

[
v1 ... vn

]
,


v(t1)>

v(t2)>

...
v(tM )>

 ∈ RM×n

[
w1 ... wn

]
,


w(t1)>

w(t2)>

...
w(tM )>

 ∈ RM×n

(10)

This leads to n independent equations:

yi = Φqi + vi + wi (i = 1, ..., n) (11)

where yi =
[
yi(t1), yi(t2), ..., yi(tM )

]> ∈ RM represents the M successive data points, Φ ∈ RM×N

consists of N possible candidate bases which are functions of given time series data x and qi ∈ RN

represents the unknown influence map corresponding to the i-th species. Since a biochemical
reaction network is typically sparse, as a consequence, qi is sparse and we have N � M for Φ
because we assume the limited time series data and may choose a larger set of basis functions than
necessary.

Although we formulate n independent linear regression problems (11), we consider n indepen-
dent equations in (11) together by stacking yi as follows:

Y =


y1

y2

...
yn

 =


Φ O ... O
O Φ ... O
... ... ... ...
O O ... Φ




q1

q2

...
qn

+


v1

v2

...
vn

+


w1

w2

...
wn



, Ω


q1

q2

...
qn

+ v + w (12)

Now, equation (12) is in the form of the CS formulation in (1) where Y ∈ Rn·M is the measurement,
Ω ∈ Rn·M×n·N is the sensing matrix which consists of basis functions for the given time series
data, v ,

[
v1; v2; ...; vn

]
∈ Rn·M represents possibly large corruption from hidden nodes and

w ,
[
w1; w2; ...; wn

]
∈ Rn·M represents process or measurement noise.

In this paper, we make the following assumptions:
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Assumption 1. We consider two cases:

• (ideal case) We assume that we can measure all states x (i.e., there is no hidden node (xh))
and there is no measurement noise (w = 0). Also, there are enough columns in Φ in (11) to
represent the underlying system (6).

• (extension) We consider hidden node (xh) where v(= g(xh)) is assumed to be sparse, and
process noise (w 6= 0). Here, we can also consider the case where the columns (also known
as the dictionaries in the CS literature [23]) of Φ may not be able to represent the underlying
system. In this case, we consider the influence from the missing dictionaries as v.

We first consider the ideal case for simplicity in explaining the main results, and then extend the
proposed method to the more general case.

Results and Discussion:

1. Formulating GRN Identification Problem into CS

Many existing algorithms [16] [19] consider the n independent linear regression problems (11)
separately. Since the columns of matrix Φ are composed of time series data as in (10), it is difficult
to a priori guarantee low correlation and sometimes Φ even suffers rank deficiency. Also, Pan et
al. [19] pointed out that correlation between the columns of Φ is usually high (µ(Φ) is close to 1).

Intuitively, if two columns of the sensing matrix are highly correlated, it is hard to distinguish
the corresponding components in the sparse signal q (note that the measurement Y is a linear
combination of each column of the sensing matrix with the components in q as coefficients). In
order to deal with high coherence in (11), many methods combine CS with different techniques
such as Bayesian formulation [19], Kalman filter [20], and Granger causality [21]. Also, it is a well
known problem in the lasso formulation of network inference: if there is high coherence in the
sensing matrix, one can use an elastic net which combines the l1 and l2 norms. Although each
reconstruction result [19] [20] [21] might be the optimal solution in the sense of its formulation
(i.e., maximum likelihood), the identified graph may not represent the underlying GRN. In other
words, if the data set is not informative enough to fully explore the underlying system, while the
identified graph structure based on the given data set may be an optimal solution of the particular
optimization problem, it many not represent the true system.

In this paper, our goal is to get the smallest data informative enough to recover the underlying
graph structure exactly. Since the proposed method maintains the CS framework by reducing
coherence of the sensing matrix, the method is fundamentally different than any other methods
which make use of different techniques in conjunction with the l1 optimization [19] [20] [21] which
leads to a sparse representation of the network. Hence, we use all the properties of CS in order to
access the ability to exactly reconstruct the underlying graph structure, reveal deficiencies in the
data and model, and design new experiments to remedy the deficiencies if necessary.

While maintaining the CS framework, in order to deal with high coherence, we formulate (12)
instead of (11) and we have strongly uncorrelated columns in Ω. In other words, since Ω has many
independent columns, we have more degrees of freedom to reduce coherence of Ω. We will show
that by using a transformation, the components of the sensing matrix can be made more uniformly
distributed so that we could reduce coherence.

Moreover, since each qi has different degrees of sparsity in general, if we consider n independent
equations in (11), Φ should satisfy the incoherence condition M ≥ 2 maxi(‖qi‖0) stated in Propo-
sition 1. On the other hand, Ω only needs to satisfy the condition M · n ≥ 2 ·

∑n
i=1 ‖qi‖l0 . Since
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the averaged sparsity (=
∑n

i=1‖qi‖l0
n ≤ maxi(‖qi‖l0)) is smaller than maxi(‖qi‖l0), we can reduce

the required number of samples (M). Also, in case of rank deficiency, we can simply remove the
corresponding rows (note that the rank deficiency is more likely caused by the row since N �M).

2. Optimal Design of Sensing Matrix

2.1. Reducing Coherence by Transformation

In order to reduce coherence, first we rearrange Ω with respect to a spatial information, and then
we consider the transformation in order to reduce coherence (see Method: 1.1. Rearranging
the sensing matrix for mathematical details):

Z ,


z̄(1)
z̄(2)
...

z̄(M)

 =


Ψs

1(In ⊗Φ1,:)
Ψs

2(In ⊗Φ2,:)
...

Ψs
M (In ⊗ΦM,:)




q1

q2

...
qn

+


v̄(1)
v̄(2)
...

v̄(M)

+


w̄(1)
w̄(2)
...

w̄(M)

 , Ω̄


q1

q2

...
qn

+ v̄ + w̄ (13)

where ⊗ represents the Kronecker product1, Ω̄ ∈ RM ·n×N ·n represents the rearranged sensing
matrix multiplied by the transformation Ψs

j , and z̄(j), v̄ and w̄ are defined in (20). We want to
find Ψs

j (j = 1, ...,M) to minimize

minµ(Ω̄) where Ω̄ =


ψs

11Φ1,: ψs
12Φ1,: ... ψs

1nΦ1,:

ψs
21Φ2,: ψs

22Φ2,: ... ψs
2nΦ2,:

... ... ... ...
ψs
M1ΦM,: ψs

M2ΦM,: ... ψs
MnΦM,:

 has full row rank (14)

where ψs
ij ∈ Rn represents the j-th column of Ψs

i . In this paper, we propose a heuristic approach
and a novel way to find Ψs

i by solving the optimization iteratively to reduce coherence (see
Method: Section 1.2 and 1.3 for details).

Example 2. (reducing coherence for a linear system) consider a simple linear system (ẋ = Ax)
where n = 5, N = 5,M = 4, s = 10 (note that n ·M ≥ 2s), and the elements of A are randomly
chosen such that there is no isolated node. Figure 2 shows the sensing matrix for both Ω(top
left) and the transformed sensing matrix (top right, denoted by ΩΨ). By reducing coherence,
the components of the transformed sensing matrix (top right) are more uniformly distributed and
the coherence is reduced by up to 0.6 although µ(Ω) is close to 1 (bottom left) in Figure 2(a).
Also, Figure 2(b) shows the result of the inferred graph structure based on given time series data
without any a priori information where the x-axis represents indices of the influence map (i.e.,
the 1st, 2nd, ..., nth rows of influence map Sq; note that for a linear system, Sq = A). Here, there
are 5 states (n = 5) in a linear system so the influence map A has 25 elements. Although L1
and L22 norm minimizations fail to recover the exact signal, CS in (17) (see 3. Recovery of

1If A is an m × n matrix and B is a p × q matrix, then the Kronecker product product A ⊗B is the mp × nq
block matrix:

A⊗B =

 a11B · · · a1nB
...

. . .
...

Am1B · · · amnB


2We compare the performance of CS with the performance of the L1 and L2 optimization as follows:

min
qi
‖qi‖1 subject to yi = Φqi (i = 1, ..., n) (L1)

min
q
‖q‖2 subject to Y = Ωq (L2)
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Gene Regulatory Networks for details) recovers the exact signal (bottom right) by first reducing
coherence of the sensing matrix. Note that (L1) solves the n independent equations (11) without
reducing coherence and (L2) solves (12) with l2-regularization.

Example 3. (reducing coherence for a nonlinear system, n = 3, N = 9, M = 5, s = 6) consider
simple nonlinear ODEs as follows:

ẋ1 = γ1x1 + k+12
1

1 + xnact
2

ẋ2 = γ2x2 + k−23
xnihb

3

1 + xnihb
3

ẋ3 = γ3x3 + k+13
1

1 + xnact
1

(15)

where (γ1, γ2, γ3) = (−0.3,−0.25,−0.35), k+12 = 1.2, k+13 = 0.9, k−23 = 2.2, nact = 4 (activation
Hill coefficient) and nihb = 4 (inhibition Hill coefficient). The set of ODEs corresponds to a
topology (x2 → x1 → x3 a x2) as shown in Figure 3 (a). Figure 3(b) shows that we can reduce
the coherence by up to 0.8 and (c) shows that only CS recovers the exact graph structure, and L2
regularization does not encourage sparsity but distributes the coefficients to be more similar to each
other.

2.2. Designing Effective Experiments

Consider the case where the sensing matrix is not incoherent. If the coherence condition (M · n >
cµ(Ω̄)2 · s log(N · n)) is not satisfied, exact recovery cannot be guaranteed [29]. We use the
transformation (Ψs

i or P = P>P in (24); see Method section 1. Reducing Coherence
by Transformation) in order to reduce the coherence but obviously, sometimes we might have
inherent limits to how much the coherence can be reduced. There are possible reasons:

• Since we solve the relaxed problem (24) iteratively, P might be sub-optimal.

• If the time series data of two different gene expressions, xi and xj are highly correlated, it
might be difficult to reduce coherence. In this case, we need to design a new experiment to
remedy deficiencies in the data.

As we mentioned, the incoherence of the sensing matrix can be used not only as a good metric
to guarantee exact recovery but also as a guideline for designing new experiments. For example,
from the coherence distribution, we can identify which columns of the sensing matrix have high
coherence, i.e., fb,i(x) and fb,j(x) in (6). Intuitively, in order to reduce ambiguities from the highly
correlated columns of the sensing matrix, we should perturb either fb,i(x) or fb,j(x). Thus, it is
possible to use this property of coherence to guide biological experiment design, to collect a more
informative dataset.

Example 4. (limitation of reducing coherence by Ψ, linear dynamics, n = 5, N = 5,M = 4, s =
10) In Figure 4, Exp#1 represents the original experimental data set which has the limitation of
reducing coherence by Ψ. Since we consider linear dynamics, i.e., fb,i(x) = xi and fb,j(x) = xj,
we found that x2 and x4 cause high coherence as shown in Figure 4 (circle marker). Thus, in order
to reduce this high coherence, we should perturb either x2 or x4.
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To show the effectiveness of the new experiment, we design two different experiment sets and
compare the reconstruction results with each other; for Exp#2, we perturb x3 and for Exp#3, we
perturb x2. As we mentioned earlier, intuitively, we expect that Exp#3 to be a more informative
experiment to identify the graph structure since we would like to reduce the coherence between x2

and x4. As we expected, in Exp#3, we can reduce the coherence more than that of Exp#2 as shown
in Figure 4, and recover the exact graph structure as shown in Figure 5. On the other hand, the
coherence of Exp #2 remains almost the same as that of Exp #1 and we fail to recover the exact
graph structure. This numerical example illustrates that by using the property of coherence, we can
guide biological experiment design more effectively.

Example 5. (limitation of reducing coherence by Ψ, nonlinear dynamics, n = 3, N = 9,M =
5, s = 9) consider the following set of ODEs:

ẋ1 = γ1x1 + k+12
1

1 + xnact
2

+ k+13
1

1 + xnact
3

ẋ2 = γ2x2 + k−21
xnihb

1

1 + xnihb
1

+ k−23
xnihb

3

1 + xnihb
3

ẋ3 = γ3x3 + k−31
xnihb

1

1 + xnihb
1

+ k−32
xnihb

2

1 + xnihb
2

where (γ1, γ2, γ3) = (−0.25,−0.23,−0.26), k+12 = 1.2, k+13 = 1.25, k−21 = 2.8, k−23 = 2.1,
k−31 = 2.7, k−32 = 1.8, nact = 4 (activation Hill coefficient) and nihb = 4 (inhibition Hill
coefficient). The corresponding topology is shown in Figure 6 (b) (note that we intentionally choose
the symmetric structure and similar parameters). The reconstruction error using Exp#1 data is
shown in Figure 6 (a) (left, bottom) and the reconstruction error illustrates difficulties of resolving
ambiguities from x2 and x3. This can be captured by the coherence distribution of the sensing
matrix based on the Exp#1 dataset; the correlation between the columns corresponding to x1 and
to x2 is close to the correlation between the columns corresponding to x1 and to x3. Based on the
coherence distribution, we design two trials; for Exp#2, we perturb x1 and for Exp#3, we perturb
x2. As we expected, Exp #2 is not an effective experiment in terms of information. On the other
hand, by using Exp#3, we can reduce both the maximum coherence and the averaged coherence,
and reconstruct the exact graph structure as shown in Figure 6 (a).

Both Examples 4 and 5 illustrate that if the transformed sensing matrix is not incoherent enough to
guarantee exact recovery, we can design a new experiment based on the distribution of coherence.
Also, we show that an informative experiment can help to reduce coherence and thus reconstruct
the exact graph structure. For a fair comparison, we use the same number of time points as M
here. However, in practice, we can stack all the experimental data sets together if we assume that
the linear map Sq and the set of basis functions Fb(x) does not change for different experiment:Z1

...
Zk

 =

Ω̄1

...
Ω̄k




q1

q2

...
qn

+

v̄1

...
v̄k

+

w̄1

...
w̄k

 (16)

where the subscript Zi, Ω̄i, v̄i, w̄i represents the i-th experiment. As the number of measurements
increase (M), one may be able to reduce the coherence. However, one can reduce the coherence
only if the additional measurements provide us more useful information. As a trivial example, one
could stack exactly the same data on top of the first, and increase M to 2M , however the coherence
is exactly the same as that of the original dataset.
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3. Recovery of Gene Regulatory Networks

In this section, we present reconstruction of the exact graph structure and show how the condition
for exact recovery will be used. First, we consider the ideal case where there are no hidden nodes
and no measurement noise. Second, we extend the ideal case to the more general case.

3.1. Reconstructing Gene Regulatory Networks (ideal case)

In (13), q represents the s-sparse network structure which we want to reconstruct from the time
series gene expression by solving the l1-norm optimization:

min ‖q‖l1 s.t. Z̃ = Ω̃q (CS) (17)

where Z̃ , PZ, Ω̃ , PΩ̄ and P is the optimal transformation in (24)

Proposition 2.. If the sensing matrix Ω̃ constructed from time series data, multiplied by the op-
timal transformation, P, has 2s linearly independent columns, then any s-sparse network structure
q can be reconstructed uniquely from Z̃ = Ω̃q.

Proof. (Suppose not), then there are two s-sparse graph structures q1,q2 with Ω̃q1 = Ω̃q2 (or
Ω̃(q1−q2) = 0). However, q1−q2 is 2s-sparse, so there is a linear dependence between 2s columns
of Ω̃ (contradiction).

The requirement of 2s linearly independent columns in Proposition 2 may be translated to an
incoherence condition on the sensing matrix. That is, if the unknown s-sparse signal q is reasonably
sparse, it is possible to recover q under the incoherence condition on the sensing matrix. Although
the sensing matrix consists of redundant dictionaries, the coherence of the sensing matrix can be
reduced. In a heuristic way, we multiply the redundant dictionaries Φk,: by a randomly chosen
matrix Ψs

k at each time step k and iterate this step until the coherence is decreased. Or, we can
find the optimal transformation P(or P) in (24) to reduce the coherence. In the previous numerical
examples, we illustrated that the coherence of the sensing matrix is decreased by transformation
and showed the exact reconstruction of graph structure.

Example 6. (Statistics) Here, we compare the success rate of the proposed method with other
methods such as L1 and L2. Figure 7 shows statistics of 50 trials for a simple linear case (for
each trial, we randomly generate the influence map). Here, we count the number of successes of
each method when any of the methods recover the exact structure. By reducing coherence, we can
improve the success rate as shown in Figure 7 (a). Also, L2-regularization does not encourage
sparsity but distributes the coefficients to be more similar to each other as shown in Figure 7 (b).

3.2. Graph Reconstruction with Hidden Nodes

The main contributions of the proposed method in the previous section is the conversion of the
problem of inferring graph structure into the CS framework. Then, we demonstrate that one could
recover sparse graph structures from only a few measurements. However, for practical use, the
proposed method needs to be able to deal with both sparsely corrupted signals (v = g(xh)) and
measurement noise (w) in (5).

In general, the assumption of accessibility or observability of all nodes [17] is not satisfied.
Thus, we focus on the case in which the hidden node affects observable nodes directly as shown in
Figure 1 (b). Also, without loss of generality, the hidden node dynamics could be any arbitrary
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dynamic model. Or, even if there is no hidden node, a small portion of the biological experiment
dataset could be in practice contaminated by large error resulting from, for example, mislabeling,
or improper use of markers or antibodies. Moreover, all biological datasets are contaminated by at
least a small amount of noise from measurement devices. Therefore, the proposed method should
be robust. We note this goes beyond the results in [11] due to the consideration of hidden node
dynamics with measurement noise.

Here, the question is whether it is still possible to reconstruct the graph structure reliably
when measurements are corrupted. Since hidden nodes and measurement noise are considered,
the number of time points is assumed to be greater than that of the previous case [17] (i.e., no
corruption and no measurement noise). Thus, the number of rows of the sensing matrix is assumed
to be greater than the number of columns. If the number of the time points M(< N) is limited,
then we can stack z̄(j) with different Ψs

k or including different dataset as described in equation
(16).

In CS literature [26], two decoding strategies for recovering the signal from a corrupted mea-
surement are introduced, where the corruption includes both a possible sparse vector of large errors
and a vector of small error affecting all the entries. It is shown that two decoding schemes allow
the recovery of the signal with nearly the same accuracy as if no sparse large errors occurred. Our
contribution is converting the problem of inferring the graph structure with hidden nodes into
the highly robust error correction method framework [26] (see Method: Section 2. Two step
refinements) and showing how this can improve the reliability of reconstruction.

Example 7. (arbitrary corruption with no measurement noise) Consider nonlinear ODEs as fol-
lows:

ẋ1 = −γ1x1 + α13hact(x3) + v1

ẋ2 = −γ2x2 + α21hact(x1) + v2

ẋ3 = −γ3x3 + α34hact(x4) + β32hihb(x2) + v3

ẋ4 = −γ4x4 + β41hihb(x1) + v4 (18)

where hact, hihb represents Hill functions for activation and inhibition respectively, and vi represents
arbitrary corruption shown in Figure 8 (a) and assumed to be sparse (at each time step, we choose
card(v(j)) = 1). The magnitude of vi are about 50% of the magnitude of ẋ. Since we consider
arbitrary corruption, we need more time points (M > N). By using two-step refinements, first we
estimate sparse large corruption as shown in Figure 8 (b) (top) and then, we reconstruct q.

In practice, a specific node is corrupted by a hidden node and a small portion of the dataset can
be largely corrupted by human error. Also, since we choose the set of possible candidate basis
functions of the sensing matrix in (6), the columns of the sensing matrix may not be able to
represent the underlying system (i.e., missing dictionaries). Then, we can consider the influence
from these missing dictionaries as v.

Example 8. (Arbitrary corruption with measurement noise) Recall a model (18) with different
parameters and consider sparse large corruption v and small magnitude noise w (1% of the mag-
nitude of ẋ). Figure 9 shows the time series data and reconstruction result.

3.3 Geometric view

In equation (17), since we assume all nodes are accessible and perfect measurement (meaning that
there is no hidden node, v = 0 and no measurement noise, w = 0), we can solve equation (27)
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directly without filtering out the unmodelled dynamics (26) (i.e., Z = Ω̄q). If there exist hidden
nodes or measurement noise, we can still provide an unambiguous indication of the existence of
these corruption (e 6= 0).

The intuition is that Z(= Ω̄q + Ψ̄e) can be decomposed as the superposition of an arbitrary
element in V (= Z −QQ∗e) and of an element in V ⊥(= QQ∗e) as shown in Figure 10. In other
words, Z can be decomposed as the superposition of modelled dynamics and anomalies caused by
hidden node or unmodelled dynamics. This geometric view enables us to understand how we could
reveal deficiencies in our model:

• Z̄ = Q∗Z = 0: there is no hidden node =⇒ Z̄ ∈ R(Ω̄)

• Z̄ 6= 0: Z cannot be represented by Ω̄q so there might be hidden nodes or our dictionaries
in the sensing matrix Ω̄ are not sufficient to represent Z (revealing deficiencies in our model
or dictionaries).

4. HER2 Overexpressed Breast Cancer

We apply the proposed algorithm to study a breast cancer signaling pathway by reconstructing
the graph structure using an RPPA dataset [27] as shown in Figure 11 (see also Figure S1, S2,
and S3 for details: each figure presents the RPPA dataset and the result of graph reconstruction
compared with L1, L2-optimization). Here, we choose small networks which are composed of 3
nodes and known to be sparsely connected, i.e., PI3K→ PDK→ Akt and PDK→ Akt→ mTOR in
order to satisfy our assumption such that the influence on observable nodes from a hidden node
should be sparse (i.e., v is sparse). The graph structures identified by the proposed method are
consistent with the current understanding of the networks, whereas those found using L1- and
L2-optimizations fail to reconstruct the known structure as shown in Figure 12.

Also, an abstract model of the breast cancer signal pathway proposed by M. Moasser [31] is
considered, as shown in Figure S3(b) where PHLPP isoforms are a pair of protein phosphatases,
PHLPP1 and PHLPP2, which are important regulators of Akt serine-threonine kinases (Akt1, Akt2,
Akt3) and conventional protein kinase C (PKC) isoforms. PHLPP may act as a tumor suppressor in
several types of cancer due to its ability to block growth factor-induced signaling in cancer cells [32].
PHLPP dephosphorylates Ser473 (the hydrophobic motif) in Akt, thus partially inactivating the
kinase [33]. Unfortunately, in our RPPA dataset, we do not have PHLPP so we simply consider three
nodes (AktpT308,AktpS473 and mTOR). Figure 11(right) shows the result of the proposed method
using the RPPA dataset. The reconstructed graph structure matches up to known structure (Figure
S3 (b)). Specifically, our result can capture the partial inactivating characteristics of PHLPP (i.e.,
mTOR(→ PHLPP) a AktpS473).

Conclusion

We proposed a method for reconstructing sparse graph structures based on time series gene ex-
pression data without any a priori information. We demonstrated that the proposed method can
reconstruct graph structure reliably. Also, we illustrated that coherence in the sensing matrix can
be used as a guideline for designing effective experiments.

Second, the proposed method is extended to the cases in which dynamics is corrupted by hidden
nodes and the measurement is corrupted by human error in addition to the measurement noise.
Using a two-step refinement procedure, we demonstrate good performance for the reconstruction
of graph structure. A set of numerical examples is implemented to illustrate the method and its
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performance. Also, a biological example of HER2 overexpressed breast cancer using an RPPA
dataset is studied. We are currently applying our method to recover the HER2 signaling pathway,
where a significant part of the network is currently unknown.

Method

1. Reducing Coherence by Transformation

1.1. Rearranging the sensing matrix

Define z(j) as a vector of each component of yi at the j-th time point:

z(j) ,


y>1 ej

y>2 ej

...
y>n ej

 =


y1(tj)
y2(tj)
...

yn(tj)

 =


Φj,:q1

Φj,:q2

...
Φj,:qn

+


v1(tj)
v2(tj)
...

vn(tj)

+


w1(tj)
w2(tj)
...

wn(tj)



= (In ⊗Φj,:)


q1

q2

...
qn

+ v(j) + w(j) (19)

where Φj,: represents the j-th row of Φ. Consider Ψs
j ∈ Rn×n and multiply equation (19) by Ψs

j :

z̄(j) , Ψs
jz(j) = Ψs

j(In ⊗Φj,:)


q1

q2

...
qn

+ v̄(j) + w̄(j) (20)

where v̄(j) , Ψs
jv(j), w̄(j) , Ψs

jw(j) and rank(Ψs
i (In⊗Φi,:)) = rank(Ψs

i ) since rank(In⊗Φi,:) =
rank(In) · rank(Φi,:) = n. By stacking z̄(j),

Z ,


z̄(1)
z̄(2)
...

z̄(M)

 =


Ψs

1(In ⊗Φ1,:)
Ψs

2(In ⊗Φ2,:)
...

Ψs
M (In ⊗ΦM,:)




q1

q2

...
qn

+


v̄(1)
v̄(2)
...

v̄(M)

+


w̄(1)
w̄(2)
...

w̄(M)

 , Ω̄


q1

q2

...
qn

+ v̄ + w̄ (21)

1.2. Randomly chosen matrix Ψ

The optimization problem (14) is not trivial because of the constraint. One simple and heuristic
approach is that we select Ψs

i by (normalized) randomly chosen matrix with independent identi-
cally distributed (i.i.d.) random variable where Ω̄ has full row rank, calculate µ(Ω̄) and run this
with several times to reduce coherence. Since the randomly chosen matrix, Ψs

i , spreads out the
component of Φi,: uniformly, we can reduce coherence.
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1.3. Finding the optimal transformation

This heuristic approach may not be enough to reduce the coherence. Consider a nonsingular matrix
P ∈ RM ·n×M ·n and Ω̃ = PΩ̄ where Ω̄ is constructed by heuristic way, i.e., randomly chosen matrix.

µ̃i,j ,
|〈Ω̃i, Ω̃j〉|∥∥∥Ω̃i

∥∥∥
2

∥∥∥Ω̃j

∥∥∥
2

=
|〈PΩ̄i,PΩ̄j〉|∥∥PΩ̄i

∥∥
2

∥∥PΩ̄j

∥∥
2

,
|Ω̄>i PΩ̄j |√

(Ω̄>i PΩ̄i)(Ω̄>j PΩ̄j)
(22)

where P , P>P = P> ∈ SM ·n is positive definite and Ω̃i denote the i-th column of Ω̃. Note that if

P>P = I, µ̃i,j =
|〈Ω̃i,Ω̃j〉|
‖Ω̃i‖

2
‖Ω̃j‖

2

=
|〈Ω̄i,Ω̄j〉|
‖Ω̄i‖

2
‖Ω̄j‖

2

, µ̄i,j . Therefore, our goal is finding P(= P>P ) ∈ S+

such that
minµ(Ω̃) = min

P
max
j<k

µ̃j,k = min
P
‖Γ‖∞ (23)

where Γ ∈ R(n·N)C2 can be defined as follows:

Γ ,

[
tr(PΩ̄1Ω̄>2 P

>)

‖PΩ̄1Ω̄>2 P>‖F
...

tr(PΩ̄1Ω̄>N·nP
>)

‖PΩ̄1Ω̄>N·nP>‖F
tr(PΩ̄2Ω̄>3 P

>)

‖PΩ̄2Ω̄>3 P>‖F
...

tr(PΩ̄N·n−1Ω̄>N·nP
>)

‖PΩ̄N·n−1Ω̄>N·nP>‖F

]>
In practice, we ignore the denominator and solve the following problem:

min
P=P>�0

∥∥∥[vec(Ω̄1Ω̄
>
2 ) ... vec(Ω̄1Ω̄

>
N ·n) ... vec(Ω̄N ·n−1Ω̄

>
N ·n)

]>
vec(P)

∥∥∥
∞

(24)

We can also combine ‖·‖∞ and ‖·‖1 to reduce the coherence. Note that for ‖·‖∞, we minimize
the maxim coherence and for ‖·‖1, we minimize the sum of the all possible combinations of the
columns of Ω̄, i.e., µ̃ij . Thus, if certain bases are highly correlated, P or P makes the components
of the sensing matrix spread out enough to differentiate the influences from those bases. Since
we ignore the denominator, the optimal solution of (24) may be suboptimal. Thus, we can also
combine heuristic way and (24) iteratively to reduce coherence of the sensing matrix in practice.

2. Two-step refinements

2.1. Sparse large corruption with no measurement noise

Recall equation (13) where w̄ = 0:

Z = Ω̄


q1

q2

...
qn

+ diag{Ψs
1,Ψ

s
2, ...,Ψ

s
M}


v(1)
v(2)
...

v(M)

 = Ω̄


q1

q2

...
qn

+ Ψ̄v (25)

where Ψ̄ , diag{Ψs
1,Ψ

s
2, ...,Ψ

s
M} and v(j) represents sparse large corruption at the j-th time

point, that could result from the existence of hidden nodes. We assume that the influence from
hidden nodes is sparse and unknown (i.e., v(j) is assumed to be sparse). In other words, hidden
nodes can affect only a few nodes’ dynamics (intuitively, if hidden nodes affect all nodes, there is no
way to reconstruct the graph structure). Then, we consider the reconstruction of graph structure
q from the corrupted signal Z.

Since we assume the number of rows of the sensing matrix Ω̄ is greater than the number of
columns (M · n > N · n), we consider Q∗ which annihilates the sensing matrix Ω̄ on the left
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(Q∗Ω̄ = 0) where Q∗ is any (M ·n−N ·n)×M ·n matrix whose kernel is the range of Ω̄ in RM ·n

(rank(Q∗) + nullity(Q∗) = M · n):

Z̄ , Q∗Z =�
��*

0

Q∗Ω̄ ·


q1

q2

...
qn

+ Q∗Ψ̄v

Then, the following two-step optimization problem enables us to compute q:

• Filter unmodelled dynamics out from the measurement:

v̂ = arg min ‖v‖l1 s.t. Z̄ = Q∗Ψ̄v (26)

• Reconstruct q :

min ‖q‖l1 s.t. Z− Ψ̄v̂ = Ω̄q (27)

or Z̃ = P(Z− Ψ̄v̂) = PΩ̄q = Ω̃q (if necessary, P in (23))

If we could somehow get an accurate estimate v̂ from equation (26), equation (27) represents the
problem of reconstructing the graph structure q. The intuition is that Z(= Ω̄q + Ψ̄v) can be
decomposed as the superposition of modelled dynamics and anomalies caused by hidden node or
unmodelled dynamics.

The two step convex optimization problems (26) and (27) are l1-norm optimization problems
in CS. Thus, if the sensing matrix Ψ̄ and Ω̄ (or PΩ̄) satisfy the incoherence condition, signals v
and q can be recovered exactly [17] [29]. Here, there are many possible choices of Q∗ but we have
to choose Q∗ to satisfy the incoherence condition for the exact recovery of v [17]. To choose such
a Q∗, we observe that Ω̄ can be denoted as follows using Singular Value Decomposition (SVD):

Ω̄ =
[
U1 U2

] [Σ 0
0 0

] [
V>1
V>2

]
= U1ΣV>1 (28)

where U1 ∈ RM ·n×r,U2 ∈ RM ·n×(M ·n−r),Σ ∈ Rr×r,V1 ∈ RN ·n×r, V2 ∈ RN ·n×(N ·n−r) and r is
the rank of Ω̄. Suppose we choose Q∗ such that Q∗ = ΞU>2 . Then:

Q∗Z = Q∗Ω̄q + Q∗Ψ̄v

Z̄ = (ΞU>2 )U1ΣV>1 q + (ΞU>2 )Ψ̄v

Z̄ = (ΞU>2 )Ψ̄v

where Ξ can be used as a tuning matrix for satisfying the incoherence condition. A geometric
view in Results and Discussion: Section 3.3. enables us to understand how we could reveal
deficiencies in our model.

2.2. Sparse large corruption with measurement noise

While considering influence from hidden nodes is interesting, it still may not be realistic to assume
that except for hidden nodes, one is able to measure the node dynamics with infinite precision. A
better model would assume that there is measurement noise. Consider the problem of recovering
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the graph structure q from the vector Z which is corrupted by measurement noise w̄ in equation
(13):

Z = Ω̄


q1

q2

...
qn

+ Ψ̄


v(1) + w(1)
v(2) + w(2)

...
v(M) + w(M)

 = Ω̄


q1

q2

...
qn

+ Ψ̄


e(1)
e(2)
...

e(M)

 (29)

where e(j) = v(j) + w(j), w is Gaussian noise N (0, σ) assumed to be bounded ‖w‖l2 ≤ ε. In
general, we can consider any corruption decomposed into sparse large error v and small magnitude
error w [26]. Then, modified two-step refinements can be applied as follows:

Z̄ = Q∗Ω̄q + Q∗Ψ̄e = Q∗Ψ̄(v + w)

v̂ = argmin ‖v‖l1 s.t
∥∥Z̄−Q∗Ψ̄v

∥∥
l2
≤ ε1

q = argmin ‖q‖l1 s.t.
∥∥Z− Ω̄q− ê

∥∥
l2
≤ ε2, ê = Ψ̄v̂ (30)

where the parameters ε1, ε2 above depend on the magnitude of the small errors ε, which can be
determined as in [26].
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Figures

(a) (b)

Figure 1. A graph representation of nonlinear ODEs. (a) (Example 1, n = 3, Sq ∈ R3×6):
among 18(= 3× 6) components, only 6 components are non-zero (b) (Example 1 with hidden
node and measurement noise) there exists hidden node xh affecting x1 and process noise w.
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Figure 2. Reducing coherence for a linear system. (Example 2) (a) the sensing matrix Ω,
without and with transformation Ψ (top) and coherence (bottom) (b) reconstruction result (left)
L1 (middle) L2 with Ω (right) l1 optimization with ΩΨ (CS).
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Figure 3. Reducing coherence for a nonlinear system. (Example 3) (a) Time series of x1,
x2, x3 for model (15) (b) the sensing matrix w/o, and w/ Ψ matrix (top) and coherence
(bottom) (c) reconstruction results.
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Figure 5. Design effective experiment for a linear system. (Example 4) Reconstruction
results based on different experiments: Exp#1 represents the original experimental dataset which
has limitation to reduce coherence; Exp#2 represents non-effective experimental dataset; and
Exp#3 represents the effective experimental dataset (a) the sensing matrix and reconstruction
result (b) coherence comparison
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Figure 6. Design effective experiment for a nonlinear system. (Example 5)
Reconstruction result based on different experiment (nonlinear case): Exp#1 represents the
original experimental dataset which has limitation to reduce coherence; Exp#2 represents
non-effective experimental dataset (inhibit x1); and Exp#3 represents the effective experimental
dataset (inhibit x2) (a) the time series of x1, x2, x3 for each experiment and coherence
comparison for each experiment (b) the corresponding topology (c) (detail) coherence of the
sensing matrix
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Figure 8. Arbitrary corruption with no measurement noise. (Example 7)
Reconstruction with corrupted signal. (left) time series of x,y, v (right) reconstruction results of
v and q where each circle represents sampled time points(n = 4, M = 25, N = 12, s = 9).
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Figure 9. Arbitrary corruption with measurement noise. (Example 8) Reconstruction
with corrupted signal. (left) time series of x,y, v (right) reconstruction results of v and q where
each circle represents sample time points(n = 4, M = 40, N = 12, s = 9).
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Figure 10. Geometric view of two-step refinement. A geometric view of two consecutive
l1-norm optimizations.

Figure 11. HER2+ overexpressed breast cancer. CS reconstruction result using Reverse
Phase Protein Array data (SKBR3 cell line, Serum [27]).
See Figure S1, S2 and S3 for further details (red: activation, blue: inhibition).
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Figure 12. Sub networks inferred for the HER2/3 signaling network from Reverse
Phase Protein Array data. The columns show the networks inferred by L1-optimization,
L2-optimization, and CS. The network structures identified by CS agree with the current
understanding of the network, whereas those found using L1 and L2 optimization do not.
See Figure S1, S2 and S3 for further details (red: activation, blue: inhibition).
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Figure S1. HER2+ overexpressed breast cancer. RPPA dataset (SKBR3 cell line,
Serum [27]) (a) gene expression data [0-48hr] (b) L1 optimization result (c) L2 optimization
result (d) CS reconstruction result.
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Figure S2. HER2+ overexpressed breast cancer. RPPA dataset (SKBR3 cell line,
Serum [27]) (a) gene expression data [0-48hr] (b) L1 optimization result (c) L2 optimization
result (d) CS reconstruction result.
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Figure S3. HER2+ overexpressed breast cancer. RPPA dataset (SKBR3 cell line,
Serum [27]) (a) gene expression data [0-48hr] (b) abstract model by Dr. Moasser (c) CS
reconstruction result.

34

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 20, 2014. ; https://doi.org/10.1101/004242doi: bioRxiv preprint 

https://doi.org/10.1101/004242

