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ABSTRACT

Phylogenetic comparative methods are increasingly used to give new
insight into variation, causes and consequences of trait variation among
species. The foundation of these methods is a suite of models that attempt
to capture evolutionary patterns by extending the Brownmian constant
variance model. However, the parameters of these models have been
hypothesised to be biased and only asymptotically behave in a statistically
predictable way as datasets become large. This does not seem to be widely
appreciated. We show that a commonly used model in evolutionary
biology (the Ornstein-Uhlenbeck model) is biased over a wide range of
conditions. Many studies fitting this model use datasets that are small and
prone to substantial biases. Our results suggest that simulating fitted
models and comparing with empirical results is critical when fitting OU
and other extensions of the Brownian model.

INTRODUCTION

The outcomes of evolutionary processes acting over millions of years can be seen in the
distributions and covariances of species traits at the tips of phylogenetic trees. Such processes
can be modeled using phylogenetic comparative methods (PCMs). These approaches have been
used, for example, to model niche conservatism (Wiens et al. 2010), infer potential rates of
species responses to climate change (Quintero and Wiens 2013), test the role of ecological niche
as a driver of morphological evolution (Pienaar et al. 2013), compare rates of evolution of
species traits (Claramunt et al. 2012) and test for constraints in adaptive radiations (Blackburn et
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al. 2013). PCMs are now widely recognized as powerful tools with which to model observed
patterns in species traits and potentially to infer the evolutionary processes that drive them (e.g.,
Freckleton 2009; Nunn 2011; O'Meara 2012; Pennell and Harmon 2013). Despite these advances,
the properties of some of the most widely used PCMs are poorly understood leading to the
potential for inappropriate use and misinterpretation of results.

The majority of PCMs use an explicit evolutionary model to characterize trait evolution
(Freckleton et al. 2011). A model can be fit using statistical methods (typically maximum
likelihood) and model parameters interrogated to test ideas from evolutionary theory. Most
model-based methods for characterizing trait evolution are based on the Brownian constant
variance model (for exceptions see Price et al. 1997; Harvey and Rambaut 2000; Freckleton and
Harvey 2006). The Brownian model, first applied in a phylogenetic context by Cavalli-Sforza
and Edwards (1967) and to across-species data by Felsenstein (1973), is a simple model of trait
evolution in which trait variance accrues as a linear function of time, and makes the prediction
that traits of closely-related species are more similar than those of distantly-related ones. The
Brownian model has been modified in various ways to account for a suite of ecological and
evolutionary processes (e.g., Grafen 1989; Hansen 1997; Pagel 1997, 1999). Most of these
involve a transformation of the tree and thereby fitting a model with one or more extra
parameters. These modified Brownian models have become very popular because they fit better,
have attractive biological interpretations, and are implemented in freely available packages (e.g.,
R; R Development Core Team 2013).

The modification of Brownian models to account for non-Brownian processes can be
traced back to Grafen (1989) who introduced a parameter p to account for non-linear scaling of
evolutionary changes. p is a power transformation of node heights in the phylogeny, and is fitted
by maximum likelihood. It is worth noting that Grafen warned explicitly about potential
drawbacks with p. Specifically: (i) the parameter is likely to be biased; (ii) its asymptotic
sampling variance is non-zero; and (iii) values of the parameter should be interpreted cautiously.
Freckleton et al. (2002) showed that p was indeed biased as predicted by Grafen (1989). They
also showed that another parameter, Pagel’s A (Pagel 1997, 1999), also exhibited biases (but that
these were likely to have minimal consequences in analyses using reasonable sample sizes). This
strongly suggests that simulations are required to test the properties of such parameters, and that
as recommended by Grafen (1989) “careless” parameterization of the phylogenetic variance-
covariance matrix should be avoided.

One of the most commonly used Brownian-like models is the Ornstein Uhlenbeck (OU)
model. This is a modification of the Brownian model with an additional parameter o that
measures the strength of return towards a theoretical optimum (Hansen 1997). The popularity of
the OU model has grown exponentially in recent years (Fig. 1), in part because these models are
now easy to implement via packages in R (e.g. ouch, GEIGER and OUwie; Butler and King
2004; Harmon et al. 2008; Beaulieu and O'Meara 2012). OU models have become particularly
prevalent in ecological studies: 652 papers containing the phrases “Ornstein Uhlenbeck” and
“ccology” were published between 2011 and 2013 (Google Scholar search 30™ January 2014).
Additionally, although they are pattern based, fit to an OU model is now being used as evidence
for the action of ecological, or ecologically driven, processes such as phylogenetic niche
conservatism, convergent evolution and stabilizing selection (e.g., Wiens et al. 2010; Christin et
al. 2013; Ingram and Mahler 2013).
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Figure 1 The number of evolutionary biology (closed circles) and ecology (open circles) papers
published between 2005 and 2012 containing the phrase “Ornstein-Uhlenbeck”, as a proportion
of the total number of evolutionary biology or ecology papers published that year.

Here we investigate the OU model because it does not appear to have been subject to a rigorous
critique. The « parameter is very similar to Grafen’s p (along with other parameters in the
literature) in that it is in effect a non-linear transformation of the phylogeny. Consequently, one
might imagine that it shares some of the same statistical properties. Results from Ho & Ané
(2013), indicate that there is the potential for biases in ¢, but the implications for practice (e.g.
likelihood of rejection of alternative models) is unexplored other than to note that tree shape may
play an influence. We present simulations demonstrating the inherent bias in estimating the o
parameter, discuss the intricacies of interpreting OU models biologically, and provide advice for
appropriate use of OU models in comparative analyses. We also show that very small amounts of
measurement error in data can have profound effects on the performance of models. Many of our
findings are applicable to other models of evolution (see Discussion and Supplemental Figs. S6-
S11), but we focus here on the OU model because of the recent increase in publications using the
model and because of the underappreciated ambiguity in the link between pattern and process
when interpreting estimates of the a parameter.
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MATERIALS AND METHODS
Model Outline

According to the Brownian model, a trait X evolves at random at a rate o:

dX(t) = adW (t) eqn (1)
where W(t) is a white noise function and is a random variate drawn from a normal distribution
with mean 0 and variance o°. This model assumes that there is no overall drift in the direction of
evolution (hence the expectation of W(¢) is zero) and that the rate of evolution is constant. The

model has two parameters, o and the state of the root at time zero, X(0). The Brownian model
predicts after a time 7 the variance in trait value X; for species i is:

var(X;) = o?T eqn (2)
and the covariance in traits for species i and j is:
cov(X;, X;) = o%t;; eqn (3)

where #; is the shared evolutionary pathway for species i and j, i.e. the time at which they last
shared a common ancestor. Equations (2) and (3) encapsulate the simplicity of the Brownian
model, namely it predicts that variances accrue as a linear function of time.

The Ornstein-Uhlenbeck (OU) model describes a mean-reverting process and has the
following form, adding an extra term to the Brownian model:

dX(t) = —a(X(t) —w) +odW(t) eqn (4)

The parameter u is a long-term mean, and it is assumed that species evolve around this value. «

is the strength of evolutionary force that returns traits back towards the mean if they evolve away.
The OU model was introduced to population genetics by Lande (1976) to model stabilizing
selection in which the mean was recast as a fitness optimum on an adaptive landscape. The
process operating in comparative data is analogous, although clearly is not stabilizing selection
despite being sometimes referred to as such (see Discussion). This model has two parameters in
addition to those of the Brownian model, o and p.

The OU model predicts that after a time 7 for a species i, the variance in trait value JX; is:
var(X;) =1 —e~2eT eqn (5)
And for a pair of species i and j, the covariance in traits is:
cov(X;, X;) = e~2a(T=tij) (1 — g=2tij) eqn (6)

The variances and covariances predicted by equations (5) and (6) are more complex than those
predicted by the Brownian model. In the light of the results below, some properties of this model
are worth highlighting:

(i) If a is small then evolution is approximately Brownian: If « is small then 1 — e~2%T ~ 2aT,
i.e. traits accrue variance as if evolving according to a Brownian process. The question is
obviously what is a small value of a? Figure 2 provides some guidance on this issue, and see
point (iv) below.
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(i1) If species i and j diverged recently, evolution is approximately Brownian: if two species
diverged recently, then T —¢;; 0 and hence cov(Xi,Xj) ~(1—e %) ~ 2at;j. Thus,
recently diverged species provide little information relevant to estimating non-Brownian
evolution according to an OU process.

(ii1) In the long-term the imprint of history is weakened: if T is large (i.e. evolution proceeds for a
long time), equation (3) predicts that the variance in X; tends to a constant, i.e. because the
expected value of X; is y. Similarly, in equation (4), the covariance between traits tends to a
constant because 7" becomes large relative to ¢;. Consequently for large groups the model implies
that the imprint of history is weak. As a result adding more species to a phylogeny will
contribute only relatively weakly to fitting the model, as the deeper branches within a phylogeny
will contribute little information to estimating the parameters.

Figure 2 gives some numerical examples, chosen to outline the behavior of « in relation
to the above. We show the predicted covariance in traits (equation 6) scaled by the overall
variance (equation 5) plotted against the time since divergence, #; scaled by tree height. Figure 2
highlights that the behavior of « can be classified into three regions. When « is low the model
behaves very much like Brownian motion, with the covariance scaling approximately linearly
with time. Only as the value becomes moderately larger (in this case approaching a value of 0.5),
does the non-Brownian behavior become apparent. Secondly, there is a region of moderate
values in which the model leads to markedly non-Brownian patterns of trait variation (Fig. 2B).
Finally, when « is large the model behaves differently again: in this case, all imprint of history is
lost and the evolution is essentially a rapid burst at the present (Fig. 2C). This will be
indistinguishable from phylogenetically unstructured data.

In terms of statistical model fitting, a feature to highlight is that in Figure 2A and Figure
2C, changing the value of « across large relative ranges at the extremes (0 — 0.5 in Fig. 2A; 10-
50 in Fig. 2C) produces relatively little quantitative change in the model behavior, and it is in the
middle region of parameter space (1 — 5) that the biggest discernable effects occur.

The point of highlighting these aspects of expected behavior is that we believe these
properties need to be understood if we are to build up a full picture of when the model is likely to
be well estimated, as well as to understand the bounds of what can be inferred from real data.
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Figure 2 Scaling of expected trait similarity with time since evolutionary divergence predicted
by the Ornstein-Uhlenbeck model. The covariance between species’ traits values is scaled by the
intra-specific trait variance (i.e. equal to correlation between species’ traits). This is plotted
against the relative time of shared history (time at which species branched from each other,
divided by the total tree height).
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Simulations

We used simulations to explore the statistical properties of a. We simulated phylogenies with 25,
50, 100, 150, 200, 500, or 1000 tips under pure birth, constant-rate Birth-Death (extinction
fractions of 0.25, 0.5 and 0.75), or temporally varying speciation rate (speciation rate modeled as
time from the root raised to the power 0.2, 0.5, 2 and 5) models. We simulated 1000 phylogenies
for each combination of tips and models resulting in 56,000 simulated phylogenies in total. Trees
were simulated using the R package TESS (Hoehna 2013). We then simulated the evolution of a
single trait under a Brownian motion model on each phylogeny using the R package MOTMOT
(Thomas and Freckleton 2011). We estimated o and compared the fit of a Brownian model to
that of an OU model using: (i) a likelihood ratio test with 1 degree of freedom with the
transformPhylo.ML function in MOTMOT; and, (ii) with Bayes factors estimated from a
stepping stone sampling procedure (Xie et al. 2011) implemented in BayesTraits. The marginal
likelihoods of the models were calculated using a stepping stone sampler in which fifty stones
were drawn from a beta distribution with (alpha = 0.4 and beta = 1). Each stone was sampled for
20000 iterations (with the first 5000 iterations discarded). We treated Bayes factors > 2 as
evidence favouring the OU model. We used three alternative sets of priors on a: (i) an
exponential distribution with mean = 1; (ii), an exponential distribution with mean = 10, and (iii)
a uniform distribution bounded at 0 and 20. For all analyses we used a uniform -100 to 100 prior
for 1 and uniform 0 to 100 for o* We also normalized the tree length to prevent the a

parameter of the OU model from interacting with o *.

OU models have not previously been widely applied within a Bayesian framework,
although some packages offer this functionality (e.g. diversitree; FitzJohn 2012) and the choice
of prior has not been fully explored. We present the results from the exponential prior with mean
= 10 in the main text since this is a broad, liberal prior. We provide results derived from a strong
exponential prior with mean = 1 and a bounded uniform prior (range 0-20) as supplementary
material (Figs. S2-S5). We ran the MCMC chains for 1x10° iterations, disregarding the first
1x10* as burn-in. Following burn-in the chains were sampled every 1000 to ensure independence
of each consecutive sample. Multiple independent chains were run for each analysis to ensure
convergence was reached.

We used the same procedure to simulate trait data under a Brownian motion model with
known error. Specifically, we simulated trees under a Yule model with 25, 50, 100, 150, 200,
500, or 1000 tips and added branch length of (i) 1%, (ii) 5% or (iii) 10% of the tree height to the
tips of the simulated trees. We then simulated data under a Brownian model on each tree. We
compared the fit of a Brownian model to that of an OU model (with ML and MCMC stepping
stone sampling as above) using the original trees without the addition of extra branch length to
the tip edges. The expectation is that the OU model should fit the data better than the Brownian
model but the reason for the better fit would be entirely unrelated to any evolutionary process.

Although our focus is on the OU model we also explored three other commonly used
models (k, A, and ; Pagel 1997, 1999) fitted using maximum likelihood using the same
simulated data. These models are designed to test for speciational evolution (k), strength of
phylogenetic signal (A) and accelerating or decelerating evolution (8). The point of these
additional tests is to assess the extent to which parameter behaviors vary across models and the
results are reported in the supplementary material.
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Literature Review

To get an overview of the use of OU models in ecology and evolution, we used Google Scholar
(accessed 21% November 2013) to locate papers published between 2005 (when the R package
ouch was released; Butler and King 2004) and 2013 that contained the terms “Ornstein
Uhlenbeck™ and either “ecology”, or “evolution” and “biology” (the “biology” term was added to
omit physics papers which also use the term “evolution”). We also recorded the total number of
papers containing the terms “ecology”, or “evolution” and “biology” published between 2005
and 2013 and plotted the number of OU papers published each year as a proportion of the total
number of papers published (Fig. 1).

Next we filtered our Google Scholar search results to focus on empirical papers using OU
models (rather than methods papers) published in the following ecology and evolution journals:
The American Naturalist, Ecology Letters, Evolution, Journal of Evolutionary Biology, Nature,
Proceedings of the National Academy of Sciences, USA, Proceedings of the Royal Society B:
Biological Sciences, and Science. For each of these papers we recorded the number of species in
the analysis, the study group (amphibians, birds, fish, mammals, reptiles, invertebrates or plants),
the statistical package or specific R package used to fit the models, and the reason the authors
state for using an OU model (ancestral state reconstructions, detecting convergent evolution,
controlling for phylogeny, selecting a model of trait evolution, or other). Where papers included
multiple analyses using different numbers of species we used the median number of taxa. Where
papers had multiple study groups, statistics/R packages or reasons for fitting OU models we
counted them in each relevant category. We summarise these results in Figure S1 and the full
dataset is available in Supplemental Table S1 along with the full list of references.

RESULTS
Simulations

Figure 3 shows some examples of profile likelihoods for o generated on different datasets that
were simulated according to a Brownian model. It is clear that the shape of the tree affects the
shape of the likelihood profile. Trees with increasing speciation rates from root to tip (i.e., that
have a lot of recently evolved species) generate very wide, flat likelihood profiles (Fig. 3A). On
the other hand, trees with declining speciation rates from root to tip (Fig. 3B), or generated
according to a Yule process (Fig. 3C), yield more strongly peaked profiles.

In all three cases, there are several features worth noting. First, the profiles are
asymmetric. There is a hard bound at o = 0, and as « becomes large, the rate of decrease in the
likelihood slows. This is because, as shown in Figure 2, as values of a become large, the effects
of changing a on model predictions are increasingly small. It is also notable, that the Maximum
Likelihood estimates of o are, in most cases, between 0 and 1. In Figure 2 it was noted that in
this region of parameter space, the OU model is very difficult to distinguish from Brownian. This,
combined with the asymmetric nature of the profile likelihood is suggestive that estimates of o
are likely to be biased, and that the asymptotic assumptions of likelihood ratio tests on « are
likely to be violated.
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Figure 3 Examples of profile likelihoods for selected simulated datasets. In all cases the ‘true’
value of alpha is 0.
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Figure 4 Rejection rates and estimation of a for different tree sizes and shapes. Rejection rates
(a,c,e) for the OU model at multiple tree sizes for models fitted using ML (circles) and Bayesian
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(diamonds) methods. Estimates of a (b,d.f) based on ML (circles show means and dotted lines
show 95% sampling interval from 1000 trees) and Bayesian (diamonds show means and dotted
lines show 95% sampling interval of the modal value from the posterior distribution from 1000
trees).

The effects of the asymmetric profile likelihoods become clear when calculating Type I
error for the OU model based on ML estimates across a range of tree shapes and sizes (Fig. 4;
see Supplemental Figs. S2 and S3 for results with alternative priors for the Bayesian analyses).
Regardless of tree shape, Type I error rates are unacceptably high when tree size is small (Figs.
4A, 4C and 4E). For some tree shapes (particularly where speciation rates accelerate towards the
present), Type I error remains >0.05 even for trees with 1000 tips. Bayesian estimation is not
subject to bias in the log-likelihood statistic and consistently rejects the OU model. However,
estimates of o are similar regardless of method.

Figure 5 shows the proportion of data sets in which the OU model is favoured over the
Brownian model for data simulated under Brownian motion with error (also see Figs. S4 and S5).
The expectation is that the OU model should fit better because the branch length transformation
partially captures the non-Brownian component (the error). There are two points worth noting.
First, the frequency with which the OU model is favoured increases with tree size for both ML
and Bayesian estimation (Fig. SA). With as little as 5% error, the OU model becomes extremely
difficult to reject, even for trees with just 100 species. This is important for the interpretation of
the OU model. We cannot conclude anything about evolutionary process from a single optimum
OU model unless error is adequately accounted for. Second, for moderate amounts of error (5-
10%), the ML estimates of « are consistently >1 (Fig. 5B). Large values of o are similarly
difficult to interpret because they are indicative that the signal of the past has been overwritten.
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Figure 5 Rejection of BM with measurement error (a) and estimation of o (b). Symbols follow
Figure 4.

11


https://doi.org/10.1101/004036
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/004036; this version posted April 9, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Limits of comparative analyses

The biases reported above are not unique to the OU model. The parameter 6, which tests
for accelerating or decelerating rates of evolution (Pagel 1997, 1999) also suffers from elevated
Type I error and is upwardly biased, favoring models that imply temporally increasing
evolutionary rates (Supplemental Fig. S8). In contrast, although the speciational model (k) has
slightly elevated Type I errors, the parameter estimates are unbiased for the majority of tree sizes
and shapes (Supplemental Fig. S6). As previously shown (Freckleton et al. 2002), the A model is
conservative with low Type I error rates (Supplemental Fig. S7). As with the OU model, the &
models are all strongly favored over Brownian motion when there is error in the species data
(Supplemental Figs. S9-S11).

Literature Review

In total, 3720 papers containing the terms “Ornstein Uhlenbeck” and either “ecology”, or
“evolution” and “biology” were published between 2005 and 2013, and the number has increased
substantially since 2005 (Fig. 1). Most papers fit OU models to phylogenies with fewer than 100
taxa (mean = 166.97 + 43.86, median = 58, Supplemental Fig. S1 and Table S1). The majority of
papers fit OU models using R packages, particularly GEIGER and, although other uses are
becoming more common, most papers use OU models in an effort to discern the “best” model of
trait evolution or to control for phylogenetic non-independence (Supplemental Table S1 and Fig.
S1).

DISCUSSION

Although it is possible to create and implement new models for comparative data that encompass
a range of processes, we have to beware that such models are statistically complex and may
behave in unexpected ways. Transformations of the variance-covariance matrix in the Brownian
model are an attractive and computationally simple way to modify the basic model to include
evolutionary processes. But, as first pointed out by Grafen (1989), the statistical consequences of
these modifications can include biases and problems with interpretation. The results we have
presented here illustrate that such biases can occur under conditions that closely match the size
and type of datasets that are commonly used.

In the case of the OU model, we can make a series of specific recommendations for
future analyses:

(1) At least 200 species should be included. The results of the simulations indicate that, in
general, analyses based on small datasets are prone to biases that decrease only slowly as
the size of the dataset increases.

(2) Likelihood ratio tests are untrustworthy. We would expect these to be approximate
because ais bounded and has a non-linear effect on the expected variances. The
simulations indicate that likelihood ratio tests should not be relied upon for analyses with
small sample sizes, and that for robust inference and testing, alternatives, such as MCMC,
should be considered.

(3) Simulate fitted models and compare these to your empirical results. A good strategy for
data exploration would be to simulate data under BM and fitted OU models to generate
distributions of parameters under known values. These can then be compared to results
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for your dataset (see Slater and Pennell 2013 for a related approach). This is important
because we have shown that the shape of a phylogeny has consequences for parameter
biases and hypothesis tests. Any given tree will therefore generate unique parameter
estimates. Simulating data under the BM model will generate null distributions (e.g.,
Boettiger et al. 2012). Generating data under the fitted OU model will allow an
assessment of whether it is possible to retrieve known values, or whether there is
evidence of bias.

(4) Consider plausible alternative hypotheses. The results indicate that a simple
parsimonious model can be mistaken for an OU process: namely a BM process in which
a small amount of error is added to the data. Small (<1) values of « are quite compatible
with this interpretation of the data. The effects of error become more severe with
increasing tree size.

In terms of the final point, it would be very useful to have estimates of measurement
errors for the species’ observations, however the inclusion of species-specific variances has to be
done carefully (e.g., Grafen 1989). It would be tempting to create a vector of variances that could
be combined with V to create an overall combined variance matrix (O'Meara et al. 2006; Harmon
et al. 2010). However, if the variances are large, vary among species or are based on small
samples, this can create additional complications for the modeling. This is because the variances
will themselves be estimates and subject to error. Treating such variances as error-free can
potentially create biases (Freckleton unpub). If the variances are unknown then Pagel’s 4 (Pagel
1997, 1999) can be used to estimate the non-Brownian component of the trait variance. However
estimating this parameter simultaneously with estimating o would have to be undertaken
carefully as the two transformations have quite similar effects on the predicted variances.

Our review of the literature revealed that the OU model is frequently described and
interpreted as a model of ‘stabilizing selection’. The OU model is attractive because it sets
effective bounds in probability on the size of species’ traits, but to use the term ‘stabilizing
selection’ is inaccurate and misleading. As formulated by Hansen (1997), a niche has a primary
optimum that is the mean of individual species optima for that niche. Under this formulation, o
can be considered as the strength of the pull towards the primary optima (Hansen 2012) but not
as an estimate of stabilizing selection in the population genetics sense.

In terms of interpretation, it is worth pointing out that data will exhibit few signs of the
limits to trait values that result from an OU process. This is because according to the OU process
traits move back towards the optimum as their values become particularly large or small. Past
history is effectively wiped over, as pointed out above, with the consequence that covariances
between species become small (Fig. 2). Indeed, Figure 2 implies that the outcome of the OU
process is indistinguishable from an acceleration of the rate of evolution towards the present.
This interpretation is particular important for inference of phylogenetic niche conservatism.
Although definitions of phylogenetic niche conservatism vary (Losos 2008b, a; Wiens 2008;
Crisp and Cook 2012) one proposed approach is to fit an OU model and take rejection of BM in
favour of OU as evidence of constraints on niche evolution (Wiens et al. 2010). A more
parsimonious explanation would be that there is measurement error in the data. This seems
particularly likely for climatic niche traits that are often averaged across an entire species range.
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Concluding from data on extant species that traits are limited by an OU-like process will
therefore always be a leap of faith.

If ancillary data are available, however, this may not be the case. If data on fossils are
available then these could be incorporated into the analysis (Slater et al. 2012). A caution here is
that the OU model for non-ultrametric trees has to be carefully parameterized because for non-
ultrametric trees the co-variances in equation (6) depend on both the shared distances between
species and the distance of a node to the nearest tip. This creates potential problems in
parameterization and in interpretation because the variance-covariance matrix is no longer tree-
like (G. Slater unpub.). Some current implementations of the OU model are based on
transforming the tree directly, rather than transforming the variance co-variance matrix (e.g.,
MOTMOT; Thomas and Freckleton 2011). These implementations should not be used with fossil
data.

The results we report are not unique to the OU model. As noted above, Grafen (1989)
pointed out that his p parameter would likely be biased, and other transformations (e.g., A, 9,
ACDC, Pagel 1997, 1999; Blomberg et al. 2003) will exhibit similar behavior (e.g., see
Freckleton et al. 2002). Freckleton et al. (2002) explored the behavior of Pagel’s A and found
that this statistic was biased but in manner that was likely to be conservative in the rejection of
the Brownian model (also see Supplemental Fig. S7). Some transformations may be unbiased:
for example, Pagel’s « is a transformation of branch lengths, and is essentially the ‘“standard
diagnostic” that is used in testing the assumptions of phylogenetic contrasts, and known to
behave appropriately (Supplemental Fig. S6; Garland et al. 1992).

In conclusion, the simulations we report highlight that there are some limits to what we
can learn from phylogenies and comparative data on extant species. The OU model is a good
example of this: large values of o will lead to a loss of history and the dataset will only represent
the most recent evolutionary changes. Moreover, different processes can easily yield similar
patterns (e.g., Revell et al. 2008) with the consequence that rejection of the Brownian model in
favour of another does not necessarily say anything about process. This problem can be
alleviated to some extent if model comparisons are set in a firm hypothesis testing framework in
which alternative hypotheses make clear predictions of emerging patterns that can be
unambiguously associated with particular models (e.g., Cooper et al. 2011). We shouldn’t use
any statistical model without thinking carefully about the limits in terms of both data and
interpretation. The results presented above highlight that in the case of the OU model, this is
especially important.
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Supporting Information 1: Supplemental tables, figures and references.

Table S1. Details of the papers used in our literature review. For each paper we recorded the study taxon, the number of tips in the phylogeny

used to fit the Ornstein Uhlenbeck (OU) model, how the authors used the OU model in the paper, and the statistical package (usually R) used to

carry out the analyses. For a full reference list see below.

Paper Year Journal* Taxon Nipst  Use in paper Stats/R package’
(Hansen and Orzack 2005) 2005  Evolution insects 15 other OUCH precursor?
(Edwards and Donoghue 2006) 2006 Am Nat plants 12 ancestral state reconstruction COMPARE
(Gvozdik and Damme 2006) 2006  Evolution amphibians 10 phylogenetic correction COMPARE
(Halsey et al. 2006) 2006 Am Nat birds/mammals 90 phylogenetic correction Custom code
(Ives and Godfray 2006) 2006  Am Nat insects 8 phylogenetic signal MATLAB
(Valiente-Banuet et al. 2006) 2006 PNAS plants 47 model of evolution ? (OUCH)
(Clabaut et al. 2007) 2007  Evolution fish 45 phylogenetic correction APE

(Gomez and Théry 2007) 2007 Am Nat birds 40 model of evolution OUCH

(Hipp 2007) 2007  Evolution plants 53 model of evolution BayesTraits
(Rezende et al. 2007) 2007  Nature plants/insects ? phylogenetic signal ? (OUCH)
(Spoor et al. 2007) 2007  PNAS mammals 210 phylogenetic correction PDAP
(Stuart-Fox et al. 2007) 2007  Am Nat reptiles 21 phylogenetic correction COMPARE
(Buchwalter et al. 2008) 2008 PNAS insects 21 phylogenetic correction MATLAB
(Dumont and Payseur 2008) 2008  Evolution mammals 13 model of evolution OUCH
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(Hansen et al. 2008)
(Smith et al. 2008)

(Warne and Charnov 2008)
(Adams et al. 2009)
(Addison et al. 2009)
(Agrawal et al. 2009)
(Bergmann et al. 2009)
(Collar et al. 2009)
(Gonzalez-Voyer et al. 2009)
(Goodman et al. 2009)
(Huey et al. 2009)

(Kozak et al. 2009)

(Labra et al. 2009)
(Rezende et al. 2009)
(Swanson and Garland 2009)
(Van Buskirk 2009)
(Burbrink and Pyron 2010)
(Cooper and Purvis 2010)
(Edwards and Smith 2010)
(Harmon et al. 2010)
(Helmus et al. 2010)

2008
2008
2008
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2009
2010
2010
2010
2010
2010

Evolution
Evolution
Am Nat
PRSB
PRSB
PNAS
Evolution
Evolution
PRSB
Evolution
PRSB
Evolution
Am Nat
ELE
Evolution
JEB
Evolution
Am Nat
PNAS
Evolution

ELE

mammals
plants
reptiles
amphibians
birds
plants
reptiles
fish

fish
reptiles
reptiles
amphibians
reptiles
fish

birds
amphibians
reptiles
mammals
plants
multiple

zooplankton

105
15
71
10
23
53
38
29
39
20
70
184
83
116
44
82
29
45
300
17

other

phylogenetic correction
phylogenetic correction
model of evolution
phylogenetic correction
model of evolution
model of evolution
model of evolution
phylogenetic correction
phylogenetic correction
phylogenetic correction
model of evolution
other

model of evolution
phylogenetic correction
other

model of evolution
model of evolution
model of evolution
model of evolution

phylogenetic correction

SLOUCH
APE
MATLAB
OUCH
MATLAB
GEIGER
OUCH
OUCH

APE/COMPARE

COMPARE
MATLAB
GEIGER
SLOUCH
PDTREE
MATLAB
SLOUCH
GEIGER
GEIGER
OUCH

GEIGER
?
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(Kalinka et al. 2010)

(Kozak and Wiens 2010b)
(Kozak and Wiens 2010a)
(Ord et al. 2010)

(Price et al. 2010)

(Slater et al. 2010)
(Angielczyk et al. 2011)
(Benesh et al. 2011)
(Collar et al. 2011)
(Derryberry et al. 2011)
(Galvan and Moller 2011)

(Gonzalez-Voyer and Kolm

2011)

(Ord et al. 2011)
(Oufiero et al. 2011)
(Perez et al. 2011)
(Raia and Meiri 2011)

(Rosas-Guerrero et al. 2011)

(Setiadi et al. 2011)
(Smith et al. 2011)

2010

2010
2010
2010
2010
2010
2011
2011
2011
2011
2011

2011
2011
2011
2011
2011
2011
2011
2011

Nature

Am Nat
ELE
Evolution
Evolution
PRSB
Evolution
Evolution
Evolution
Evolution

JEB

JEB
Evolution
Evolution
JEB
Evolution
Evolution
Am Nat

Evolution

insects

amphibians
amphibians
reptiles
fish
mammals
reptiles
helminths
reptiles
birds

birds

fish
multiple
reptiles
mammals
mammals
plants
amphibians

reptiles

84
11
16
122
84

310
37
285
323

49
23
106
29
842
20
22
15

model of evolution
model of evolution/
ancestral state reconstruction
model of evolution
other

model of evolution
model of evolution
model of evolution
model of evolution
model of evolution
model of evolution

phylogenetic correction

model of evolution
phylogenetic signal
phylogenetic correction
phylogenetic correction
model of evolution
phylogenetic correction
model of evolution

model of evolution

OUCH
GEIGER/
OUCH
OUCH
SLOUCH
GEIGER
OUCH
OUCH
OUCH
Brownie
GEIGER
COMPARE

GEIGER
SLOUCH
SLOUCH
APE
MOTMOT
APE
OUCH
GEIGER
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(Tulli et al. 2011)
(Turbill et al. 2011)
(Valido et al. 2011)

(Wiens et al. 2011)

(Weir and Wheatcroft 2011)
(Beaulieu et al. 2012)
(Betancur-R et al. 2012)
(Blankers et al. 2012)
(Boettiger et al. 2012)
(Burbrink et al. 2012)
(Calosi et al. 2012)
(Claramunt et al. 2012a)
(Claramunt et al. 2012b)
(Davis et al. 2012)
(Diniz-Filho et al. 2012)
(Fusco et al. 2012)
(Gomez-Mestre et al. 2012)
(Ingram et al. 2012)
(Kellermann et al. 2012a)
(Kellermann et al. 2012b)

2011
2011
2011

2011
2011
2012
2012
2012
2012
2012
2012
2012
2012
2012
2012
2012
2012
2012
2012
2012

JEB
PRSB
JEB

ELE
PRSB
Evolution
ELE

JEB
Evolution
PRSB
JEB

Am Nat
PRSB
JEB
Evolution
Evolution
Evolution
JEB
Evolution

PNAS

reptiles
mammals

plants

amphibians
birds
plants

fish
amphibians
reptiles
multiple
insects
birds

birds
insects
mammals
trilobites
amphibians
food webs
insects

insects

29
19
111

337
232
590
123
189
23
41
25
290
282
53
209
60
720
20
94
94

phylogenetic correction
phylogenetic correction
phylogenetic correction
model of evolution/
phylogenetic correction
model of evolution
model of evolution
model of evolution
phylogenetic correction
ancestral state reconstruction
model of evolution
phylogenetic correction
model of evolution
model of evolution
phylogenetic correction
other

model of evolution
phylogenetic correction
model of evolution
phylogenetic correction

phylogenetic correction

?
GEIGER
APE
GEIGER/
COMPARE
GEIGER
OUwie
GEIGER
GEIGER
OUCH
Custom code
MATLAB
GEIGER
GEIGER
SLOUCH
PAM

?

APE
GEIGER
SLOUCH
SLOUCH
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(Nogueira et al. 2012)
(Ord 2012)

(Pearse and Hipp 2012)
(Pellissier et al. 2012)
(Price et al. 2012)
(Sallan and Friedman 2012)
(Santana et al. 2012)
(Schmerler et al. 2012)
(Smith 2012)

(Sookias et al. 2012)
(Stireman et al. 2012)
(Voje and Hansen 2012)
(Weir et al. 2012)

(Arbour and Lopez-Fernandez

2013)

(Benesh et al. 2013)
(Blackburn et al. 2013)
(Christin et al. 2013)
(Frédérich et al. 2013)
(Friedman et al. 2013)
(Guerrero et al. 2013)

2012
2012
2012
2012
2012
2012
2012
2012
2012
2012
2012
2012
2012

2013
2013
2013
2013
2013
2013
2013

JEB

JEB
Evolution
JEB
Evolution
PRSB
Evolution
PRSB
Evolution
PRSB
JEB
Evolution

Evolution

PRSB
Am Nat
Evolution
PNAS
Am Nat
Evolution

PNAS

plants
reptiles
plants
insects
fish

fish
mammals
plants
birds
multiple
insects
insects

birds

fish
helminths
amphibians
plants

fish

birds
plants/reptiles

105
32
56
83
50
100
85
88
42
43
24
30

232

27
143
18
545
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Figure S1. The median number of tips in phylogenies used (top left), the reason Ornstein Uhlenbeck (OU) models were fitted (top right), the R
package used to fit the OU models (bottom left) and the taxon studied (bottom right) in each of the papers in the literature review (see Table S1).
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(diamonds) methods. Estimates of a (b,d,f) based on ML (circles show means and dotted lines
show 95% sampling interval from 1000 trees) and Bayesian (diamonds show means and dotted
lines show 95% sampling interval of the modal value from the posterior distribution from 1000
trees). MCMC models fitted with an exponential prior (mean=1) on a.
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Figure S4. Rejection of BM with me®&trétheA{ ¥ 6H () AtPestimation of a (b). Symbols follow
Figures S2 and S3. MCMC models fitted with an exponential prior (mean=1) on a.
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Figures S2 and S3. MCMC models fitted with uniform prior (0-20) on .
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Rejection rates (a,c,e) for the k model26F $hetAti6RAIBFIRMRSn at multiple tree sizes for models
fitted using ML methods. Estimates of « (b,d,f) based on ML with dotted lines showing 95%

sampling interval from 1000 trees.
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fitted using ML methods. Estimates of A (b,d,f) based on ML with dotted lines showing 95%

sampling interval from 1000 trees.
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Rejection rates (a,c,e) for the § modeldSfdtceRiratiteyrdadetrating evolution at multiple tree sizes
for models fitted using ML methods. Estimates of 6 (b,d,f) based on ML with dotted lines showing
95% sampling interval from 1000 trees.
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Figures S6-S8.
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Figure S10. Rejection of BM with measurement error (a) and estimation of A (b). Symbols follow

Figures S6-S8.
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Figures S6-S8.
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