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Abstract20

All models are wrong and sometimes even the best of a set of models is

useless. Modern phylogenetic comparative methods (PCMs) are almost ex-

clusively model–based and therefore making robust inferences from PCMs

requires using a model of trait evolution that is a good explanation for

the data. To date, researchers using PCMs have evaluated the explana-25

tory power of a model only in terms of relative, not absolute, fit. Here we

develop a general statistical framework for assessing the absolute fit, or ad-

equacy, of phylogenetic models for the evolution of quantitative traits. We

use our approach to test whether commonly used models are adequate de-

scriptors of the macroevolutionary dynamics of real comparative data. We30

fit models of trait evolution to 337 comparative datasets covering three key

Angiosperm functional traits and evaluated the absolute fit of the models

to each dataset. Overall, the models we used are very inadequate for the

evolution of these traits; this was true for many different groups and at

many different scales. Furthermore, the relative support for a model had35

very little to do with its absolute adequacy. We argue that assessing model

adequacy should be a key step in comparative analyses.
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There are known knowns; there are things we know we know.

We also know there are known unknowns; that is to say we

know there are some things we do not know. But there are also40

unknown unknowns — the ones we don’t know we don’t know.

— Former U.S. Secretary of Defense, Donald Rumsfeld

Introduction

Phylogenetic trees and phylogenetic thinking are ubiquitous in modern

biology; ecologists, geneticists, paleontologists and anthropologists now45

widely recognize that a historical perspective can provide important in-

sights into evolutionary questions (Pennell and Harmon, 2013). This in-

terest in phylogenetic biology has risen in lockstep with developments

in phylogenetic comparative methods (PCMs; reviewed in O’Meara, 2012;

Pennell and Harmon, 2013). Modern PCMs are almost exclusively based50

on probabilistic models, meaning inferences are conditional on both the

phylogenetic tree and the chosen model. Selecting a good model is there-

fore essential for making robust inferences. Model choice should be guided

by two considerations. First, does the model capture the processes relevant

to the question (Hansen and Orzack, 2005; Maddison, 2006; Hansen and55

Bartoszek, 2012; Pennell et al., 2013)? Second, does the model provide a

good statistical explanation for the data? Though there is interplay be-

tween these two questions (Hansen and Bartoszek, 2012), we focus on the

latter in this paper. In phylogenetic comparative biology, this question has

been addressed by comparing the relative fit of a number of models and60

selecting the best one for inference (Mooers et al., 1999; Harmon et al., 2010;
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Hunt, 2012).

However, the relative support for a model is only a partial answer to

the question of whether it is a good explanation for the data, as the best of

a poor set of models is still a poor model. We also must consider whether65

the model is a good fit, or adequate, in absolute terms. Assessing model

adequacy is a routine step in many statistical applications, especially in

Bayesian statistics (Gelman et al., 2003). Failure to assess model adequacy

can potentially result in erroneous inferences. A classic example of this

in molecular systematics is the disputed phylogenetic relationships of ro-70

dents. A number of early molecular phylogenetic studies reported evi-

dence that “strongly contradict[ed]” the traditional hypothesis that the or-

der Rodentia is a monophyletic group (Graur et al., 1991; D’Erchia et al.,

1996). Sullivan and Swofford (1997) demonstrated that these conclusions

were misleading, and resulted entirely from using models of molecular75

evolution that did not adequately accommodate variation in substitution

rates across sites (also see Brown, 2014). There are many similar case–

studies throughout and outside of evolutionary biology.

Many models for describing the evolution of phenotypic traits along

a phylogeny have been developed, as well as sophisticated machinery for80

fitting them to comparative data (O’Meara, 2012). Using these models,

researchers from across biological disciplines have made discoveries that

would not have been possible without a phylogenetic perspective. How-

ever, it is disconcerting that we often have no idea if the models used in

PCMs are adequate — there are no general procedures that can be used to85

assess this. Even more troubling is that model adequacy is rarely ever con-

sidered when PCMs are applied. To borrow Rumsfeld’s taxonomy, model

adequacy has largely been an “unknown unknown” in comparative biol-
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ogy.

In this paper we seek to help rectify this situation. We address two90

major outstanding problems in comparative biology. First, we develop a

general framework for assessing the adequacy of phylogenetic models of

trait evolution, specifically those for quantitative characters. Second, we

assess the adequacy of commonly used models using a recently published

phylogeny of Angiosperms (flowering plants) (Zanne et al., 2013) and data95

compiled from the literature on three important functional traits: specific

leaf area, seed mass, and leaf nitrogen content. We did this to test whether

the simple models used in comparative biology provide a reasonable de-

scription of the macroevolutionary dynamics of real trait data, across many

different groups and time scales.100

A general framework for assessing model adequacy

Though the number of models used in comparative biology is quite large,

most of these fall into a relatively small set of classes (O’Meara, 2012). In

this paper, we focus on one of these classes — models that describe the evo-

lution of a single continuously valued trait. More specifically, our approach105

works for models that assume that trait values at the tips are multivariate

normal; this applies to most models of quantitative trait evolution that have

been developed to date (O’Meara, 2012).

If we have a phylogenetic tree consisting of n lineages and data on the

trait values observed at each tip X (X = x1, x2, . . . , xn), we can fit a model110

M with parameters θ to describe the pattern of trait evolution along the

phylogeny. Most analyses using comparative data aim to answer one of the
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following questions: what values of θ best explain X given M?; or, does

M1 explain the data better thanM0? Our approach is conceptually distinct

in that we want to ask, how likely is it that model M with parameters θ115

would produce a dataset similar to X if we re–ran evolution?

There are two primary ways of fitting models to comparative data.

The first is use maximum likelihood (ML), restricted maximum likelihood

(REML), least–squares, etc. to obtain a point estimate of θ. The second is to

estimate posterior probability distribution Pr(θ|X,M) using Bayesian ap-120

proaches. For the models used in comparative biology, estimating Pr(θ|X,M)

requires using Markov chain Monte Carlo (MCMC) machinery to sample

values of θ.

While likelihood and Bayesian approaches to model–fitting are philo-

sophically different from one another, in practice, our approach to assess-125

ing model adequacy is much the same for both: 1) fit the model of trait

evolution; 2) calculate a set of summary statitics on the observed data SX;

3) simulate many new datasets Y1, Y2, . . . , Ym under the model using the es-

timated parameters; 4) calculate summary statistics on the simulated data

SY,1,SY,2, . . . ,SY,m; 5) compare SX to the distribution of SY. If SX devi-130

ates significantly from the distribution of SY, we can reject the model as

inadequate (see figure 1).

If we have a point estimate of the model parameters θ̂, we simulate

Y1, Y2, . . . , Ym on the phylogeny accoridng to θ̂ and M. We then compare

a single set of summary statistics SX calculated from our observed data to135

the distribution of values for SY computed across all m simulated datasets.

In statistical terminology, this procedure is known as parametric bootstrap-

ping. Parametric bootstrapping is likely familiar to phylogenetic biologists
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in the form of the Goldman–Cox test (Goldman, 1993) for assessing the

adequacy of sequence evolution models.140

If we have a posterior probability distribution Pr(θ|X,M), we can as-

sess model adequacy using posterior predictive simulation (Rubin, 1984;

Gelman et al., 1996). We obtain new datasets by sampling from a second

distribution, the posterior predictive distribution

Pr(Y|X,M) =
∫

Pr(Y|θ,M)Pr(θ|X,M)dθ (1)

where Pr(Y|X,M) is the probability of a new dataset Y given X andM, av-145

eraged over the distribution of the parameters. In practice, sampling from

Pr(Y|X,M) entails drawing samples from the joint posterior distribution

of parameters Pr(θ|X,M) and simulating data on the phylogeny according

to the sampled parameter values. Therefore, the datasets Y1, Y2, . . . , Ym are

each generated from different values of θ. Posterior predictive simulation150

approaches have been previously developed for models in molecular phy-

logenetics (Bollback, 2002; Reid et al., 2013; Lewis et al., 2013; Brown, 2014),

and recently for PCMs (Slater and Pennell, 2013), but have not been widely

adopted in either field.

If the chosen summary statistics were properties of the data alone, such155

as the mean of observed trait values at the tips, we would have a single

estimate of SX for both likelihood and Bayesian approaches. However, in

our approach for assessing model adequacy, the summary statistics depend

on both the data and the parameter estimates, for reasons detailed below.

Therefore for the likelihood case, we have a single set of observed summary160

statistics SX based on the data and the point estimate of model parameters

θ̂. For the Bayesian approach we have a distribution of observed summary
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statistics SX,1,SX,2, . . . ,SX,m, each SX,i calculated using the same data but

a different set of parameter values sampled from Pr(θ|X,M). In this case,

we compare the distribution of values of SX to the distribution of values of165

SY.

Summary statistics

No simulated dataset will ever be exactly the same as our observed dataset.

We therefore need to choose informative summary statistics in order to

evaluate whether the model predicts datasets that are similar to our ob-170

served dataset in meaningful ways. As an example, consider the case of

regular (i.e., non–phylogenetic) logistic regression. The goal is to fit a

model that predicts the state (0 or 1) of the dependent variable. We can

assess the adequacy of such a model by simulating many datasets under

the fitted parameters. One good summary statistic for this type of model175

is the proportion of values that are in state 0. We can calculate this di-

rectly from the observed data and from each of the simulated datasets and

compare the observed value of this summary statistic to the distribution of

values from the simulated datasets. This works because in a simple logistic

regression model, we assume that the different values for the responses are180

independent of each other. However, the states at the tips of the phylogeny

are not independent — this is why we are using PCMs in the first place! —

and thus calculating summary statistics on the data directly is not generally

informative for models in comparative biology.

We account for the non–independence of the observed data by calcu-185

lating summary statistics on the set of contrasts (i.e., “phylogenetically

independent contrasts”, sensu Felsenstein, 1985) computed at each node.
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(We refer readers to Felsenstein, 1985; Rohlf, 2001; Blomberg et al., 2012,

for details on how contrasts are calculated.) Under Brownian motion (BM)

the contrasts will be i.i.d. ∼ N (0, σ), where σ2 is the BM rate parame-190

ter (Felsenstein, 1985). This i.i.d. condition allows us to perform standard

statistical tests on the contrasts.

The choice of what summary statistics to use for assessing model ade-

quacy is ultimately one of balancing statistical intuition and computational

effort. We have chosen the following set of six summary statistics to com-195

pute on the contrasts because they capture a range of possible model vio-

lations and have well–understood statistical properties. All of these essen-

tially evaluate whether the contrasts come from the distribution expected

under BM.

MPIC The mean of the squared contrasts. This is equivalent to the REML200

estimator of the Brownian motion rate parameter σ2 (Garland et al.,

1992; Rohlf, 2001). MPIC is a metric of overall rate. Violations detected

by MPIC indicate whether the overall rate of trait evolution is over– or

underestimated.

VPIC The coefficient of variation (standard deviation/mean) for the abso-205

lute value of the contrasts. If VPIC calculated from the observed con-

trasts is greater than that calculated from the simulated contrasts, it

suggests that we are not properly accounting for rate heterogeneity

across the phylogeny. If VPIC from the observed is smaller, it suggests

that contrasts are more even than the model assumes. We use the210

coefficient of variation rather than the variance because the mean and

variance of contrasts can be highly correlated.

SVAR The slope resulting from fitting a linear model to the absolute value
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of the contrasts vs. their expected variances. Each (standardized) con-

trast has an expected variance proportional to the sum of the branch215

lengths connecting the node at which it is computed to its daughter

lineages (Felsenstein, 1985). Under a model of BM, we expect no re-

lationship between the contrasts and their variances. We use SVAR to

test if contrasts are larger or smaller than we expect based on their

branch lengths. If, for example, more evolution occurred per unit220

time on short branches than long branches, we would observe a neg-

ative slope.

SANC The slope resulting from fitting a linear model to the absolute value

of the contrasts vs. the inferred ancestral state at the correspond-

ing node. We estimated the ancestral state using the least–squares225

method suggested by Felsenstein (1985) for the calculation of con-

trasts. We note that this is not technically an ancestral state recon-

struction (see Felsenstein, 1985); it is more properly thought of as

a weighted average value for each node. We used this statistic to

evaluate whether there is variation in rates relative to the trait value;230

for example, do larger organisms evolve proportionally faster than

smaller ones?

SHGT The slope resulting from fitting a linear model between the absolute

value of the contrasts and vs. height of the node at which they are

inferred measured from the root. This is used to capture variation235

relative to time. It is alternatively known as the “node–height test”

and has been used to detect early bursts of trait evolution during

adaptive radiations (Freckleton and Harvey, 2006; Slater and Pennell,

2013).
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DKS The D–statistic obtained from Kolmolgorov–Smirnov test from com-240

paring the distribution of contrasts to that of a normal distribution

with mean 0 and standard deviation equal to the root of the mean

of squared contrasts (the expected distribution of the contrasts un-

der BM; see Felsenstein, 1985; Rohlf, 2001). We chose this to cap-

ture deviations from normality. For example, if traits evolved via a245

“jump–diffusion” type process (Landis et al., 2013), in which there

were occasional bursts of rapid phenotypic evolution (Pennell et al.,

2013), the tip data would no longer be multivariate normal owing to

a few contrasts throughout the tree being much larger than the rest

(i.e., the distribution of contrasts would have heavy tails).250

Alternative sets of summary statisics are certainly possible. One could,

for instance, calculate the median of the squared contrasts, the skew of

the distribution of contrasts, etc. If the generating model was known, we

could use established procedures for selecting a set of sufficient (or, approx-

imately sufficient; Joyce and Majoram, 2008) summary statistics for that255

model, as is typically done when computing likelihood ratio tests. How-

ever, the aim of our approach is assess the fit of a proposed model without

reference to a true model. Our summary statistics will detect many types of

model misspecification but this does not mean that they will necessarily de-

tect every type of model misspecification; researchers interested in specific260

questions are encouraged to explore alternate sets of summary statistics.

Beyond Brownian motion

All of the summary statistics are designed to evaluate the adequacy of a

BM model of trait evolution. Our summary statistics SVAR, SANC, and SHGT
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have been used previously in the literature with this justification (Garland265

et al., 1992, 1993; Dı́az-Uriarte and Garland, 1996). However, if we pro-

pose a different model for the evolution of the trait, such as an Ornstein–

Uhlenbeck (OU; Hansen, 1997) process, then the expected distribution of

the contrasts is different. The expected distribution of contrasts under most

models of trait evolution, aside from BM, is not formally characterized and270

even if it was, this would necessitate a specific set of summary statistics for

every model proposed.

Our solution to this problem is to create what we term a “unit tree”,

which is a phylogenetic tree transformation that captures the dynamics of

trait change under a particular evolutionary model. More formally, for a275

particular evolutionary model M (with parameter values θ), we define a

unit tree as a phylogenetic tree that has the following property: the length

of branch i, ν′i , is equal to the amount of variance expected to accumulate

over i under M, θ. The variance is standardized, such that the expected

distribution of the trait data on the unit tree is equal to that of a Brownian280

Motion (BM) model with a rate σ2 equal to 1.

One can construct a unit tree by recognizing that many models of evo-

lution can be represented via transformations of the branch lengths of a

phylogenetic tree (O’Meara, 2012; Ho and Ané, 2014), including multi–

rate BM (O’Meara et al., 2006; Thomas et al., 2006; Eastman et al., 2011),285

mulit–optima OU (Butler and King, 2004; Beaulieu et al., 2012; Ingram

and Mahler, 2013), and models in which the rate and/or process change

through time (Blomberg et al., 2003; Slater, 2013).

Specifically, we create unit trees by transforming branch lengths using
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the following general formula:290

ν′i = E[Cov(A, B)]− E[Cov(A, C)] (2)

where ν′i is the transformed length of a branch i, A and C are two lineages

subtended by the node at the rootward end of i, and A and B are two

lineages subtended by the tipward end of i (see figure 2). One can choose

any pair of species that fits this property and then transverse the phylogeny

in any direction so that each branch in the tree is transformed. For terminal295

branches, the formula reduces to E[Var(A)]− E[Cov(A, B)]. Measurement

error can be incorporated by simply lengthening the terminal branches of

the unit tree by the estimated standard error. As an example, we illustrate

how a unit tree is constructed from the parameters of a fitted OU model

(figure 2).300

If the fitted model is adequate, the trait data at the tips of the unit tree

will have the same distribution as data generated under a BM process with

a rate of 1 and the contrasts will be ∼ N (0, 1) — hence the name, unit

tree. Creating the unit tree from the estimated model parameters prior to

computing the contrasts generalizes the summary statistics to most models305

of quantitative trait evolution (but see Landis et al., 2013, for an exception).

We also emphasize that because the contrasts are calculated on the unit

tree, the summary statistics all must depend on both the data and the

model — it is for this reason that the Bayesian version of our approach

produces a distribution of observed summary statistics.310

Once we have created the unit tree from the estimated parameters, new

datasets can be simulated under the model simply using a BM process

with σ2 = 1. The distribution of summary statistics calculated on these
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simulated data sets can then be compared to the summary statistics from

the observed data. We summarize the entire approach in figure 1. We have315

implemented our method in a new R package, arbutus (see below for more

details).

The adequacy of models for the evolution of plant

functional traits

Data320

We used a phylogeny of Angiosperms, containing 30,535 species, from a

recent study by Zanne et al. (2013). We refer interested readers to the

original publication for details on the phylogeny. For the purposes of this

study, we conducted all analyses on the MLE of the phylogeny (available

on DRYAD, doi:10.5061/dryad.63q27/3).325

We assembled large datasets on three functionally important plant traits:

specific leaf area (SLA, defined as fresh area/dry mass); seed mass; and

leaf nitrogen content (% mass). Seed mass is a crucial part of species’

life–history strategy (Leishman et al., 2000; Westoby et al., 2002) and SLA

and leaf nitrogen content are important and widely measured components330

of species’ carbon capture strategies (Wright et al., 2004). Understand-

ing the macroevolutionary patterns of these three traits can provide key

insights into the evolutionary processes that have shaped much of plant

diversity (Cornwell et al., 2014). All data are previously published; see

https://github/richfitz/modeladequacy for specific locations and scripts335

to access and process the original data. The SLA and leaf nitrogen data

14
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comes from Wright et al. (2004) with additional SLA data from the LEDA

project (Kleyer et al., 2008). Seed mass data comes the Kew database (Royal

Botanical Gardens, Kew, 2014). We used an approximate grepping ap-

proach to find and correct spelling mistakes and synonymy tools from The340

Plant List (2014) to match the trait databases to the Zanne et al. phylogeny.

The full data set includes 3293 species for SLA, of which 2200 match species

in the Zanne et al. tree. For seed mass, the dataset included 22,817 species

with 11,107 matched the phylogeny. For leaf nitrogen content, we have data

for 1574 species with 936 included in the tree. All data was log transformed345

prior to analyses.

Because the vast majority of the species are only represented by a sin-

gle record, it was not possible to use a species–specific estimate of trait

standard error (SE) to account for either measurement error or intraspe-

cific variation. As an alternative, we estimated a single SE for each trait by350

calculating the mean standard deviation for all species for which we had

multiple measurements. The assumption of a constant SE across all species

is unlikely to hold up to closer examination, but even a somewhat inac-

curate estimate of error is better than assuming none at all (Hansen and

Bartoszek, 2012).355

Analysis

We first matched our trait data to the whole phylogeny and then extracted

subclades from this dataset in a three ways: 1) by family; 2) by order; and

3) by cutting the tree at 50 my intervals and extracting the most inclusive

clades (named or unnamed) for which the most recent common ancestor of360

a group was younger than the time–slice. (The crown age of Angiosperms
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is estimated to be ∼243 my in the MLE tree and the tree was cut at 50,

100, 150, and 200my.) We kept only subclades for which there was at least

20 species present in both the phylogeny and trait data so that we had a

reasonable ability to estimate parameters and distinguish between models365

(Boettiger et al., 2012; Slater and Pennell, 2013). For SLA, this left us with

72 clades, seed mass, 226 clades, and leaf nitrogen content, 39 clades (337

in total). We note that these datasets are not independent as many of the

same taxa were included in family, order and multiple time–slice subtrees.

Following Harmon et al. (2010), we considered three simple models of370

trait evolution: 1) BM, which can be associated with genetic drift (Lande,

1976; Felsenstein, 1988; Lynch, 1990; Hansen and Martins, 1996), randomly–

varying selection (Felsenstein, 1973), or the summation of many indepen-

dent processes over macroevolutionary time (Hansen and Martins, 1996;

Uyeda et al., 2011; Pennell et al., 2013); 2) single optimum OU, which is375

often assumed to represent stabilizing selection (following Lande, 1976),

though we think a more meaningful interpretation is that it represents an

“adaptive zone” (Hansen, 2012; Pennell and Harmon, 2013); and 3) EB (also

known as ACDC), which was developed as a mathematical representation

of a niche–filling process during an adaptive radiation (Blomberg et al.,380

2003; Harmon et al., 2010). We fit each of these models to all 337 subclades

in our dataset. We then used the approach we developed to assess the

adequacy of each fitted model.

All of the analyses conducted in this paper were conducted using both

likelihood and Bayesian inference. We did to demonstrate the scope of our385

approach and because both ML and Bayesian inference are commonly used

in comparative biology. We emphasize that our approach is not tied to any

single statistical paradigm.
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For the likelihood analyses, we fit the three models (BM, OU, and EB)

using ML with the diversitree package (FitzJohn, 2012). We calculated390

the AIC score for each model. We then constructed a unit tree for each

subtree, trait and model combination using the maximum likelihood es-

timates of the parameters. We calculated the six summary statistics de-

scribed above (MPIC, VPIC, SVAR, SANC, SHGT, DKS) on the contrasts of the

data. We simulated 1000 datasets on each unit tree using a BM model395

with σ2 = 1 and calculated the summary statistics on the contrasts of each

simulated data set.

For the Bayesian analysis, we fit the same models as above using a

MCMC approach, sampling parameter values using slice sampling (Neal,

2003), as implemented in diversitree (FitzJohn, 2012). For the BM model400

we set a broad uniform prior on σ2 ∼ U [0, 2], the upper bound being sub-

stantially larger than the ML estimate of σ2 for any clade. For the OU

model, we used the same prior for σ2 and drew α values, the strength

of attraction to the optimum, from a Lognormal(log(0.5), log(1.5)) distri-

bution. A complication involved in fitting OU models is deciding what405

assumptions to make about the state at the root z0. Here, we follow other

authors (Butler and King, 2004; Beaulieu et al., 2012) and assume that z0 is

at the optimum. For the EB model, we again used the same prior for σ2

and a uniform prior on a, the exponential rate of decrease in σ2, such that

a ∼ U [−1, 0] (the minimum value is much less than we would typically410

expect; Slater and Pennell, 2013).

Again, for each model/trait/subtree combination, we ran a Markov

chain for 10,000 generations. Preliminary investigations demonstrated that

this was more than sufficient to obtain convergence and proper mixing for

these simple models. After removing a burn–in of 1000 generations, we415
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calculated the Deviance Information Criterion (DIC, a Bayesian analog of

AIC; Spiegelhalter et al., 2002) for each model. We drew 1000 samples from

the joint posterior distribution (again, after removing burn–in). For each

of the sampled parameter sets, we used the parameter values to construct

a unit tree and calculated our six summary statistics on the contrasts. We420

then simulated a dataset on the same unit tree and calculated the summary

statistics on the contrasts of the simulated data.

In the likelihood analyses, for each dataset, we had one set SX of ob-

served summary statistics and a 1000 sets SY,1,SY,2, . . . ,SY,1000 of sum-

mary statistics calculated on data simulated on the same unit tree. In425

the Bayesian version, we had 1000 sets of observed summary statistics

SX,1,SX,2, . . . ,SX,1000 using a different unit tree for each set and 1000 sets of

simulated summary statistics SY,1,SY,2, . . . ,SY,1000, each SY,i corresponding

to the unit tree used to compute SX,i.

For both types of analyses, we report two–tailed p–values (i.e., the prob-430

ability that the observed that a simulated summary statistic was more ex-

treme than the observed). As a multivariate measure of model adequacy,

we calculated the Mahalanobis distance, a scale–invariant metric, between

the observed summary statistics and the mean of our simulated summary

statistics, taking into account the covariance structure between the sum-435

mary statistics. We took the log of the KS D–statistic, DKS, as the Ma-

hanalobis measure assumes data is multivariate normal and the D–statistic

is bounded between 0 and 1. For the Bayesian analyses, we report the mean

of the distribution of Mahalanobis distances. All analyses were conducted

in R v3.0.2 (R Development Core Team, 2013). Scripts to reproduce all440

analyses are available at https://github.com/richfitz/modeladequacy.
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A case study: seed mass evolution in the Meliaceae and Fa-

gaceae

As an illustration of our approach, we present a case study examining seed

mass evolution in two tree families, the Meliaceae, the “mahogany family”,445

and Fagaceae, which contains oaks, chestnuts and beech trees. The trait

data and phylogeny for both groups are subsets of the larger dataset used

in the analysis. Superficially, these datasets are quite similar. Both are of

similar size (Meliaceae: 44 species in the dataset, 550 in the clade; Fagaceae:

70 species in the dataset and 600 in the clade), age (crown age of Meliaceae:450

∼53my; Fagaceae: ∼40my) and are ecologically comparable in terms of

dispersal strategy and climatic niche.

As described above, we fit three simple models of trait evolution (BM,

OU, EB) to both datasets using ML and computed AIC weights (AICw;

Akaike, 1974; Burnham and Anderson, 2004) for the three models. For455

both datasets, an OU model was overwhelmingly supported (AICw > 0.97

for both groups). Therefore, looking only at relative model support, we

might conclude that similar evolutionary processes are important in these

two clades of trees.

Examining model adequacy provides a different perspective. We took460

the MLE of the parameters from the OU models for each dataset and

constructed a unit tree based on those parameters. We calculated our

six summary statistics on the contrasts of the data, then simulated 1000

datasets on the unit tree and calculated the summary statistics on the con-

trasts of each simulated dataset (figure 3). For seed mass evolution in465

Meliaceae, the OU model was an adequate model; all six observed sum-

mary statistics were in the middle of the distribution of simulated sum-
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mary statistics (MPIC : p = 0.420, VPIC : p = 0.533, SVAR : p = 0.605,

SANC : p = 0.494, SHGT : p = 0.122, DKS : p = 0.677). In contrast, for Fa-

gaceae we found that the OU model was inadequate with MPIC, the REML470

estimate of σ2 was significantly lower than the expectation based on the

model (p ∼ 0), suggesting that the process of evolution that gave rise to

this data was more complex that that captured by a simple OU process

(we return to this in the Discussion). The rest of the observed summary

statistics did not differ significantly from the simulated summary statistics475

(VPIC : p = 0.607, SVAR : p = 0.188, SANC : p = 0.404, SHGT : p = 0.883,

DKS : p = 0.957). This example serves to illustrate the distinction between

the conventional approach to model selection in PCMs and model ade-

quacy. For both of these datasets, OU best supported model, but is only

adequate for one of them. Selecting amongst a limited pool of models does480

not give a complete picture of whether a model is a good explanation for

the data.

Results

Despite the potential for differences in the adequacy of models fit with like-

lihood versus Bayesian inference, we find the results to be broadly similar.485

For clarity and conciseness, we present only the results from the likeli-

hood analyses here. Results from the Bayesian analysis are presented in

the Supplemental Material. Full results from all analyses are available at

https://github.com/richfitz/modeladequacy.

Across the 337 subclades, we found widespread support for OU models.490

For 236 of clades, OU had the highest AICw. OU had ∼100% of the AICw
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in 27 clades and >75% of the weight in 184 clades (figure 4). Similar to the

analysis of Harmon et al. (Harmon et al., 2010) we found very little support

for EB models (only 6 clades supported EB with >75% AICw), suggesting

that “early bursts” of trait evolution may indeed be rare in comparative495

data (but see Slater and Pennell, 2013). Larger clades were likely to have

high support for a single model (of the 101 clades consisting of more than

100 taxa, 53 had >90 of the AIC weight on a single model), and that was

overwhelmingly likely to be an OU model (52/53 clades).

We limit our analyses of model adequacy to only the most highly sup-500

ported model in the candidate set, as supported by AIC. We did this to

present a best–case scenario; if a model had very little relative support, it

would be unremarkable if it also had poor adequacy (but see Ripplinger

and Sullivan, 2010). Even considering only the best of the set, in general,

the models had strikingly poor adequacy (figure 5). Of the 72 comparative505

datasets of SLA, all 72 rejected the best model by at least one summary

statistic (using a cut–off of p = 0.05), 33 by at least two, and 17 by three

or more. Results were similar in the seed mass data (of the 226 seed mass

datasets, 185 were rejected by at least one summary statistic, 128 by at least

two and 74 by three or more) and leaf nitrogen content (of the 39 datasets,510

all 39 could be rejected by at least one, 24 by at least two, and 11 by three or

more summary statistic). Some summary statistics were much more likely

to detect model violations than others. The best model was rejected by

MPIC in 250 datasets and by VPIC in 174; the frequency of rejection is sub-

stantially lower by the other summary statistics (SVAR: 65, SANC: 66, SHGT:515

49, DKS: 71). Across all 337 datasets, only 41 are adequately modeled by ei-

ther BM, OU or EB — all of these are seed mass datasets. This is extremely

worrisome as these are the most commonly used models for quantitative

21

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 7, 2014. ; https://doi.org/10.1101/004002doi: bioRxiv preprint 

https://doi.org/10.1101/004002
http://creativecommons.org/licenses/by/4.0/


traits in comparative biology.

As the subclades are not independent (overlapping sets of taxa are520

present in family, order and time–slice phylogenies), conventional statistics,

such as linear regression, are not straightforward to apply across datasets.

Nonetheless, the trend is clear: the larger the phylogeny, the more likely

OU is to be highly supported and the more likely the model is to be inad-

equate. There is a strong relationship between the size of a subclade and525

the overall distance between observed and simulated summary statistics,

as measured by the Mahanalobis distance (figure 6). This is not simply

an artifact of conducting the analyses using a larger number of contrasts

for the summary statistics — if the model was adequate at all scales, there

would be no relationship between the Mahalanobis distance and the size530

of the phylogeny. As stated above, larger clades also tended to support

a single model, meaning that the datasets for which the best model had

a very poor absolute fit also had the most substantial difference between

the relative fits of the three models (figure S1). There was no relationship

between clade age and model adequacy (figure S2).535

Discussion

The distinction between relative and absolute fit is an important one. A

model may provide the best explanation for a dataset compared to a few

other models but still be a very poor explanation in terms of capturing

the patterns of variation present in the data. To again draw an analogy540

with more conventional statistics, consider fitting a regular linear regres-

sion model to a dataset. In this case, we can often identify if the model is

22

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 7, 2014. ; https://doi.org/10.1101/004002doi: bioRxiv preprint 

https://doi.org/10.1101/004002
http://creativecommons.org/licenses/by/4.0/


a good absolute fit simply by plotting the data. A number of distributions

may produce similar results (i.e., intercept, slope, p–value, etc.) but our in-

ferences are contingent upon the relationship being linear (for a classic case545

study, see Anscombe, 1973). For phylogenetic models of trait evolution,

such simple diagnostic measures are usually not informative for assessing

model adequacy due to the complex pattern of dependency between data

points — therefore, alternate statistical procedures are necessary. Here we

have developed a general tool for this purpose.550

In our analyses of the evolution of three key Angiosperm functional

traits, the fact that a model — most often, OU — was highly supported rel-

ative to the others, had little to do with the model’s absolute explanatory

power. Overall, the adequacy of the three simple, but commonly used,

models of trait evolution was woefully poor (figure 5). Perhaps surpris-555

ingly, this was true at across all scales, though models were increasingly

inadequate for larger clades (figure 6). Our results raise serious concerns

about current practices in comparative biology. Relying on a single model,

such as BM, or even the best among a small subset of models, for inference

has the potential to greatly mislead inferences about the processes that have560

driven the evolution of traits at phylogenetic scales.

Many researchers have expressed concern that the models used in com-

parative biology are often inappropriate, for either biological or statistical

reasons (Felsenstein, 1985, 1988; Harvey and Pagel, 1991; Garland et al.,

1992; Dı́az-Uriarte and Garland, 1996; Hansen and Martins, 1996; Price,565

1997; Garland et al., 1999; Garland and Ives, 2000; Hansen and Orzack,

2005; Hansen and Bartoszek, 2012; Felsenstein, 2012; Boettiger et al., 2012;

Slater and Pennell, 2013). Indeed, many of these issues were raised in the

early days of the field; we are far from the the first to point this out. In this
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paper we have developed an approach to actually quantify when a model570

provides a poor explanation for the data and demonstrate that the concerns

about model adequacy are just not theoretical but have real implications for

data analysis and interpretation.

The 337 comparative datasets we analyzed varied in terms of traits,

size, age and placement in the Angiosperm phylogeny. Nonetheless, sev-575

eral general patterns emerge. An OU model, was by and large, the most

supported of the three we examined. In an analysis of 67 comparative

datasets consisting of size and shape data from a variety of animal taxa,

Harmon et al. (Harmon et al., 2010) also found substantial support for OU

models, though for their datasets, BM was more commonly chosen by AIC580

(we note, however, that many of their datasets were quite small; see Slater

and Pennell, 2013). Since their paper, a number of studies conducted in a

diverse array of groups have also found OU models to be preferred over

BM models (e.g., Burbrink et al., 2012; Quintero and Wiens, 2013; López-

Fernández et al., 2013).585

The tendency of OU to explain data better than BM has inspired diverse

process–based explanations, including stabilizing selection, evolutionary

constraints and the presence of “adaptive zones” (Hansen and Martins,

1996; Butler and King, 2004; Hansen, 2012; Pennell and Harmon, 2013). If

the widespread support for OU models was indeed caused by the biologi-590

cal processes that have been proposed, we would expect that an OU model

would also be widely adequate. However, this is not what we found. OU

models are inadequate with our summary statistics, most often with MPIC

and VPIC but frequently with others as well. OU models often failed to

capture other important types of heterogeneity — variation with respect to595

branch lengths (SVAR), trait values (SANC) and time (SHGT). Additionally,
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a substantial number of datasets were not well–modeled by a multivariate

normal distribution (DKS). These results suggest a statistical explanation

for the high support for OU models. OU predicts higher variance near the

tips of the phylogeny than do BM or EB models (see figure 1 in Harmon600

et al., 2010). Heterogeneous evolutionary processes, phylogenetic misesti-

mation and measurement error (Houle et al., 2011; Hansen and Bartoszek,

2012) could also produce such a pattern. In light of our results from model

adequacy, it seems likely that OU is widely supported because it is able to

accommodate more “slop” than the other models. This is not to say that the605

processes captured by OU models are unimportant in macroevolution, but

rather that OU models may be favored for reasons that are more statistical

than biological.

The way in which the observed summary statistics deviate from the

simulated values also supports the claim that the widespread support for610

OU is largely a statistical artifact. Model violations were most frequently

detected by the global rate estimate MPIC, in all cases MPIC calculated from

the observed contrasts was less than the mean of MPIC calculated from the

contrasts of the data simulated on the unit tree. If the evolutionary pro-

cess (or, alternatively, phylogenetic/measurement error) is heterogeneous615

across the tree, the lineages in some parts of the clade will be much more

divergent than in others. The only way for the model to account for the

highly divergent groups is to estimate a large σ2 (and/or a small α param-

eter for the OU model). The unit tree formed by these parameter estimates

will have long branches across the entire tree. In the less divergent parts620

of the tree, the contrasts calculated on this unit tree will be small, rela-

tive to what we expect under BM. So perhaps counter–intuitvely, when

heterogeneity in processes across taxa cause the estimated global rates of

25

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 7, 2014. ; https://doi.org/10.1101/004002doi: bioRxiv preprint 

https://doi.org/10.1101/004002
http://creativecommons.org/licenses/by/4.0/


divergence to be inflated, resulting in a lower value for MPIC. For sim-

ilar reasons, values of VPIC calculated from the observed data tended to625

be larger than the simulated values, though not as consistently as MPIC is

smaller.

Returning to our case study, it is unclear why an OU model appears

to be an adequate model of seed mass evolution in Meliaceae but not in

Fagaceae (as detected by deviations in MPIC; figure 3). Both are woody630

lineages with large, usually vertebrate dispersed seeds (Pannell and Koziol,

1987; Manos et al., 2001). One intriguing difference between the two clades

is that some groups within Fagaceae have recently radiated, e.g., within

the oaks (Quercus) (Simeone et al., 2013). The same ecological processes

may be implicated in driving rapid speciation and heterogeneous patterns635

of trait evolution across the group (Schluter, 2000), but we do not have any

evidence that this is the case. Alternatively, the poor adequacy may not

be due to the features of the model per se but may indicate problems in

the data. Failure to fully account for measurement error, topological and

branch length errors, and “outlier lineages” (see Slater and Pennell, 2013)640

can all create a poor fit between the model and data, even if the model is

generally capturing the pattern of trait evolution along the phylogeny.

If a model is a poor fit, there are a number of ways forward. First, we

recommend that researchers take a close look at their data. Has measure-

ment error been appropriately incorporated into the analysis?; are a few645

contrasts much larger than the rest?; and if so, are these associated with

poorly supported nodes in the phylogeny? Such simple diagnostics will

likely prove to be informative in many cases. We suspect that for many

of the clades in which the models were all rejected, the inadequacy of the

model could be traced to idiosyncratic problems in the underlying datasets.650
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Second, researchers may need to incorporate additional biological realism

into their models. There has been a great deal of progress recently towards

developing more complex models of trait evolution, such as those allowing

multiple rates (O’Meara et al., 2006; Thomas et al., 2006; Eastman et al.,

2011), multiple OU optima (Butler and King, 2004; Beaulieu et al., 2012;655

Ingram and Mahler, 2013) and combinations of processes through time

(Slater, 2013). We chose the models we did for this analysis because they

are commonly used and because we they allowed a direct and straight-

forward comparison between different clades in our study as well as with

other similiar studies (e.g., Harmon et al., 2010). We were certainly not so660

naı̈ve as to think they would be appropriate at very large scales; for exam-

ple, we knew that a single rate BM model was unrealistic for the evolution

of seed mass across all Angiosperms (Moles et al., 2005). Though the three

models were widely rejected across our datasets, it is likely that models

that include heterogeneous processes will provide good explanations for665

the evolution of these functional traits in many groups. The patterns of

deviation between the observed and simulated summary statistics will of-

ten reflect interesting biology and can help guide researchers as to what

additional processes are likely to be important in their group and need to

be incorporated in the model of trait evolution. And our approach can,670

in turn, be applied to these more complex models to evaluate if they are

indeed adequate.

To be clear, we are not advocating in this paper that the p–values ob-

tained from simulations be used as a means of model selection; rather,

we view model checking as a step that should follow model choice and675

fitting (see Gelman et al., 2003, ch. 6, for discussion). If a model is inade-

quate, we recommend that researchers use the summary statistics to think
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critically about what type of additional processes need to be considered,

perhaps perform some sort of model selection on a new set of models, and

then evaluate the adequacy of a newly proposed model. Simply increasing680

the complexity of the model until it is no longer rejected by the summary

statistics is not advisable. Model selection criteria are designed to balance

bias and variance (the variance of a model increases with the number of

free parameters). We do not provide any mechanism to penalize the addi-

tion of extra parameters. In molecular phylogenetics, it is clear that some685

form of model selection is crucial for making reliable inferences (Sullivan

and Joyce, 2005; Ripplinger and Sullivan, 2008), but the relationship be-

tween different model selection criteria and model adequacy measures is

complex (Ripplinger and Sullivan, 2010; Boettiger et al., 2012).

However, it may be possible to extend our approach with an eye to-690

wards model selection. Slater and Pennell (2013) developed their posterior

predictive simulation approach (which is related to our method) to distin-

guish between a BM model and one where rates of evolution decreased

through time. They chose summary statistics (including the node–height

test Freckleton and Harvey, 2006, SHGT is our study) specifically to address695

this question. Slater and Pennell found using posterior predictive fit as a

model selection criterion to be much more powerful than comparing mod-

els using AIC or likelihood ratio tests, particularly when “outlier taxa”

(lineages where the pattern of evolution deviates from the overall model)

were included in the analysis. The logic of Slater and Pennell could be700

extended to other scenarios; to test some evolutionary hypotheses, we may

care a lot about whether a model explains varation along some axes but be

less concerned about others. This is a question–specific approach to model

selection and has been developed in the context of molecular phylogenetics
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(Bollback, 2002; Lewis et al., 2013). This is also the essence of the Decision–705

Theoretic approach to model selection (Robert, 2007), which has also been

well–used in phylogenetics (Minin et al., 2003), but has not previously been

considered in PCMs.

There are a number of additional ways our approach could be extended.

First, we have only considered a limited set of summary statistics. We chose710

them because each of these has a clear statistical expectation and observed

deviations from them have intuitive biological explanations. However, they

are certainly a subset of all possible summary statistics that could be ap-

plied. For example, because contrasts are i.i.d., there should be no auto-

correlation between neighboring contrasts; the summary statistics could be715

expanded to detect non–zero autocorrelation. Second, our approach can be

applied equally well to phylogenetic regression models, such as phyloge-

netic generalized least squares (Grafen, 1989) or phylogenetic mixed mod-

els (Lynch, 1991; Hadfield and Nakagawa, 2010), where concerns regard-

ing model adequacy are just as pertinent (Hansen and Bartoszek, 2012). In720

most phylogenetic regression models, the trait model describes the pattern

of covariance between the residuals rather than the data (Rohlf, 2001, 2006;

Freckleton et al., 2011) (but see Hansen et al., 2008). If we form the unit

tree from estimated model parameters and calculate the summary statistics

on the contrasts of the residuals, we can apply our approach. While our725

approach can be used to assess the adequacy of the phylogenetic compo-

nent of regression models “out of the box”, additional steps are required to

assess the adequacy of the linear component. Third, our method was de-

signed for quantitative trait models that assume data can be modeled with

a multivariate normal distribution. We need model adequacy approaches730

for other types of traits (e.g., binary, multistate, ordinal) and for quantita-
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tive models that do not predict a multivariate normal distribution of data

(Landis et al., 2013).

Arbutus

We have implemented our approach in a new R package arbutus. It735

is available on github https://github.com/mwpennell/arbutus. For this

project, we have also adopted code from the ape (Paradis et al., 2004),

geiger (Pennell et al., in press), diversitree (FitzJohn, 2012) and ggplot2

(Wickham, 2009) libraries. We have written functions to parse the output

of a number of different programs for fitting trait evolution models (see the740

arbutus website for an up–to–date list of supported models and packages).

As this approach was developed to be general, we have written the code in

such a way that users can include their own summary statistics and trait

models in the analyses; we include demonstrations of how this can be done

on the project website.745

Concluding remarks

Attempts to assess the adequacy of phylogenetic models are almost as old

as modern comparative phylogenetic biology. In the 1980s and 1990s much

discussion surrounded the appropriateness of various methods and mod-

els (Felsenstein, 1985, 1988; Harvey and Pagel, 1991; Garland et al., 1992;750

Dı́az-Uriarte and Garland, 1996; Price, 1997; Garland et al., 1999; Garland

and Ives, 2000). Ironically, as PCMs have become more widely adopted,

criticism of modeling assumptions has waned (but see Losos, 2011; Felsen-
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stein, 2012; Hansen and Bartoszek, 2012, for recent discussions). In our

analysis of Angiosperm functional traits, we demonstrate that these con-755

cerns regarding model inadequacy are not just theoretical. Commonly used

models in comparative biology were extremely poor explanations for the

data; this was true both across the tree and through time. The recent de-

velopment of models that incorporate different types of heterogeneity is

encouraging — invoking increased complexity of processes and patterns760

will likely be necessary for making robust evolutionary inferences from

comparative data. Evaluating the fit of macroevolutionary models should

be an important component of any comparative analysis. We hope that our

study can help move statistical model adequacy from being an “unknown

unknown” to being a “known known”, or at least a “known unknown”.765

That is to say, we may not know exactly why our model is not capturing

the variation in the data, but at least we will know it is not.
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Results from Bayesian analyses1045

As with the likelihood results (described in main text), OU models were

highly supported across many datasets; 178/337 clades had the highest

DIC weight (DICw) on an OU model; 157 of them with greater than 75% of

the total DICw (see figure S3). While a generally similar pattern of model

support holds for both likelihood and Bayesian inference, the likelihood1050

analyses are much cleaner (compare figure 4 and figure S3). This differ-

nce can be explained by the fact that there is a tight statistical relationship

between the AIC values for these three models. If two models have iden-

tical likelihoods, the AIC scores, defined as −2L+ 2k [where L is the log-

likelihood of the model and k is the number of parameters] will differ by 2.1055

As BM is a special case of both OU and EB, in opposite directions in model

space, the highest AICw possible for BM is ∼0.731). The rare clades were

both OU and EB have higher support than BM likely reflect problems in

optimization.) Calculating DIC values from posterior samples is inherently

more stochastic; if there is little information in data, the best DIC model1060

will depend on the values sampled by the chain.

For the model adequacy results, the results were also very similar to

that of the likelihood analyses (compare to Results section in the main

text). The adequacy of these simple models was woefully poor across most

of the datasets (figure S4). Again, we limit our analyses of model adequacy1065

to only the most highly supported model in the candidate set.

Of the 72 comparative datasets of SLA, the best supported model was

rejected by at least one summary statistic in all 72 cases, 31 by at least two,

and 17 by three or more. For the seed mass data, the model was rejected

by one or mor of the summary statistics in 185 datasets (by two or more in1070
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128 datasets and by at least three in 75 cases). All 39 leaf nitrogen datasets

again rejected the best supported model with at least one summary statistic

(18 by at least two and 7 by at least three).

Also, similar to the likelihood analyses, the frequency of rejection dif-

fered between the summary statistic. MPIC rejected the model in 246 datasets,1075

and VPIC in 169 (SVAR: 76, SANC: 70, SHGT: 36, DKS: 68). Again, only 41

datasets were adequately modeled by one of the three models in our candi-

date set. There was a strong relationship between model (in)adequacy and

clade size (figure S5), but not for clade age (figure S6).
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build unit tree from
model parameters

compute contrasts on unit tree
calculate summary stats

SX

simulate datasets on unit tree
under BM with rate 1

SY SY SY SY

calculate summary stats
on simulated data

compare SX with SY

fit model of trait evolution
to comparative data

Θ

Figure 1: Schematic diagram representing our approach for assessing
model adequacy. 1) Fit a model of trait evolution to the data; 2) use the
estimated model parameters to build a unit tree; 3) compute the contrasts
from the data on the unit tree and calculate a set of summary statistics
SX; 4) simulate a large number of datasets on the unit tree, using a BM
model with σ2 = 1; 5) calculate the summary statistics on the contrasts
of each simulated dataset SY; and 6) compare the observed and simulated
summary statistics. If the observed summary statistic lies in the tails of
the distribution of simulated summary statistics the model can be rejected
as inadequate. The rotational circle in the center of the diagram indicates
that assessing model adequacy is an iterative process. If a model is rejected
as inadequate, the next step is to propose a new model and repeat the
procedure.
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Figure 2: Illustration of how a unit tree is constructed from model pa-
rameters. The original phylogenetic tree (in red) can be represented by a
variance–covariance (vcv) matrix C. The elements Cm,n are the shared path–
length from the root to the most recent common ancestor of m and n. The
diagonal elements (m = n) are simply the total distance from the root to
the tips. Given a modelM and parameters θ, the expected vcv of the trait
values is described by a second matrix Σ. In the case of an OU model, the
elements of Σ can be calculated as Σm,n = σ2

2α e−2α(Tmax−Cm,n)(1− e−2αCm,n),
where Tmax is the depth of the tree (Hansen, 1997). We can then use the
fitted parameter values (in this example, σ2 = 0.5 and α, the strength of
attraction towards the optimum, is 1), and equation 2 to construct the unit
tree (blue). Focusing on a single branch i, the transformed branch length
ν′i = ΣA,B − ΣA,C. Note that not only have the branch lengths changed
relative to one another but the total tree depth T has decreased as well.
While the original tree has branch lengths in units of time, the unit tree has
branch lengths in units of expected (standardized) variance.
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Figure 3: Illustration of our approach to model adequacy. We fit three mod-
els (BM, OU, and EB) to seed mass data from two different tree families, the
Meliaceae and the Fagaceae. In both cases, an OU model (analyzed here)
was strongly supported when fit with ML. The plotted distributions are
the summary statistics (MPIC, VPIC, SVAR, SANC, SHGT, DKS) calculated from
the contrasts of the simulated data; the bars underneath the plots represent
95% of the density. The dashed vertical lines are the values of the sum-
mary statistics calculated on the contrasts of the observed data. Using our
summary statistics, an OU model appears to be an adequate model for the
evolution of seed mass in the Meliaceae; for all of the summary statistics,
the observed summary statistic lies in the middle of the distribution of sim-
ulated summary statistics. For the Fagaceae, the rate estimate MPIC from
the observed data is much lower that the rate estimate calculated on the
simulated datasets. We can therefore reject an OU model as inadequate for
this group (see text for details).
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Figure 4: The relative support, as measured by AIC weight, for the three
models used in our study (BM, OU, and EB) across all 337 datasets. An
OU model is highly supported for a majority of the datasets.
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Figure 5: The distribution of p–values for our six summary statistics over all
337 datasets in our study after fitting the models using ML. The p–values
are from applying our model adequacy approach to the best supported of
the three models (as evaluated with AIC). For both the rate estimate MPIC
and the coefficient of variation VPIC, the vast majority of datasets would
reject the best of the three models (at p < 0.05).
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Figure 6: The relationship between clade size and a multivariate measure
of model adequacy. The Mahalanobis distance is a scale–invariant metric
that measures the distance between the observed and simulated summary
statistics, taking into account the covariance between summary statistics.
The greater the Mahalanobis distance, the worse the model captures varia-
tion in the data. Considering only the best supported model for each clade
(as chosen by AIC), there is a striking relationship between the two — the
larger the dataset, the worse the models performed (note the logarithmic
scale). If the models were equally likely to be adequate at all scales, we
would expect no relationship.
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Figure S1: The relationship between relative and absolute fit. For every
clade for which a more complex model (OU, EB) was favored over BM
using AIC, the Mahalanobis distance between the observed summary and
simulated summary statistics is plotted against the improvement in AIC
for the more complex model compared to BM. (Note that as all AIC val-
ues were negative, larger differences mean greater relative support). The
greater the relative fit of a more complex model, the more likely the model
was to be inadequate. This result in primarily driven by clade size but
serves to emphasize the distinction between relative and absolute fit.
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Figure S2: The relationship between clade age and a multivariate mea-
sure of model adequacy. Considering only the best supported of the three
models (as selected by AIC, after fitting the models using ML), there is no
apparent relationship between the age of clade and the distance of the ob-
served and simulated summary statistics, as measured by the Mahalanobis
distance. Contrast this figure with figure 6, which demonstrates a very
tight relationship between clade size and model inadequacy.

53

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 7, 2014. ; https://doi.org/10.1101/004002doi: bioRxiv preprint 

https://doi.org/10.1101/004002
http://creativecommons.org/licenses/by/4.0/


D
at

as
et

DIC weight

m
od

el B
M

O
U

E
B

Figure S3: The relative support, as measured by DIC weight, for the three
models used in our study (BM, OU, and EB) across all 337 datasets. All
models were fit with MCMC. Like the model comparisons done with AIC,
an OU model is highly supported for a majority of the datasets.
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Figure S4: The distribution of p–values for our six summary statistics over
all 337 datasets in our study after fitting the models using MCMC. The
p–values are from applying our model adequacy approach to the best sup-
ported of the three models (as evaluated with DIC). For both the rate esti-
mate MPIC and the coefficient of variation VPIC, the vast majority of datasets
would reject the best of the three models (at p < 0.05).
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Figure S5: The relationship between clade size and a multivariate measure
of model adequacy from the Bayesian analysis. The Mahalanobis distance
is a scale–invariant metric that measures the distance between the observed
and simulated summary statistics, taking into account the covariance be-
tween summary statistics. The greater the Mahalanobis distance, the worse
the model captures variation in the data. Considering only the best sup-
ported model for each clade (as chosen by DIC), there is a striking rela-
tionship between the two — the larger the dataset, the worse the models
performed (note the logarithmic scale). If the models were equally likely
to be adequate at all scales, we would expect no relationship.
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Figure S6: The relationship between clade age and a multivariate measure
of model adequacy. Considering only the best supported of the three mod-
els (as selected by AIC, after fitting the models using MCMC), there is no
apparent relationship between the age of clade and the distance of the ob-
served and simulated summary statistics, as measured by the Mahalanobis
distance. Contrast this figure with figure S5, which demonstrates a very
tight relationship between clade size and model inadequacy.
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