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Abstract

Complex networks of regulatory interactions orchestrate developmental processes in mul-
ticellular organisms. Such a complex internal structure intrinsically constrains cellular
behavior allowing only a reduced set of attainable and observable cellular states or cell
types. Thus, a multicellular system undergoes cell fate decisions in a robust manner in
the course of its normal development. The epigenetic landscape (EL) model originally
proposed by C.H. Waddington was an early attempt to integrate these processes in a
universal conceptual model of development. Since then, a wealth of experimental data
has accumulated, the general mechanisms of gene regulation have been uncovered, and
the placement of specific molecular components within modular gene regulatory networks
(GRN) has become a common practice. This has motivated the development of mathe-
matical and computational models inspired by the EL aiming to integrate molecular data
and gain a better understanding of development, and hopefully predict cell differenti-
ation and reprogramming events. Both deterministic and stochastic dynamical models
have been used to described cell state transitions. In this review, we describe recent EL
models, emphasising that the construction of an explicit landscape from a GRN is not
the only way to implement theoretical models consistent with the conceptual basis of the
EL. Moreover, models based on the EL have been shown to be useful in the study of
morphogenic processes and not just cell differentiation. Here we describe the distinct ap-
proaches, comparing their strengths and weaknesses and the kind of biological questions
that they have been able to address. We also point to challenges ahead.

Introduction

The development of multicellular organisms comprises cellular differentiation and mor-
phogenesis (spatio-temporal arrangement of different cell types). The progressive loss
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of potency from pluripotent stem cells to mature, differentiated cells, as well as the re-
producible emergence of spatiotemporal patterns through the course of development has
been always perceived as strong evidence of the robustness and deterministic nature of
development. The explanation of such a robust process has always puzzled researchers.
For a long time, although not always stated explicitly, the prevailing paradigm in devel-
opmental biology was supported on two fundamental paradigms: (1) a mature cell, once
established, displays an essentially irreversible phenotype; and (2) the developmental pro-
cess is controlled by a “program” as a genomic blueprint following a simplistic linear
scheme of causation in an essentially deterministic fashion. Discoveries in the last decade
have challenged these assumptions. It has been shown that a differentiated state of a
given cell is not as irreversible as previously thought, and that in fact it is possible to re-
program differentiated cells into pluripontent states with a plethora of protocols [1–3]. On
the other hand, technological advances in time-lapse microscopy and live imaging allowed
the in-vivo exploration of the role of physical constraints and non-genetic heterogeneity
in tissue patterning and morphogenesis [4–6]. There is now compelling empirical evidence
supporting intrinsic physical processes as a fundamental source of order (mainly ruled by
stochastic self-organization processes) instead of deterministic pre-programmed rules [7].
Although these observations have just recently shift the focus of study of developmental
biology and biomedical research, the new evidence supports the proposals that visionary
theoretical biologists posited decades ago [8–12]. C.H. Waddington was one of the first
to point out that the physical implementation of the information coded in the genes and
their interactions imposes developmental constraints while forming an organism. The
heuristic model of the epigenetic landscape (EL) was a visionary attempt to consolidate
these ideas in a conceptual framework that allows to discuss in an intuitive manner the
relationship between genetics, development, and evolution [8, 13,14].

Now in the data-rich, post-genomic era the EL has been consolidated as the preferred
conceptual model for the discussion of the mechanistic basis underlying cellular differen-
tiation, trans-differentiation, and reprogramming events [15–17]. The holy grail of this
prolific area of research, the so-called stem cells systems biology, is the possibility of dis-
covering efficient reprogramming or therapeutic strategies by combining mathematical
and computational modeling with experimental techniques [18–22]. The formalization of
the EL in the context of the study of the dynamical properties of GRNs is a salient the-
oretical framework which is starting now to show great promise in this direction. Given
the current relevance of the intended purpose of modeling the EL associated to molecular
networks involved on processes such as stem cell differentiation [23], tissue morphogene-
sis [24], and carcinogenesis [25]; and the fact that different approaches have been proposed
in order to reach similar goals [26–28], here we present an integrative and comparative
review which considers the most successful approaches used up to now. Our objective is
two-fold: (1) to help different research groups attempting to formalize the EL to reduce
the gap existing between current different approaches and (2) to contribute to shape a
common discussion ground on EL models between experimentalists and theorists. With
this in mind, we present both a conceptual and rigorous exposition of otherwise rather
technical and disjunct subjects.

In the sections that follow, we first explain briefly the dynamical systems view of the
cell, i.e. the standard theoretical framework adopted for the mathematical and computa-
tional study of cell differentiation. This formal conceptualization of the cell gives rise to
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the rigorous definition of a given cell phenotype and is the starting point for the construc-
tion of EL models. We also elaborate on why there is a growing interest in extending GRN
models towards the implementation of EL models. We then summarize some recent work
in which derivations of the EL associated with gene regulatory circuits and networks are
presented. Moreover, we discuss both the biological and mathematical difficulties associ-
ated with each of the considered approaches that have been used. Finally, we conclude
with some perspectives and open problems regarding the generalization of computational
models motivated by the conceptual basis of EL models.

The Dynamical-Systems View of Cell Biology

Recently, a modern picture of the EL has been emerging in the context of GRNs [27].
An assumption of the “systems dynamics” approach to biology is that cell behavior can
be understood in terms of the dynamical properties of the involved molecular regulatory
networks [29, 30]. This idea, particularly in the context of development, aligns very well
with Waddington’s intuition [15], and is now supported by a wealth of consolidated theo-
retical and experimental work [31,32]. As a consequence, the orchestrating role of GRNs
in developmental dynamics is now widely accepted [33–36]. Furthermore, with the use
of modern experimental techniques, the number of known specific gene interactions is
growing, and the mechanisms of gene regulation are fairly well understood. This knowl-
edge enables the mathematical description of experimentally grounded GRNs in terms of
dynamical systems. There are several excellent reviews on the dynamical-systems view of
cell biology [24,33,37–39]; in this section, we briefly explain this view.

Under dynamical-systems framework, a cell is considered a dynamical system, as-
suming that its state at a certain time can be described by a set of time-dependent
variables. As a first approximation, it is assumed that the amount of the different pro-
teins or the levels of gene expression (e.g. expression profiles) are sufficient to describe
the cellular phenotype [40]. Thus, the expression profile is taken as the set of variables
representing the state of the cell; each gene in the cell’s GRN represents one variable
(see Figure 1). Mathematically, the set of variables is represented as a state vector given
by x(t) = [x1(t), x2(t)..., xn(t)] for a GRN with n genes; conceptually, this vector repre-
sents the corresponding phenotype. It is useful, both conceptually and mathematically,
to imagine an abstract space termed the state space of the system, which in the con-
text of GRNs corresponds to the abstract space comprising all the theoretically possible
phenotypes a cell can exhibit; each point in this abstract space represents one particular
phenotype of the cell that specifically corresponds to a configuration or vector with the
expression states or levels in discrete and continuous models, respectively, for each molec-
ular component (node) considered in the network (Figure 1b). Furthermore, it is assumed
that the phenotype at a certain time and the phenotype at a later time are connected by
a state trajectory in a causal way. Mathematically, the current phenotype is a function
or a more general mapping of the initial phenotype and certain additional parameters,
which may take into account the influence of the environment and possibly also actions
of external control. The connection between phenotypes can be formally expressed by a
dynamical equation,

x(t+ δt) = F(x(t),u, δt), (1)
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where F represents the map that connects one phenotype with immediately previous
phenotype (F is also known as the transition map), x(t) denotes the phenotype at a
certain time t, and u stands for the vector of additional parameters. Both the time in-
crements δt and the state variables xi(t) can be either continuous or discrete, depending
on the chosen mathematical formalism used. Within the cell, the map F is implemented
by the architecture of the GRN, which specifies both the topology of the network and
the nature and form of the corresponding gene regulations [26]. Thus, through the causal
connections between the phenotypes, the GRN imposes dynamical constraints and limits
the permissible behavior of the cell, specifically of the transient and stable configurations
that it may attain. The existence of a dynamical map, which defines the phenotype at
a certain time, by means of the corresponding phenotype at an earlier time, expresses
the causality of the cellular developmental process. We must point out that when model-
ing developmental dynamics, two different cases of causal relationships can be considered
between two given phenotypes. If the relationship between the two given phenotypes is
unambiguous, e.g. if the future phenotype is given by the map in a unique way by the
initial one, the corresponding model is deterministic. In contrast, if there are several pos-
sibilities for the future phenotype depending on random effects, the model is stochastic.
One of the most salient and impressive features of GRNs is the existence of a small num-
ber of stationary gene configurations within the state space [10]. Given a specific GRN,
a specific set of phenotypes could satisfy the constraints imposed by the GRN, that is,
each of these phenotypes would be connected to itself by the map F, e.g. x∗ = F(x∗,u).
When these steady states (x∗) are also resilient to perturbations, that is, if they return
back to the steady state after being kicked away by state variations either of intrinsic or
external origin, we refer to them as attractors; and the theory states that these correspond
to the observable phenotypes or cell types [33]. In formal terms, an attractor state is both
stationary (time-invariant) and stable [40]. All other states are either unstable or form
part of transitory trajectories channeled towards one of these attractor states. From a
geometric point of view, attractors represent regions in the state space toward which the
system trajectories are channeled to due to dynamic constraints imposed by the GRN
(see [41] for a through and intuitive explanation).

In the last two decades, researchers in the area of systems biology have witnessed the
great success of GRN dynamical models as integrative and explanatory frameworks for
specific developmental processes. Available experimental techniques in molecular biology
enable the physical characterization of regulatory interactions, and from these it is possible
to postulate experimentally grounded GRN models which translate to mapping functions
F in a dynamical model. The study of the resulting GRNs of specific real developmental
processes has shown that the emergent attractor states of the models are indeed consistent
with the observable cell type phenotypes (expression configurations or profiles) in both
wild-type and mutant backgrounds (see, for example: [35, 36, 42–44]). Experimental evi-
dence supporting the hypothesis of cell fates as high-dimensional attractors has also been
presented [31, 32]. The role of experimentally controllable parameters in differentiation
and cell-fate decision events is also commonly studied [45–48]. Thus, it seems that the
postulation of experimentally grounded GRN dynamical models, their qualitative anal-
ysis and dynamical characterization in terms of control parameters, and the validation
of predicted attractors against experimental observations has become a well-established,
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successful framework for the study of developmental dynamics [49] (Figure 1a-b).

Extending GRN to EL models

The qualitative analysis of the dynamics of GRN models is perfectly suited for the study
of the specification of cell fates as a result of the constrains imposed by the associated
GRN. This conventional analysis includes the identification and local characterization of
attractor states and the comparison of these predicted cell types configurations with the
ones that are actually observed in the corresponding biological system. If one is interested
in studying the potential transition events among the already characterized stable cellular
phenotypes, however, several difficulties arise. Standard analysis of dynamical systems,
which focuses on the existence and local properties of a given attractor, fail to capture the
main problem which is concerned with the relative properties of the different attractors
[28]. In deterministic GRN models, given certain values for the related control parameters,
the system under study always converges to a single attractor if initialized from the same
state, and once it attains such steady-state it remains there indefinitely. In contrast,
during a developmental process, cells change from one stable cell configuration to another
one in specific temporal and spatial or morphogenic patterns. Thus, we need additional
formalisms in order to explore questions regarding how cells in the course of differentiation
decide between one of the available given attractors; or the order in which the system
converges to the different attractors, given an initial condition; and to predict how these
mechanisms can be altered by external control.

Modeling Goals

The need for extending GRN dynamical models beyond standard local analysis is related
with the interest in addressing the following – and similar – questions. Conceptually, given
an experimentally determined GRN, how can we study and predict both specific “normal”
and altered cellular differentiation events or morphogenic patterns? Is it possible to con-
trol the fate of differentiation events through well-defined stimuli? Can we deliberately
cause altered morphogenic patterns by means of either genetic or environmental pertur-
bations? Or formally, given a specific dynamical mapping x(t + δt) = F(x(t),u, δt), and
its associated state space, how can we study the conditions under which a transition event
occurs among the attractor states x∗? Is there a reproducible pattern of transitions? Are
we able to alter the observed pattern through specific external control perturbations u?
To what extent are the observed temporal or spatial morphogenetic patterns emergent
consequences of the GRNs? The extension of GRN dynamical models and their analysis
in order to address these and similar questions has shown to be a fruitful area of research
in recent years [23,25,28,50–54]. The conceptual basis for most of these efforts is the EL.

In the following sections we describe some of the different approaches that have been
proposed recently in order to tackle the formulated questions. We start from the simplest
deterministic approaches, which primary goal is to derive an explicit landscape (poten-
tial) function from the associated gene regulatory circuits. Then we focus on probabilistic
approaches: these have shown to be the most appropriate framework to extend GRN dy-
namical models. Within the stochastic approaches, we distinguish those which attempt to
derive an explicit probabilistic landscape from those that are concerned with the transition
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probabilities between attractors and the temporal evolution of the probability distribution
over the cellular states. We give special attention to the kind of biological questions that
may be better addressed by the different approaches reviewed here.

Deterministic EL Models From Genetic Circuits

An Introductory Toy Model

A quite simple auto-activating single-gene circuit, a basic model of cell differentiation
induction, is exposed in [55] as a conceptual tool to discuss some difficulties regarding
Waddington’s EL. In this work, the EL is mathematically described by a potential func-
tion. In dynamical systems theory, besides the state space approach explained briefly
above, there is another way to visualize the dynamics of a system, but applicable only if
the system is simple enough: the potential function [56, 57]. The potential is a function
V (x) which (in one-dimensional systems) fulfills the relation given by:

dx

dt
= f(x) = −dV (x)

dx
, (2)

i.e. f(x) is the negative derivative of the potential, which can be found by direct
integration:

V (x) = −
∫
f(x)dx. (3)

Such a function defines an attractor landscape for the given dynamical system, and its
plot graphically represents the dynamics of the system (Figure 2). Specifically, minima of
the potential correspond to fixed-point attractors (e.g. cell types), and maxima correspond
to unstable fixed-points. The motion, i.e. the state trajectories are given by the gradient
lines (the lines of steepest descent of the potential). The trajectories are attracted by the
minima of the potential. This corresponds to an intuitive, direct derivation of the EL: a
“height” value is associated to each of the points in the state-space in a way that those
regions corresponding to attractors (cell types) will have a lower value than that of the
other transitory states (Figure 2c). Conceptually, the rolling ball of Waddington’s EL
will represent the state of a differentiating cell moving from higher to lower regions in
state space. Thus, the calculated heights of the different attractors are expected to reflect
their developmental potential in a hierarchical way: the lower height the lower potential
for differentiation. All one-dimensional systems have a potential function, but most two-
or higher-dimensional systems do not [57]. This means that one could only apply this
method if the cell is represented by a single-gene (single variable) circuit. Furthermore,
note that here the EL plays the role of a “toy” model useful in conceptual discussions, a
role quite relevant (see [55]) but similar to that of the original metaphorical proposal of
Waddington. In this review we devote more attention to the application of EL models to
real specific developmental processes with explanatory and predictive purposes. A more
“realistic” sub-network model incorporating several transcription factors in a modular
structure would probably be necessary in such cases. The application of the integration-
based potential function approach, however, cannot be applied to cases with a higher
number of genes. Also one should be cautious when postulating the existence of a potential
for living systems in strict sense: a cell is an open non-equilibrium thermodynamical
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system, and its dynamics in general does not follow a gradient (since the transition rate
between two given attractor states is not path-independent) [28, 40]. For this reason
authors use the term “quasi-potential” when speaking about cellular dynamics from a
system-dynamics point of view (see below). In many cases, in continuous-time models of
GRNs the dynamics is given by more general types of autonomous differential equations
(DEs) that cannot be derived from a potential function. The time evolution of the cell
state x(t) is commonly modeled by the system of DEs:

dxi(t)

dt
= Fi(x1, x2, ..., xf ,u), (4)

where i = 1, 2, ..., n for a GRN of n genes. A dynamics defined by such a general DE
is a special form of the map in equation (1).

A Deterministic Model of Generic Cell Fate Specification

In the past few years, it has been proposed that small gene circuits with a specific topology
drive cell-fate decision at branch points of cell development [22]. One of these circuits,
which has been extensively studied both experimentally and theoretically, is that in which
the component genes have both cross-inhibitory and self-activating interactions [45,58,59].
Bhattacharya and collaborators recently proposed a numerical approach to derive a deter-
ministic path-integral “quasi-potential” from this two-gene regulatory circuit as a general
model of cell fate specification [60]. As mentioned in the previous section, the number of
cases where it is possible to derive an analytical potential function is in fact very reduced:
in general, the functions F in the continuous-time model for cellular dynamics (equation
(4)) are nonlinear, and cannot be analytically integrated. In order to derive a function
with similar analytical properties than the potential function, the authors proposed a
computational-based strategy. They defined a quantity Uq that changes incrementally
along a trajectory in state space. According to the definition of a potential function
(equation (3)), the change of such a quantity 4Uq for positive time increments is always
negative along a trajectory. This ensures that trajectories flow downhill, and that the
attractors of the system would correspond to local minima where the change in 4Uq = 0.
They termed the quantity (Uq) as “quasi-potential” , and calculated its overall change
by integrating numerically the change (4Uq) along trajectories originating from differ-
ent points in the phase space. The quasi-potential surface is then drawn graphically by
interpolation of trajectories (see [60] for details). Among the principal contributions of
this work, according to the authors, are the applicability of their approach to systems for
which an analytical potential function cannot be derived as well as to high-dimensional
GRNs. Although simple and intuitive, this computational approach suffers from several
important limitations. The proposed quasi-potential is minimized along a trajectory by
construction. It is not clear what information regarding the system can be obtained from
this mapping which is not already attainable through the characterization of the 2-D
phase space using standard analysis techniques from the qualitative theory of nonlinear
dynamics [56, 57]. On the other hand, if one considers a gene regulatory module whose
typical number of composing genes range from 10 to 20 – but may contain more than 50
genes (see below) – even if theoretically possible, it is impractical to apply to these higher-
dimensional systems either the proposed numerical integration approach or the proposed
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methodology for drawing the quasi-potential surface. For these and related reasons, the
proposed deterministic “quasi-potential” has been criticized; for example, Zhou and col-
laborators noted that it does not represent either Lyapunov stability or transition rates
among different attractors [28]. Consequently, even when a graphical EL is effectively
drawn, the general questions raised in the previous section cannot be addressed using this
approach.

Stochastic EL Models from Boolean GRNs

The first computational model envisioned for the simulation and analysis of the dynamic
behavior of GRNs was the Boolean Network (BN) model [10,11]. Such approach has been
extended to model various developmental processes in the context of the EL [25, 50, 51,
61,62]. A BN models a dynamical system assuming both discrete time and discrete state.
This is expressed formally with the mapping:

xi(t+ 1) = Fi(x1(t), x2(t), ..., xf (t)), (5)

where the set of functions Fi are logical prepositions expressing the relationship be-
tween the genes that share regulatory interactions with the gene i, and where the state
variables xi(t) can take the discrete values 1 or 0 indicating whether the gene i is expressed
or not at a certain time t, respectively. An experimentally grounded Boolean GRN model
is then completely specified by the set of genes proposed to be involved in the process of
interest and the associated set of logical functions derived from experimental data [24].
A dynamics defined by such a mapping is a special form of the map in equation (1).

Attractor Transition Probability Approach to Explore the EL

In a deterministic framework once a cell state corresponds to an attractor, it will remain
there indefinitely. The set of conditions that lead to each attractor comprise the attract-
ing basin. Under stochastic fluctuations, the borders of attractor regions in state space
may be reached and may be crossed, leading to transitions between attractors [63]. Thus,
the implementation of an stochastic dynamical model opens the opportunity to study
signal-independent transitions among attractors. There are several approaches to include
probabilities in dynamical models. One approach is based on the idea of introducing tran-
sition probabilities. As discussed above, when studying cellular developmental dynamics,
the transitions of interest are those among attractor states. Can these transitions be
studied in terms of probabilities? The answer to this question is positive, since Boolean
GRN can be extended in order to include stochasticity and then transition probabilities
among attractors can be estimated. Several ways have been proposed to include stochas-
ticity in a Boolean GRN model [64]. One way is the so-called stochasticity in nodes (SIN)
model. Here, a constant probability of error ξ is introduced for the deterministic Boolean
functions. In other words, at each time step, each gene “disobeys” its Boolean function
with probability ξ. Formally:

Pxi(t+1)[Fi(xregi
(t))] = 1− ξ,

Pxi(t+1)[1− Fi(xregi
(t))] = ξ.

(6)
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The probability that the value of the now random variable xi(t+ 1) is determined or
not by its associated logical function Fi(xregi

(t)) is 1− ξ or ξ, respectively.
Alvarez-Buylla and collaborators used this extended BN model to explore the EL

associated with an experimentally grounded GRN [50]. In a BN model the set of possible
states (or phenotypes) is finite. Specifically, the state space of a Boolean GRN with n
genes has a size of 2n and is composed by the set of all possible binary vectors of length n
(see Figure 3a). Thus, by simulating a stochastic one-step transition starting from each
of the possible states a large number of times it is possible to estimate the probability
of transition from an attractor i to an attractor j as the frequency of times the states
belonging to the basin of the attractor i were mapped into a state within the basin of the
attractor j. In [50], the authors followed this simulation approach to estimate a transition
probability matrix Π with components:

πij = P (At+1 = j|At = i), (7)

representing the probability that an attractor j is reached from an attractor i (Figure
3b). Once the set of attractors is known and the transition probability matrix is estimated,
it is straightforward to implement a discrete time Markov chain model (DTMC) and obtain
a dynamic equation for the probability distribution [65]. Indeed:

PA(t+ 1) = ΠPA(t), (8)

where PA(t) is the probability distribution over the attractors at time t, and Π is
the transition probability matrix previously estimated. This equation can be iterated to
simulate the temporal evolution of the probability distribution over the attractors starting
from a biologically meaningful initial distribution. The extension of a Boolean GRN in
order to apply this approach is quite simple and intuitive; however, there is a limitation
that impedes its general applicability: as the size of the GRN grows, it is not possible to
exhaustively characterize the attractor’s landscape associated with the GRN in terms of
the emergent attractors and its corresponding basins of attraction. If the dynamics of the
Boolean GRN is not exhaustively characterized, the corresponding transition probabilities
among attractors cannot be estimated using the proposed approach.

EL Exploration in Flower Morphogenesis

Alvarez-Buylla and collaborators applied the previous approach to study the role of
stochastic perturbations of the GRN underlying floral organ primordial cell fates in
the observed robust temporal morphogenetic pattern observed in most flowering plant
species [50]. In flowering plants, a floral meristem is sequentially partitioned into four
regions from which the floral organ primordia are formed and eventually give rise to
sepals in the outermost whorl, then to petals in the second whorl, stamens in the third,
and carpels in the fourth whorl in the central part of the flower. This spatiotemporal
pattern is widely conserved among angiosperms. Can the temporal pattern of cell-fate
attainment be explained by the interplay of stochastic perturbations and the constraints
imposed by a nonlinear GRN? Starting from the previously characterized Boolean GRN
of organ identity genes in the A. thaliana flower [35], and applying the stochastic ap-
proach described above, the authors showed that the most probable order in which the
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attractors are attained, is in fact, consistent with the temporal sequence in which the spec-
ification of corresponding cellular phenotypes are observed in-vivo. The model provided
then a novel explanation for the emergence and robustness of the ubiquitous temporal
pattern of floral organ specification, and also allowed predictions on the population dy-
namics of cells with different genetic configurations during development [50]. Note that
this approach constitutes a landscape-independent implementation of an EL model which
successfully addressed an specific biological question; it also constitutes a new approach
to understanding a morphogenic process. As seen in this example, it is important to stress
that, through the calculation of transition probabilities among attractors, it is possible to
explore the EL associated with a GRN independently of an explicit derivation of a land-
scape or quasi-potential. In the same paper, the authors also showed that a stochastic
continuous approximation of the GRN under analysis yielded consistent results.

Probabilistic Landscape (quasi-potential) Approach

Han and Wang proposed a different approach in order to extend a BN model. Their goal
was to first estimate the one-step transition probabilities among all the possible points in
the state space and not just among given attractors [51]. For this, they implemented a
variation of the BN that was previously proposed by Li and collaborators [66] and which
has been called the threshold network formalism [67]. In this model, the structure of the
network is formally represented with an adjacency matrix C, whose components cij take
a value from the set [−1, 0, 1] indicating the nature of the interaction – inhibition (-1),
absence (0), or activation (1) – from the gene j to gene i. The dynamic mapping for the
BN takes the form:

xi(t+ 1) =



1,
∑

j

cijxj(t) + bi > 0,

0,
∑

j

cijxj(t) + bi < 0,

xi(t),
∑

j

cijxj(t) + bi = 0,

(9)

where bi is a parameter representing the ground state of the gene i: its state in the
absence of regulation. In words, if the total input of a gene in the network is positive (ac-
tivation), negative (repression) or zero; the future state of the gene will be active, inactive
or unchanged from its previous state. Here, the total input of a gene is the sum of the
previous states of the genes regulating it. The characterization of the entire attractor’s
landscape can then be done through numerical iteration of this dynamical map as long
as the network has a moderate size.Han and Wang extended this deterministic BN model
into a probabilistic framework as follows. If the interest is focused on the computation
of the probability of transition from one phenotype (state) to another phenotype for each
of the 2n possible phenotypes in state space, then it is necessary to introduce a transi-
tion probability matrix with the probability of all possible transitions; this calculation
is practically impossible. In order to work this limitation, Han and Wang introduced a
simplification: they assumed that the one-step transition probability of one phenotype to
another can be expressed as the product of the probability of each gene in the network
being activated or not given the phenotype of the network in the previous time. Formally:
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πkj = P (x(t+ 1) = k|x(t) = j) =
n∏

i=1

P (xi(t+ 1)|x(t) = j), (10)

where j and k represent two different phenotypes and can take values from [1, ..., 2n]; n is
the number of genes in the network. The factorized transition probabilities are calculated
by inserting a nonzero regulatory input (

∑n
j=1 cijxj(t) + bi(t) 6= 0) as the argument of a

sigmoidal function whose range spans from 0 to 1, which is to say:

P (xi(t+ 1) = 1|x(t) = j) =
1

2
± 1

2
tanh

[
µ

n∑
j=1

cijxj + bi

]
. (11)

In the case of no input (i.e.
∑n

j=1 cijxj(t) + bi = 0) a small-valued parameter d is intro-
duced:

P (xi(t+ 1) = xi(t)|x(t) = j) = 1− d.

In words, the probability that a gene i will be on (1) at the future time t + 1 will
be closer to one as long as its total input at the previous time t is high. Similarly, the
probability of being off (0) at the future time will be closer to 1 as long as the regulatory
input is low (see Figure 3c). On the other hand, if there is no input to the gene, the
probability of no change from its previous state is close to 1, and the closeness depends
on the parameter d, a small number representing self-degradation. These rules ensure
that the state of a gene will flip only if its total input is large enough.

After having calculated these probabilities, the general idea is then to use this infor-
mation to obtain an appropriate “height” measure for each of the 2n states. With this
in mind, the interest is first in calculating a steady-state probability distribution PSS(x).
This stationary probability distribution is analogous to stationary configurations in the
deterministic case; however, in the stochastic framework what keeps invariant in time is
not the state of the system but the probability of being in any particular state. In other
words, when this stationary distribution is reached, the probability of observing a cell in a
particular phenotype does not change. Intuitively, one would expect that attractors would
have a higher probability of being reached than transitory states. Thus, from a landscape
perspective, the potency of differentiation and height should be inversely related with
the probability. The approach that has been followed is to associate this PSS(x) with a
height value. Wang has proposed that the probability distribution for a particular state
P (xi) = exp[U(xi)], and from this expression then U(xi) = − lnP (xi), where i = 1, ..., 2n.
This function U has been termed the (probabilistic) quasi-potential [26,54,68]. The asso-
ciation between such a “quasi-potential” and the steady-state probability is still an open
research area (see below) [28]. The key point which has been championed by Wang and
coworkers is that, although there is (in general) no potential function directly obtain-
able from the deterministic equations for a network, a generalized potential (or “quasi-
potential”) function can be constructed from the probabilistic description. This general-
ized potential function is inversely related to the steady-state probability [51,69,70]. For
the case of the extended BN model, once the transition matrix is calculated, the informa-
tion of the steady-state probabilities can be obtained by solving a discrete set of master
equations (ME) for the network [51]. The so-called ME is a dynamical equation for the
temporal evolution of a probability distribution [71]. In discrete form it is written:
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∂

∂t
P (xi) =

∑
j

WjiP (xj)−
∑

j

WijP (xi), (12)

where we used Wij to denote the transition probabilities resulting from (11). The
difference between this dynamical equation and the one discussed in the previous section is
that here the time variable is treated as a continuous one. It is in general quite complicated
to analyze MEs. In the case of this model, one ME is obtained for each of the 2n states.
Han and Wang conveniently analyzed the whole set of equations following a numerical
(iterative) method starting from uniform initial conditions Pxi

(t0) = 1/2n and iterating
until a stationary distribution is reached [51].

From Probabilistic Landscapes to Putative Cancer Therapies

The previous approach has been applied to two specific processes: cell cycle regulation
[51], and DNA damage response [25]. In the former case, the focus was on the global
robustness properties of the network. Here we discuss the biological implications derived
from the latter case. Choi and collaborators applied this BN probabilistic landscape
approach to study state transition in a simplified network of the p53 tumor suppressor
protein. The analysis of this network using the probabilistic landscape approach allowed
the systematic search for combinatorial therapeutic treatments in cancer [72]. Given the
network, key nodes and interactions that control p53 dynamics and the cellular response
to DNA damage were identified by conducting single node and link mutation simulations;
as a result, one network component, the molecule Wip1, was identified as one of the
critical nodes. The flexibility of the BN model also enabled the specification of a MCF7
cancer cell by fixing the state of three nodes of the “normal” network in the course of
simulations (for details, see [25, 72]). Having specified two different network models, it
was possible to compare the dynamics and associated quasi-potential of both normal cells
and cancer cells in the absence and presence of DNA damage. Previous experimental
observations indicated that prolonged p53 activity induces senescence or cell death; this
behavior was shown to result from the inhibition of the interaction between the molecules
Mdm2 and p53 caused by the action of the small molecule Nutlin-3 [73]. Using the model,
Choi and collaborators predicted that neither Wip1 nor Mdm2-p53 interaction mutation
alone were sufficient to induce cell death for MCF7 cancer cells in the presence of DNA
damage; furthermore, the model provided a mechanistic explanation for this behavior:
the effect of each of this perturbations alone is not enough to move the system out of an
specific attractor’s basin. However, the simultaneous application of the two perturbations
drives cancer cells to cell death or cell senescence attractors. These theoretical predictions
were then validated using single-cell imaging experiments [25, 72]. This study illustrated
in an elegant way how cancer therapeutic strategies can be studied in mechanistic terms
using a computational EL model. It must be pointed out that this result opened the door
to the rational design of system dynamics cancer therapeutical techniques, in contrast to
trial and error and reductionist approaches that have dominated the biomedical field.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2014. ; https://doi.org/10.1101/004192doi: bioRxiv preprint 

https://doi.org/10.1101/004192
http://creativecommons.org/licenses/by-nc-nd/4.0/


13

Stochastic EL Models from Continuous GRNs

Like the BN model, the general system of DEs can be extended in order to include stochas-
ticity (in order to approach the modeling formalism to actual biological circunstances).
The most intuitive extension considers the introduction of driving stochastic forces; in
this approach, equation (4) is extended as:

d xi(t)

dt
= Fi(x,u) + ξi(t), (13)

where ξi(t) is the ith component of a driving stochastic force with zero mean value
(i.e. < ξi(t) >= 0). This description, the so-called Langevin equation, is frequently used
to model cellular dynamics under stochastic fluctuations [23, 53, 54, 74]. Although intu-
itively simple at first sight, the consideration of a randomly varying quantity affecting the
dynamics of the system implies several conceptual issues that should be considered with
care. Any single cell will follow an erratic trajectory in state space, and its developmen-
tal dynamics will make each realization different even if it starts from exactly the same
initial condition. Under this stochastic scenario, two equivalent perspectives to study the
stochastic dynamics can be considered. On the one hand, the analysis could be focused
on trajectories described by Langevin type equations, which describe the developmental
dynamics of a single cell (Figure 4a). On the other hand, as the stochastic forces ξi(t) vary
from cell to cell in an ensemble (population) of cells, the state x(t) will also vary from cell
to cell at any given time. One therefore may ask for the probability P (x, t) to find the
state of a cell in a given state interval of the state space or, equivalently, for the frequency
of cells in the ensemble whose states are in that state interval. The focus then shifts
from the dynamics of the state of one cell to the dynamics of the distribution over the
states in a given ensemble of cells. Indeed, an equation for the temporal evolution of this
distribution P (x, t) can be constructed, the so-called Fokker-Plank equation (FPE) [75]:

∂P

∂t
= −

∑
i

∂

∂xi

[Ai(x)P ] +
1

2

∑
i,j

Qi,j(x)
∂2

∂xi∂xj

P. (14)

In mathematical terms, the corresponding process is known as a diffusion process, a
mathematical model for stochastic phenomena evolving in continuous time [76, 77]; the
vector A(x) is known as the drift vector and the matrix Q(x) as the diffusion matrix. The
FPE describes the change of the probability distribution of a cell state during the course of
time (Figure 4b). Conceptually, the latter modeling perspective can be interpreted as the
temporal evolution of a cloud (ensemble) of cells diffusing across the state space following
both attracting and stochastic forces [78]. The stochastic nature of the trajectories also
allows qualitatively richer dynamics in state space. Specifically, if one is interested in
the developmental connection between one specific initial phenotype and one specific
final phenotype – for example two different given attractors – there is no longer a single
possible path connecting them. Instead, the same final phenotype can be reached following
different paths in state space (Figure 4c). This situation raises yet another interesting
problem: are all the paths equally probable? Is there a dominant path for the transition?
Physicists have proposed the so-called path-integral formalism in order to tackle these
and similar questions [79]. Specifically, one may want to answer what is the probability
of starting from an initial phenotype at a certain time and ending in another phenotype
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at a future time. The conceptual basis of this strategy is based on the idea of calculating
an average trajectory (e.g. integrating over the possible paths). The calculated averaged
path corresponds to the dominant path that the underlying process follows (Figure 4c).

To summarize this section: when a stochastic component with specific properties is
introduced in a continuous-time dynamical model of developmental dynamics the behav-
ior of the system can be studied from different, mathematically equivalent perspectives;
one of the perspectives could be more appropriate than the others given the biological
question of interest; the different perspectives complement each other, nonetheless. It
is important to note that the three approaches mentioned above (e.g. Langevin, FPE
and path-integral) although just recently introduced in systems biology [53, 54, 80]; are
actually well established tools in nonequilibrium statistical mechanics and the stochastic
approach to complex systems [71,76,81].

A Diffusion Approach to Study the EL

The three perspectives to study continuous-time stochastic models of developmental dy-
namics, briefly described in the previous subsection and represented in Figure 4, have been
applied to the understanding of actual developmental cases from an EL point of view. Vil-
larreal and collaborators recently proposed a procedure to construct a probabilistic EL
by calculating the probability distribution of stable gene expression configurations arising
from the topology of a general N-node GRN [53]. In this approach, the focus of study
is the temporal evolution of the distribution over state space (Figure 4b) starting from
a position centered on a specific attractor configuration. In other words, the proposed
framework predicts how a cloud of cells distributed over a particular attractor will dif-
fuse in time to the neighboring regions (attractors) in state space, given a specific GRN
(which constraints the state trajectories). The method has been applied to the case of
early flower morphogenesis (see subsection above); and its behavior, in both wild-type
and mutant conditions, was in agreement with the temporal developmental pattern of
floral organs attainment in A. thaliana and most flowering species [53]. This implemen-
tation, although consistent with the conceptual basis of the EL, does not depend on an
underlying (quasi)-potential function and uncovers the interplay of nonlinear constraints
and stochastic forces driving developmental dynamics.

The existence of a potential or “potential-like” function associated with diffusive sys-
tems, on the other hand, has been an intensive focus of study in theoretical physics and
applied mathematics. Ao and co-workers have published important contributions on this
regard [82–85]. Particularly, Ao has proposed a transformation that allows the definition
of a function U(x) which succesfully acquires the dynamical meaning of a potential func-
tion. The corresponding approach has been applied successfully to study several biological
systems such as the phage lambda life cycle [86], and the carcinogenesis processes, [87,88]
from a landscape perspective. This transformation has also been discussed recently in the
context of general methods for the decomposition of multivariate continuous mappings
F (x) and their associated quasi-potentials [28]. These, as well as some associated prob-
lems, are still an open area of theoretical research [28,89]. From the available decomposi-
tion methods, the one that has been applied the most to specific developmental processes
is the potential landscape and flux framework proposed by Wang and co-workers [90]. In
this framework, the continuous dynamical mapping F (x) is decomposed into a gradient
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part and a flux, curl part (for details, see [91]). This approach has been applied, for ex-
ample, to the study of the yeast cell cycle [69,92]; a circadian oscillator [93]; the bi-potent
stem cell differentiation process [54]; and neural differentiation [52]. More recently, this
method has been applied in the context of the differentiation and reprogramming of a
human stem cell network [23]. Here we further discuss the latter as a diffusion landscape
approach to study stem cell differentiation.

Cell Fate Decisions in the Human Stem Cell Landscape

Recently, Li and Wang adopted the diffusion approach to study a previously published [94]
human stem cell developmental network composed of 52 genes [23]. In this study they
showed how the three perspectives represented in Figure 4 can complement each other in
the study of cellular differentiation: (1) through the numerical analysis of the Langevin-
like equations for the complete network they acquired a landscape directly from the statis-
tics of the trajectories of the system; (2) by means of approximations they studied the
evolution of the probabilistic distribution and obtained an steady-state distribution; and
(3) they calculated the dominant paths following a path-integral formalism [80]; the ob-
tained paths were interpreted as the biological paths for differentiation and reprogram-
ming [23]. As Li and Wang showed, from the results of the three perspectives it is possible
to quantitatively describe the underlying landscape. One then may be interested in how
the landscape changes in response to specific perturbations. A general problem of concern
in stem cell research is why do the known reprogramming strategies, which commonly con-
sist on combining perturbations to specific transcription factors, actually work. Li and
Wang systematically tested which genes and regulatory interactions affect the most the
quantitative properties of the landscape (e.g. height values and transition rates) when
perturbed. Interestingly, several biological observations associated with the manipulation
of the so-called Yamanaka factors (Oct3/4, Sox2, Klf4, c-Myc) - the transcription factors
considered the core regulators in the induction of pluripotency – were consistent with the
observed modeling results; for example, simulated knockdown perturbations to these fac-
tors consistently increased (lowered) the probability (height) of the differentiation state.
On the other hand, the path-integral formalism allowed them to show how specific per-
turbations to these factors cause the differentiation process to be easier or harder in terms
of the time spent during transitions and the characteristics of the differentiation paths.
In other words, this study presented an important contribution towards the mechanis-
tic, dynamical explanation of the characterized reprogramming strategies in terms of the
properties of the underlying EL.

Concluding Remarks

For the practical implementation of EL models W. Wang recently proposed the following
overall four-steps strategy [72]: (1) establishment of a GRN; (2) characterization of the
attractor (and quasi-potential) landscape through dynamical modeling; (3) computational
prediction of cell state responses to specific perturbations; (4) analysis of the prevailing
paths of cell fate change. The first step (1) is already a well-established research problem
that includes expert curation of experimental data and/or statistical inference. In this
review we focused on the second step and presented examples of how steps (3) and (4)
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can be achieved once a EL models is effectively constructed. As shown here, there are
several ways to implement an EL model starting from a GRN. The specific choice should
be made considering the properties of the network and the associated questions of inter-
est. The methodologies reviewed here are mostly well-suited to approach the problem of
differentiation at the cellular level in a mechanistic setting. The observed behavior re-
sults from constraints given by the joint effect of nonlinear regulatory interactions and the
inherent stochasticity; however, the actual physical implementation of these generic mech-
anisms in a multicellular system would imply additional sources of constraint. Tissue-level
patterning mechanisms such as cell-cell interactions; chemical signaling; cellular growth,
proliferation, and senescence; inevitably impose physical limitations in terms of mechani-
cal forces which in turn affect cellular behavior. This would thus imply non-homogenous
GRNs with contrasting additional chemical and physical constraints. Given this fact, the
next logical step to extend EL and associated dynamical models would be to account
for these physical processes in an attempt to understand how cellular decisions occur
during tissue patterning and not just in cell cultures. Although some progress has been
presented in this direction [95, 96], the problem certainly remains open. From a theo-
retical perspective, a further challenge would be to carefully evaluate the assumptions
implicit in the EL models. For example, the adoption of the diffusive perspective briefly
explained above – which is often taken as a standard in stem cell systems biology – im-
plicitly assumes certain properties about the forces driving the temporal evolution of the
system [81]. Do these conditions are universally met by developmental systems? Recent
interesting work is starting to suggest the biological relevance of additional constraints
such as state-dependent fluctuations [97,98].

Overall, the application of the methodologies discussed in this review to specific de-
velopmental processes has shown the practical relevance of dynamical models consistent
with the conceptual basis of the EL and the fundamental role of the constraints imposed
by the GRN interactions. Both approaches, landscape-(in)dependent, are useful to an-
swer specific questions and can complement each other. So far, EL models have shown to
be an adequate framework to understanding stem cell differentiation and reprogramming
events in mechanistic terms; and are also starting to show promise as the basis for rational
cancer therapeutic strategies.
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Figure Legends

Figure 1. From experimental data on gene function and interactions to a dy-
namic gene regulatory network and epigenetic landscape model.
(a) The architecture of a GRN is proposed given available experimental molecular data;
the state of the network is specified as a gene expression profile or gene on/off (1/0)
configuration for the case of continuous or discrete state models, respectively. Boolean or
differential equations are used, respectively. (b) The complete set of possible states define
a continuous (above) or discrete (below) state space, where each state corresponds to a
point; changes in gene expression during developmental dynamics manifest as trajectories
in this abstract space (here depicted as arrows). (c) In an intuitive characterization of an
EL, an ”elevation” value U(x) is associated to each network state x. The association of
”elevation” values to network states, or more generally, the quantitative characterization
of their relative stability is the ultimate goal of EL modeling efforts. For illustrative pur-
poses, the EL is depicted here as a hypothetical low-dimensional projection.
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Figure 2. The derivation of a potential function to visualize the epigenetic
landscape and the dynamics of a system.
(a) The causal connection between the state of the system (an auto-activating gene cir-
cuit) at a certain time and its state at a later time is modeled by a differential equation.
(b) Attractors in rate-balance analysis. The blue dotted line and the red curve repre-
sent respectively a linear degradation rate, and a nonlinear synthesis rate for the circuit’s
gene; the restrictions imposed by the circuit to the systems dynamics are met when both
rates are balanced. The states that meet this balanced condition are stationary, and if
stable (filled circles), are denoted as attractor states x∗. (c) The potential function. The
attractor states x∗ lie at the bottoms of valleys (minima). The trajectories starting from
unstable, transitory states are attracted by the minima of the potential. The relative sta-
bility of the left (right) attractor with respect to the other is lower (higher) as quantified
by the lower (higher) barrier height between them.

Figure 3. Stochastic epigenetic landscape models from Boolean dynamics.
(a) A simple mutual-inhibition circuit is modeled as a Boolean network: discrete temporal
evolution and binary (0,1) state variable. The discrete state space corresponds to the set
of binary vectors (here 4 possible states) and is partitioned by two basins of attraction.
(b) There are 4(22) possible transitions among the two attractors. A 2 × 2 transition
probability matrix specifies the probability of each possible transition. (c) Han and Wang
proposed the use of a sigmoidal function of the total regulatory input (Ri) to calculate
the probability of a one-step state transition of one gene i [51]. A specific value of the
function (vertical red dotted line) gives the probability of the gene i becoming active
(left) or inactive (right), given its regulatory input (Ri) in the current time. (d) There
are 16(22 × 22) possible transitions among the 4(22) possible states. A 22 × 22 transition
probability matrix specifies the probability of each possible transition.

Figure 4. Differente approaches to study continuous-time stochastic mod-
els of the epigenetic landscape and developmental dynamics.
(a) A continuous-time stochastic (diffusion) model is driven by a drift (deterministic)
component F and an stochastic (Noise) force. The graph shows 10 different realizations
of the stochastic dynamics of the same, single cell starting form exactly the same initial
condition (red dot). This realizations perspective corresponds to the Langevin equa-
tion description. The right histogram represents an approximation of the corresponding
distribution over the realizations. (b) The picture represents the time evolution of a
hypothetical probability distribution. A population of cells initially presents a narrow
distribution centered at an intermidiate state value: most cells have an intermidiate state
and no individuals show an extreme (low or high) value. As time evolves the shape of the
distribution changes – gets wider – , and the population reaches lower and higher values.
This perspective corresponds to the Fokker-Planck equation description. (c) A cell can
follow different paths (grey dotted lines) to reach a final state xf starting from an initial
state x0. A finer quantitative characterization of the specific transition from state x0 to
state xf in terms of highly probable paths and difficulty of differentiation processes can
be gained by means of calculating a dominant path (red line) for the transition using a
path-integral formalism. For simplicity, the cell state is represented by one variable x in
all three cases.
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