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ABSTRACT
Motivation: Several applications in bioinformatics, such as genome
assemblers and error corrections methods, rely on counting and
keeping track of k-mers (substrings of length k). Histograms of
k-mer frequencies can give valuable insight into the underlying
distribution and indicate the error rate and genome size sampled in
the sequencing experiment.
Results: We present KmerStream, a streaming algorithm for
computing statistics for high throughput sequencing data based on
the frequency of k-mers. The algorithm runs in time linear in the
size of the input and the space requirement are logarithmic in the
size of the input. This very low space requirement allows us to deal
with much larger datasets than previously presented algorithms. We
derive a simple model that allows us to estimate the error rate of
the sequencing experiment, as well as the genome size, using only
the aggregate statistics reported by KmerStream and validate the
accuracy on sequences from a PhiX control.

As an application we show how KmerStream can be used to
compute the error rate of a DNA sequencing experiment. We run
KmerStream on a set of 2656 whole genome sequenced individuals
and compare the error rate to quality values reported by the
sequencing equipment. We discover that while the quality values
alone are largely reliable as a predictor of error rate, there is
considerable variability in the error rates between sequencing runs,
even when accounting for reported quality values.
Availability: The tool KmerStream is written in C++ and
is released under a GPL license. It is freely available at
https://github.com/pmelsted/KmerStream
Contact: pmelsted@hi.is

1 INTRODUCTION
k-mers are one of the most fundamental objects used when
analyzing DNA sequencing data. Many assembly algorithms (Zerbino
and Birney, 2008; Gnerre et al., 2011; Li et al., 2010) start by
constructing a de Bruijn graph, a graph containing all k-mers for
some fixed k. Some of the most commonly used algorithms for
aligning reads to a reference genome start by finding short exact
matches of a fixed length k (commonly referred to as a seed); an
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index of all k-mers is constructed and from this index an initial
alignment of a part of the read is found.

Current methods for obtaining aggregate statistics of k-mer
data are based on keeping track of all k-mers in a set of reads.
Much work has been done on reducing memory requirements,
based on exact or approximately correct methods of keeping track
of a large set of k-mers. This work includes using succinct
set representations (Conway and Bromage, 2011) or probabilistic
encodings such as Bloom filters (Pell et al., 2012; Chikhi and
Rizk, 2012; Melsted and Pritchard, 2011). Although the impact on
memory usage is considerable, compared to previous approaches,
these methods require storing all k-mers, explicitly or implicitly, in
memory. Thus the amount of resources will grow linearly with the
input size. Many methods also rely on having access to all the reads
for multiple passes over the data. Thus all of the above methods
suffer from “the curse of deep sequencing” (Roberts et al., 2011)
in which more sequencing can overwhelm the program in terms
of memory usage and the algorithms simply fail to make use of
increased amounts of data.

We propose using streaming algorithms to solve this problem, a
framework first proposed by Alon, Matias and Szegedy (Alon et al.,
1996). In this framework we assume that the algorithm has limited
memory, compared to the size of the dataset, and data arrives one
item at a time. The algorithm has limited time to process the item,
usually constant time or logarithmic in the input, and cannot store all
the data. Additionally, in the one pass setting, the algorithm can only
observe each item once and can never look back into the stream.
Several streaming algorithms have been discovered for a number
of problems, such as counting the number of distinct items in the
data stream using logarithmic memory (Bar-Yossef et al., 2002),
and finding heavy hitters (Cormode and Hadjieleftheriou, 2010),
i.e. frequent items that occur more than a fixed percentage of the
time. Most of these algorithms are approximate, and probabilistic,
one can specify the degree of the approximation and the probability
of correctness beforehand, which will in turn affect the memory
requirements and running time. The bioinformatics community has
not widely adopted streaming algorithms. We suspect this is in
part because of the probabilistic requirement and the complexity of
implementation. However, we argue that probabilistic algorithms
are ideally suited for sequencing data because a) the sequencing
experiment is inherently probabilistic, it is unlikely that the
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same dataset can be generated twice and b) if done properly
the probability that the algorithms is correct can be taken as an
input parameter, furthermore we can show that this probability is
independent of the dataset.

Sequencing errors cause considerable problems for k-mer based
algorithms for both assembly and read mapping; in assembly these
may cause the assembly to become disconnected and increases both
the memory usage and computational time. In read mapping it may
lead to increased computational overhead and the true location of
the read not being found. The removal or correction (Meacham
et al., 2011; Schröder et al., 2009) of erroneous bases and erroneous
fragments is therefore a common pre-processing step in the analysis
of DNA sequences, in particular when doing de novo assembly or
read mapping to a reference assembly. Several programs (Li et al.,
2010; Kelley et al., 2010; Liu et al., 2013) use k-mers to explicitly
fix or remove sequencing errors in the dataset and it is recommended
to use them prior to assembly (Salzberg et al., 2012).

A number of software programs have been written for quality
control of DNA sequencing data, including FastQC (Andrews,
2010). FastQC has a number of functionalities useful for quality
control, including giving a distribution of the quality values assigned
by the sequencer, quality distribution by position, N content and GC
content, identifying overrepresented k-mers and sequence length
distribution. However, the k-mers identified tend to be short, 6
basepairs by default, and although they are useful for identifying
contaminants they are not unique enough in the underlying genome
to be useful for assessing the sequencing error rate, independent of
what is given by the DNA sequencers.

The main contribution of this paper is a streaming algorithm
for estimating efficiently the number of k-mers that occur exactly
once in a data set, taking care of identifying the k-mer with its
reverse compliment. The time requirement for this algorithm is
only a constant factor times the time taken to read the data and
requires space that is only logarithmic in the size of the dataset. This
method can be extended to give an estimate of the k-mer abundance
histogram. Additionally our algorithm reports frequency moments
of the k-mer count, which are aggregate statistics of the histogram.

For experimental validation we show the results of running
KmerStream on reads from a single lane of PhiX control sequences.
We show the distribution accuracy of the estimator compared to the
accurate k-mer counts and that the estimators are almost always
within the approximationi levels guaranteed. Additionally we a
simple error model, both from the estimates KmerStream produces
as well as the true k-mer counts. Both error estimates are then
compared to the true k-mer error rate obtained from mapping k-
mers to the reference genome of PhiX174. The results in section 4.1
show that our simple error model underestimates the true error rate,
however only by a few percent on average.

As a simple application of our method we use it to estimate the the
error rate in a sequencing dataset, conditioned on the per basepair
quality value given by the instrument manufacturer. Unlike most
other methods designed for estimating error of sequencing data, the
method does not require the mapping of the data to a reference
genome as a preprocessing step. The low computational overhead
of our method makes it suitable to identify quality issues early on in
the analysis pipeline. The method can therefore be used as a filtering
step to determine the quality of a run, quickly determining errors
before the read mapping or assembly stage. We ran the method on
a set of 2656 whole genome sequenced individuals. Our results

suggest that the error probabilities given by Illumina are largely
accurate. Our results also show that once we have conditioned on
an error probability given by the instrument manufacturer there
is considerable variance in the sequencing error, suggesting that
sequencing error needs to be reassessed on a per sample basis. We
further construct a diploid genome containing all the called variants
assigned to haplotypes and compute the number of k-mers in this
diploid genome.

2 METHOD
We take as input a collection of short reads S. For each read s ∈ S we
generate all substrings of length k in s, denoted as k-mers. When reads
contain other characters than ACGT , such as N , we split the read on the
non-ACGT characters and consider all k-mers in the split reads. For each
k-mer we also consider the reverse complement of that k-mer, and in general
make no distinction between the two when counting.

A common task is to generate the abundance histogram for the k-mers. We
define fi to be the number of distinct k-mers that appear i times in the set of
reads. Since modern sequencing technologies are rarely strand-specific, we
process each k-mer and its reverse complement as if they were equal. The
histogram is then simply a table of the fi values.

Generating the exact histogram requires storing a large number of
k-mers in memory and can be done with k-mer-counting tools such
as Jellyfish (Marçais and Kingsford, 2011) or BFCounter (Melsted and
Pritchard, 2011). Counting all k-mers in high-throughput sequencing
datasets requires tens, or even hundreds of gigabytes of memory, whereas
the method we propose requires less than ten megabytes. Recently a method
was proposed that generates an approximation of the histogram based on
sampling k-mers (Chikhi and Medvedev, 2013), this method however does
not have a guaranteed error rate associated with it.

We propose to not consider the exact histogram itself, but to compute
statistics based on the histogram counts, which can be found using
less memory and more speed than current methods by using streaming
algorithms.

One of the key statistics we are interested in is f1, the number of singleton
k-mers, i.e. k-mers that appear exactly once in the set of reads. Previous
studies (Melsted and Pritchard, 2011) have shown that when a genome is
being sequenced at relatively high coverage the majority of singleton k-
mers do not come from the genome, and are generated from sequencing
errors. Also, the number of singleton k-mers grows with increased coverage,
whereas the number of k-mers from the genome will approach a fixed
number as coverage increases.

Given the frequencies fi of the histogram, we define the k-th frequency
moment, Fk , as

Fk =
∑
i

ik · fi (1)

In addition to the number of singleton k-mers f1, we are interested in three
moments; F0, F1 and F2. F0 is the number of distinct k-mers in the set
of reads and F1 is simply the number of k-mers in the reads, counted with
repetition. The second moment, F2, puts a higher weight on the number of
k-mers that have high abundance values.

For each of the frequency moments streaming algorithms have been
developed, that can estimate their value to within a factor of (1±ε) with high
probability using only O

(
ε−2 · log(N)

)
memory, where N is the number

of k-mers. It should be noted that estimating the frequency is solved in the
general setting of counting arbitrary items in a stream, but for the remainder
of the paper we will focus exclusively on the k-mer counting case.

Estimating the second moment, F2, was first solved in the seminal
work of Alon, Matias and Szegedy (Alon et al., 1996). This paper also
formalized the framework and popularized the research field. The first
rigorous estimator for the number of distinct elements, F0 is from (Bar-
Yossef et al., 2002), although earlier work from (Flajolet and Nigel Martin,
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1985) applies as well. The first moment, F1, is easiest to construct as we can
maintain a single counter that is incremented once for each k-mer.

2.1 Estimating F0 and f1

To compute the f1 estimator we use a hashing approach similar to the
approach of Bar-Yossef et al. (Bar-Yossef et al., 2002). The high level idea of
the algorithm is to sample the stream at different rates, and afterwards select
the sampling rate that gives the best result. For each k-mer a we compute
the hash value h(a) and find the least significant 1 when the value is written
in binary, e.g. if h(a) = 01101002 then the least significant 1 is in the third
position. For the zero value we define the position to be 64, or the number
of bits used to represent the value. If the location of this bit is w, then 2w−1

divides h(a) and the binary representation of h(a) ends in 1, followed by
w− 1 zeroes. Note that half the k-mers will have w = 1 a quarter will have
w = 2, etc.

The data structure we use is a list of arrays, T , one for each potential
value ofw, we say that the array Tw is at levelw, and we say that all k-mers
with value w hash to this level. Each array has a fixed size R that is only
dependent on the error parameters ε, and each element in the array is a 2-bit
number storing values from 0 to 3. When processing a k-mer a we look into
the array Tw . Conditioned on the value of w the w least significant bits are
no longer random and so we discard the lowestw bits. We then use the result
of the division, modulo the size of the array, an index into the array Tw and
increase the counter there. As we are only interested in f1, in the application
presented here we limit the counter to two bits and if the counter is at 3, we
do nothing. An extension of this work would be to allow the counter to count
more bits, the algorithm could then be used to estimate fi for general i.

When the number of k-mers is much larger than R the array in T1 will
almost certainly be full, i.e. all the values will be at 3. This indicates that
sampling at a rate of one half is too small, and so we should look at lower
sampling rates. Algorithm 1 estimates f1 by relating it to the probability
that a counter in an array has value 0 or value 1 respectively. To get a good
estimate for those probabilities we require that the number of distinct k-mers
that hash to the array is roughly of the same size as the array itself. Thus after
we have processed all the k-mers we can find the most appropriate array Tw
to use.

If we look at a fixed level w, the probability of a counter being 0 depends
only on the number of distinct k-mers that hashed to this level, Nw . This
probability should be (1− 1

R
)Nw , as the probability of each k-mer hashing

to this counter is 1
R

. Note that the multiplicity of the k-mer does not factor
in here, since each k-mer will always hash to the same counter every time
it appears. If we can estimate this probability accurately, call it p0, we can
solve for Nw to get an approximation on the number of k-mers that hash to
the level w. Note that solving

p0 = (1−
1

R
)Nw (2)

for Nw yields

Nw =
ln(p0)

ln
(
1− 1

R

) (3)

Since the sampling rate is 1
2w

we can use this to approximate the number
of distinct k-mers. Our estimator for p0 is p̂0 = t0

R
where t0 is the number

of empty counters in the array Tw . The estimator of the number of distinct
k-mers is then

F̂0 = 2w
ln
(
t0
R

)
ln
(
1− 1

R

) (4)

Although this would work for any value of w, i.e. all values of w have the
same expectation, different values of w have different variance. If we use
w = 1, then nearly all values in Tw will be non-zero, giving a poor point
estimate of p0. Similarly if w is too high, so that only a handful of elements
map to Tw the estimate for p0 will be poor. In general we want our estimates
to be bounded away from 0 and 1, to this end we select the level w∗ where
the fraction of empty counters is as close to 50% as possible. By thinning the

stream of hash values we can adaptively sample at different rates and decide
on the best rate to use after we have seen all the data when we have to report
the answer.

Up to this point we have followed the work of Bar-Yossef et al. (Bar-
Yossef et al., 2002), the estimator here is identical to the one derived in
Theorem 2 of (Bar-Yossef et al., 2002). We now show how to extend these
results to obtain an accurate estimate of f1.

We define a singleton to be a k-mer that occurs once and let x1 be the
number of singletons that hash to level w. We note that each counter with a
value of 1 has to be the result of a singleton k-mer hashing to this counter,
since for non-singleton k-mers the counter would have been increased at
least twice. On the other hand some singleton k-mers will hash to the same
counter as some other k-mer so we must find a way to relate x1 to some
probability we can compute. The probability that a counter contains the value
1 is then

p1 =
x1

R
(1−

1

R
)Nw−1 (5)

, this is seen by choosing the singleton k-mer that should hash to the counter
in x1 ways, it hashes to the counter with probability 1

R
and all the other

Nw−1 k-mers must not hash to the counter with probability (1− 1
R
)Nw−1.

Note that from (2) we see that the part (1 − 1
R
)Nw−1 is equal to p0

1− 1
R

=

R
R−1

p0. Thus we have p1 = x1
R

R
R−1

p0, simplifying and solving for x1
yields

x1 = (R− 1)
p1

p0
(6)

We estimate p1 in the same fashion as p0, namely let t1 be the number of
counters in Tw equal to 1 and set p̂1 = t1

R
.

We can expect the error in the estimates of the probabilities to be on the
order of 1√

R
, which will then translate to an error rate of similar magnitude

for the f1 estimator.

Algorithm 1 Streaming algorithm for counting k-mers
function UPDATE(a)

z← h(a)
w← Least significant bit of z . 0-based index
i←

⌊
z

2w+1

⌋
(mod R)

Tw[i]←min(Tw[i] + 1, 3)

function ESTIMATE-STATISTICS

w∗← argminw
∣∣|{i : Tw[i] = 0}| − 1

2

∣∣ . select level
p0← |{i:Tw∗ [i]=0}|

R
. Probability estimates

p1← |{i:Tw∗ [i]=1}|
R

f1← 2w
∗
(R− 1) p1

p0

F0← 2w
∗ ln(p0)

ln(1− 1
R

)

return (f1, F0)

We formalize the selection of the optimal value of w in Theorem 1, the
proof of this theorem can be found in the supplement for the paper.

THEOREM 1. If f1 ≥ F0
λ

then Algorithm 1 finds f̂1 such that (1 −
ε)f1 ≤ f̂1 ≤ (1 + ε)f1 with probability at least (1 − δ). The algorithm

usesO
(
λ2 log(1/δ)

ε2
log(N)

)
memory andO(1) time per update, whereN

is the number of elements in the stream.

Unlike for most statistical estimators, the theorem does not derive a
distribution for the f1 statistic, but rather a bound on the probability that
the point estimate deviates too far from the true value. In fact the estimator is
slightly biased, since it uses the ratio of two unbiased estimators, p0 and p1
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in Algorithm 1. However this bias is guaranteed to be smaller than the error
rate ε used to select the parameter R.

We note that this method can be extended to obtain estimates of higher
frequencies, fi for i ≥ 2. As an example for f2, we note that if a
counter has the value 2, this can only be obtained from two independent
singletons mapping to the counter or one k-mer with frequency 2. The first

happens with probability

(
x1
2

)
R2

(
1− 1

R

)N−2 and the latter with probability
x2
R

(
1− 1

R

)N−1, where x1 and x2 are the number of k-mers with
frequency 1 and 2 that map to a level. Given an estimate for N and x1 we
can solve to obtain an estimate for x2. This scheme could be generalized for
higher values of i to obtain estimates of fi, although obtaining a guarantee
on the error rate is left as an open problem.

2.2 Estimation of error rate
We can use our results to estimate error rates of a genomic sequencing
experiment. For this we will focus on the k-mer error rate, i.e. given a k-
mer from a read what is the probability that is did not originate from the
DNA sequenced. This rate is higher than the basepair error rate, since we
require all of the k basepairs to be intact. If the sequencing errors in a read
were independently distributed, it would be easy to convert the k-mer error
rate to a basepair error rate. However sequencing errors are not independent,
generally the ends of the higher error rates and sequencing errors can come
in batches. Thus we will focus on the k-mer error rate in this discussion and
note that converting it to a basepair error rate assuming independence will
lead to an underestimate of the true basepair error rate.

We use a simple generative model where total number of sampled k-mers
with repetition, namely F1, is given. Each k-mer comes from a random
position in the genome of size G, and with probability εk it contains a
sequencing error and is error-free with probability 1 − εk . To account for
repeated errors, we further assume that each erroneous k-mer is produced
by sampling a random basepair and changing it to one of the three other
nucleotides so that it does not match the reference. The number of k-mers
sampled at each location follows a Poisson distribution with mean λ and
so the coverage of an error-free k-mer is Poi(λ(1 − εk). For a fixed
erroneous k-mer the coverage follows a Poi(λεk

3k
), assuming that there is

only one possible position in the genome that could produce this error. Our
model has three parameters, G,λ and, εk . To obtain estimates for these
parameters we require three statistics, namely f1, F1 and, F0. Given the
Poisson distributions of the coverages and the number of possible k-mers G
for the error-free and G · 3 · k for the single error k-mers, we can derive the
following equations

F0 = G · 3k
(
1− e−

λεk
3k

)
+G ·

(
1− e−λ(1−εk)

)
(7)

F1 = λ ·G (8)

f1 = G · 3k ·
λεk

3k
e−

λεk
3k +Gλ(1− εk)e−λ(1−εk)

= Gλεke
−λεk

3k +Gλ(1− εk)e−λ(1−εk) (9)

We can isolate λ from (8) and G from (7) to obtain

λ =
F1

G
=
F1

F0

(
3k

(
1− e−

λεk
3k

)
+
(
1− e−λ(1−εk)

))
(10)

Similarly we derive by canceling the common factor Gλ from (9) using (8)

f1

F1
= εke

−λεk
3k + (1− εk)e−λ(1−εk) (11)

Using equations (10) and (11) we can solve for λ and εk numerically to
obtain an estimate of the coverage, k-mer error rate and finally the genome
size.

We make a couple of observations about this model. First, the assumption
that all error k-mers are solely due to single nucleotide differences causes
us to slightly underestimate the true error rate. Second, a sequencing error

in one k-mer may not be detected as an error because the error k-mer also
occurs as a true k-mer in the genome. As we have chosen k = 31 then in
random DNA the probability that a error k-mer also occurs in the genome
is less than 10−9. Third, the same error k-mer can occur in two distinct
reads by chance given high enough coverage, this is modeled in our k-mer
distribution model via the Poisson variables. However the model does not
take into account k-mers that have a high repeat count, due to repetitive
regions or systematic errors in sequencing. According to our computations
96.6% of the genome of 31-mers in the genome occur exactly once or twice
on a diploid genome. It has been observed that in practice sequencing reads
are not randomly sampled from the genome and the true distribution is not a
Poisson distribution. In particular the coverage of genomic regions is known
to be dependent on the GC rate of the basepairs (Minoche et al., 2011).
Meacham et al. (Meacham et al., 2011) have shown that the error rate is
site specific, i.e. that sequencing error rate varies with the location being
considered. Nonetheless we show in section 4.1 that this simplified model
gives a good estimate of the k-mer error rate using only three statistics from
the k-mer distribution, rather than the entire histogram.

3 COMPUTATIONAL EXPERIMENTS
3.1 Implementation
The software is implemented in C++ and can read FASTQ,
compressed FASTQ and BAM files. The user can select the k-mer
size used, the error rate ε and additionally it allows for filtering k-
mers based on quality scores. For the quality filtering, all bases in
a read that do not meet the cutoff are discarded, thus only k-mers
where all the bases in the k-mer have good quality values are kept.

3.2 Setup
We ran our algorithm on a data set of 2656 whole genome
sequenced individuals, using Illumina HiSeq sequencers. The
individuals being sequenced had an average coverage of 15.9x
and a minimum coverage of 6x. All of these data are sequenced
under the same conditions at the same laboratory and have already
undergone a number of quality control procedures (Styrkarsdottir
et al., 2013). We would expect these data to have comparable error
characteristics.

All reads that were labeled as ”qc-failure” or ”optical or pcr
duplicate” were discarded from our analysis. For the remaining
reads we considered all k-mers that only contained basepairs that
had a q-value above a fixed threshold. Hence, if a read contains a
basepair with a q-score less than the given threshold only k-mers
to the left and to the right of the basepair were considered. Our
computations were run for q-score thresholds of 0, 13, 20 and 30,
corresponding to basepair error rates of 1, 0.05, 0.01 and 0.001,
respectively. Assuming independent error rates these basepair error
rates should correspond to a lower bound of 100.0%, 79.6%, 26.8%,
and 3.1% for the k-mer error rate, using the value k = 31. As an
example, when using a q-score threshold of 30 then, according to
the annotation given by the instrument manufacturer, all basepairs
considered should have an error rate of less than 0.001 or 0.1%. As
many of the basepairs will have even lower annotated error rates,
then if the annotation of the manufacturer is correct, the average
error rate should be even lower.

3.3 Counting k-mers in the human genome
We constructed the diploid genome of a single individual. As input
we used Human reference genome build 36, genotypes called in that
individual as determined using the GATK (DePristo et al., 2011;
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Table 1. Software comparison for running time and memory usage.

Software Parameter (k) Dataset Time Memory

KmerStream 21 H. Sapiens, chr14 194s 11M
KmerGenie 21 H. Sapiens, chr14 580s 127M
KmerStream 31 H. Sapiens, chr14 220s 11M
KmerGenie 31 H. Sapiens, chr14 703s 126M
KmerStream 31 B. Impatiens 3120s 11M
KmerGenie 31 B. Impatiens 7620s 114M

McKenna et al., 2010) genotype caller and the assignment of these
genotypes to haplotypes using long range phasing (Kong et al.,
2008). From these we constructed two copies of each chromosome.
We estimate a total of 2.552G 31-mers in this diploid genome, we
observe that 4.9% of the 31-mers only occur once in the diploid
genome, indicating that they overlap a polymorphic region, 91.7%
of the 31-mers occur twice, indicating that the region is non-
polymorphic, 0.1% occur three times, 1.9% of the 31-mers occur
four times and 1.4% occur more than four times.

4 RESULTS
For running time and memory, we compare our software,
KmerStream, to using KmerGenie on the H. Sapiens chr 14
(36M reads) and B. Impatiens (303 M reads), datasets from
GAGE (Salzberg et al., 2012). All tests were run on a Intel Xeon
E-2650 16-core processors at 2.4 GHz with 128 Gb of memory. For
the time comparison we only ran the histogram estimation step, the
program specialk, and not the entire pipeline for KmerGenie.

It should be noted that the time to read the H. Sapiens dataset
was 60 seconds and 1800 seconds for the compressed B. Impatiens
dataset. Our experiments show that KmerStream is at least 2-3 times
as fast as the previous approach and the memory usage is an order
of magnitude better.

4.1 PhiX174 Validation
To validate the accuracy of the k-mer error rate model proposed in
section 2.2 we used sequencing reads obtained from a PhiX control
lane. The sequencing data from the control has 363M reads, while
the genome size of PhiX174 is only 5386 nucleotides. Due to the
small genome size, reads were sampled so that the per basepair
coverage would be 30-fold. This was necessary to scale down
the coverage to values the better correspond to normal sequencing
coverage used for whole genome sequencing. This was repeated
1000 times and each computational experiment run independently.
For each input we used k = 31 and classified all k-mers in
reads as true or false, depending on whether they appeared in the
reference sequence or not. Separate histograms were generated for
both classes of k-mers. We then ran KmerStream for each input
obtaining estimates for f1, F1 and F0. The top row of figure 1 shows
the distribution of relative accuracy for f1 and F0 respectively. The
program was run with a default error guarantee of 2% for F0, since
for this input f1/F0 is about 0.5 this results in a 4% error guarantee
of f1. From the distribution of figure 1 (top row), we see that the

F0 estimate vs. true

0.97 0.99 1.01

f1 estimate vs. true

0.96 1.00 1.04

Estimated vs. true error rates

0.88 0.92 0.96 1.00

Estimated vs. true error rates

0.92 0.96 1.00

Fig. 1. Relative accuracy of KmerStream. Top row: accuracy for F0 and
f1 respectively. Bottom row: relative accuracy of k-mer error rate based on
k-mer estimates (left) and true k-mer numbers (right).

vast majority of the experiments have estimates within the error
guaranteed.

The error rate model was fitted using both the true values for the
statistics as well as the estimated values from KmerStream. The true
k-mer error rate was obtained by matching k-mers to the PhiX174
reference genome.

Given the number of caveats listed when deriving our simplified
model, as well as obtaining estimates from only three key statistics,
we are pleasantly surprised to see how well the model fits the actual
results. Based on the true values for the k-mer statistics we see
from figure 1 (bottom row, right) that our model underestimates
the k-mer error rate by 4% on average. When using the estimated
values from KmerStream, figure 1 (bottom row, left) shows that we
underestimate the error rate by 4% on average, same as using the
true k-mer statistics, but we observe an increase in the variance of
the accuracy of our estimate. This increase in variance is primarily
because of the underlying variance in our estimate of the k-mer
statistics. Of course the KmerStream method is much more efficient
than obtaining the accurate counts, both in terms of runtime and
memory.

4.2 Error rates
To estimate the error rates we ran a set of experiments on a set
of 2656 whole genome sequenced individuals. Figure 2 shows a
histogram of the average per k-mer error rate for different q-value
thresholds and in Table 2 we give critical values of the distribution of
the read error rate. We observe that without any filtering on q-values,
on average 5.9% of the k-mers are estimated to contain errors. This
number varies considerably between samples and 5% of the samples
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Table 2. Percentiles of k-mer error
rates at different q-value thresholds for
2656 individuals.

Percentile
Threshold 5 50 95

q0 3.7% 5.9% 11.4%
q13 0.6% 1.1% 2.2%
q20 0.4% 0.8% 1.8%
q30 0.3% 0.8% 2.2%

have an estimated error rate of 11.5% or higher, while 5% of the
samples have an estimated error rate of 3.7% or lower.

We observe that the error rate decreases with a higher q-value
threshold. We observe a marked uniform decline in the fraction
of error k-mers when the threshold is increased from 0 to 13, an
average reduction of 80%.. A smaller, but clear, decrease is observed
when the q-value threshold is increased from 13 to 20, 25% on
average. However when comparing increasing the threshold from
20 to 30 we observed an average change of −0.9%, but a median
of 9%. Additionally this decrease in the number of error k-mers is
not uniform and in 44% of all individuals the estimated error rate
increases when the q-value threshold is increased from 20 to 30,
i.e. using q-value thresholds larger than 20 does not necessarily give
one lower error rate k-mers. Furthermore the number of k-mers,
i.e. the coverage of the data set was reduced by 25% on average by
increasing the q-value threshold from 20 to 30.

In Figure 2 we consider only the k-mers that are removed when
the error threshold is increased, giving a histogram of the fraction
of those that are error k-mers. We observe that when increasing
the q-value threshold from 0 to 13, on average an estimated 35%
of the k-mers removed are error k-mers. This suggests that unless
the algorithm being used for analysis is highly robust to errors
then using a q-value threshold lower than 13 will in many cases
be problematic. On average of 85% of all k-mers in our dataset have
q-value at all bases greater than 13, indicating that not considering
k-mers with a q-value threshold less than 13 has limited impact on
the number of k-mers being considered while it has a large impact
on the fraction of k-mers that are error free. When we increase the
q-value threshold from 13 to 20 an average of 5% of the k-mers
removed are error k-mers and when increasing the threshold from
20 to 30 an average of 1.5% of the k-mers removed are error k-mers.

5 DISCUSSION
The amount of data being gathered with modern sequencing
methods continues to grow at a faster rate than our ability to
analyze and store the data. An alternative view to the current state
of the art is to consider technologies that sequence DNA “on the
fly”. In this case the sequencing machine does not store all the
results, but rather transmits the sequence reads as they are generated.
Technologies that fit this framework have been proposed (Branton
et al., 2008; Clarke et al., 2009) and are currently in development,
such as technologies from Oxford Nanopore, but technical details
are limited at this point in time. Regardless of the exact technologies

q0

0.00 0.12 0.24

q13

0.00 0.04 0.08

q20

0.00 0.04 0.08

q30

0.00 0.04 0.08 0.12

Fig. 2. k-mer error rates for different quality filters for 2656 individuals.

used, this new sequencing paradigm opens up new opportunities
for online or streaming analysis of the data, where we bypass the
storage requirements, and simply plug the sequencing directly into
the analysis. The upshot of developing streaming algorithms for
analysis of genetics datasets is that they are not only efficient in
terms of computational resources, but also future-proof in terms of
new sequencing paradigms.

One benefit of the algorithms we have developed is as follows;
that F0 − f1 is a crude estimate of the number of k-mers that
have been sequenced at least twice, when this number goes above
a certain fraction of the genome size we can decide to stop
sequencing. Another benefit is that when the error rate goes above
some threshold we can decide to stop the experiment immediately,
not wasting our time on failed experiments. The method presented
here can be particularly useful when used for a species that has
not been previously sequenced, allowing us to get an estimate the
coverage of this genome while sequencing prior to assembly.

When we condition on the error rate given by Illumina we
see considerable variability in the error rate between individuals.
Hence, it is not advisable to use the error rates in a model without
considering differences between individuals.

Our results show that although the base pair quality values
given by the instrument manufacturer are largely correct, there
appears to be a considerable sample dependent difference in the
the error rate conditioned on the base pair quality rate reported
by the manufacturer. Our recommendation based on the results of
sequencing 2656 individuals is to estimate both the number of k-
mers F0 as well as the coverage and k-mer error rate for multiple
q-value thresholds and decide on a case by case basis.
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Liu, Y., Schröder, J., and Schmidt, B. (2013). Musket: a multistage k-mer spectrum-
based error corrector for Illumina sequence data. Bioinformatics, 29(3), 308–315.
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