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Abstract

Phylogenetic analyses of molecular data require a quantitative model for how sequences
evolve. Traditionally, the details of the site-specific selection that governs sequence evolution
are not known a priori, making it challenging to create evolutionary models that adequately
capture the heterogeneity of selection at different sites. However, recent advances in high-
throughput experiments have made it possible to quantify the effects of all single mutations
on gene function. I have previously shown that such high-throughput experiments can be
combined with knowledge of underlying mutation rates to create a parameter-free evolution-
ary model that describes the phylogeny of influenza nucleoprotein far better than commonly
used existing models. Here I extend this work by showing that published experimental data
on TEM-1 beta-lactamase (Firnberg et al., 2014) can be combined with a few mutation rate
parameters to create an evolutionary model that describes beta-lactamase phylogenies much
than most common existing models. This experimentally informed evolutionary model is su-
perior even for homologs that are substantially diverged (about 35% divergence at the protein
level) from the TEM-1 parent that was the subject of the experimental study. These results
suggest that experimental measurements can inform phylogenetic evolutionary models that

are applicable to homologs that span a substantial range of sequence divergence.
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Introduction

Most approaches for the phylogenetic analysis of gene sequences require a quantitative evolu-
tionary model specifying the rate at which each site substitutes from one identity to another. In
maximum-likelihood and Bayesian approaches, the evolutionary model is used to calculate the
likelihood of the observed sequences given the phylogenetic tree (Felsenstein, 1981; Huelsenbeck
et al., 2001). In distance-based approaches, the evolutionary model is used to calculate the dis-
tances between pairs of sequences (Saitou and Nei, 1987; Hasegawa et al., 1985). For all these
approaches, inaccurate evolutionary models can lead to errors in inferred phylogenetic properties,
including incorrect estimates of evolutionary distances (Halpern and Bruno, 1998) and incorrect
tree topologies (Felsenstein, 1978; Huelsenbeck and Hillis, 1993; Lartillot et al., 2007; Rokas and
Carroll, 2008).

Unfortunately, existing phylogenetic evolutionary models are extreme simplifications of the
actual process of mutation and selection that shapes sequence evolution (Thorne et al., 2007).
At least two major unrealistic assumptions afflict most of these models. First, in order to make
phylogenetic algorithms computationally tractable, it is generally assumed that each site within
a gene evolves independently. Second, most widely used evolutionary models compound the
first assumption of independence among sites with the second unrealistic assumption that all sites
evolve identically — a severely flawed assumption since there is overwhelming evidence that pro-
teins have strong preferences for certain amino acids at specific sites (Ashenberg et al., 2013;
Halpern and Bruno, 1998). It is the second of these unrealistic assumptions that is addressed by
the experimentally informed evolutionary model described here.

A major reason that most phylogenetic evolutionary models assume that sites evolve identi-
cally is because it has traditionally been thought that there is insufficient information to do better.
In the absence of a priori knowledge about selection on individual sites, the parameters of an
evolutionary model must be inferred from the same sequences that are being analyzed phyloge-
netically. For instance, typical codon-level models infer parameters describing the equilibrium
frequencies of different codons, the relative rates of transition and transversion mutations, the
relative rates of nonsynonymous and synonymous mutations, and in many cases the shapes of
distributions that allow some of these rates to be drawn from several categories (Goldman and
Yang, 1994; Muse and Gaut, 1994; Yang et al., 2000; Kosiol et al., 2007). These parameters can
easily be inferred for a single general model that applies to all sites in a gene, but it is much

more challenging to infer them separately for each site without overfitting the available sequence
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data (Posada and Buckley, 2004; Rodrigue, 2013). Some studies have attempted to bypass this
problem by predicting site-specific substitution rates or classifying sites based on knowledge of
the protein structure (Thorne et al., 1996; Goldman et al., 1998; Scherrer et al., 2012; Rodrigue
et al., 2009; Kleinman et al., 2010) — however, such approaches are limited by the fact that the re-
lationship between protein structure and site-specific selection is complex, and cannot be reliably
predicted even by state-of-the-art molecular modeling (Potapov et al., 2009).

A more recent and more promising alternative approach is to infer the site-specific substitution
process directly from the sequence data (Lartillot and Philippe, 2004; Rodrigue et al., 2010; Le
et al., 2008; Wu et al., 2013; Wang et al., 2008). Fully specifying a different substitution pro-
cess for each site in a maximum-likelihood framework requires inferring a large number of free
parameters (there are 19 x L parameters for a gene with L codons if selection is assumed to act
on the amino-acid sequence). Therefore, the details of the site-specific substitution process must
be inferred without overfitting the finite available data. Two strategies have been successfully
employed to do this: constraining sites to fall in a fixed number of different substitution-model
classes (Wang et al., 2008; Le et al., 2008), or using non-parametric Bayesian mixture models that
treat the site-specific substitution probabilities as random variables that are integrated over a sta-
tistical distribution estimated from the data (Lartillot and Philippe, 2004; Rodrigue et al., 2010).
Although both of these strategies are somewhat complex, they yield much more nuanced evolu-
tionary models that eliminate some of the problems associated with the unrealistic assumption that
sites evolve identically.

Even more recently, a new type of high-throughput experiment has begun to yield data that
enables the creation of site-specific evolutionary models without any need to infer site-specific
selection from the naturally occurring gene sequences that are the subject of the phylogenetic
analysis. This new type of experiment is deep mutational scanning (Fowler et al., 2010; Araya
and Fowler, 2011), a technique in which a gene is randomly mutagenized and subjected to func-
tional selection in the laboratory, and then deep sequenced to quantify the relative frequencies
of mutations before and after selection. In cases where the laboratory selection is sufficiently
representative of the gene’s real biological function, these experiments provide information that
can be used to approximate the site-specific natural selection on mutations. To date, deep mu-
tational scanning has been used to quantify the impact of most nucleotide or codon mutations
to several proteins or protein domains (Fowler et al., 2010; Roscoe et al., 2013; Starita et al.,
2013; Melamed et al., 2013; Traxlmayr et al., 2012; McLaughlin Jr et al., 2012; Firnberg et al.,

2014; Bloom, 2014). For a few of these studies, the experimental coverage of possible mutations
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is sufficiently comprehensive to define site-specific amino-acid preferences for all positions in a
gene.

I have previously shown that such experimentally determined site-specific amino-acid pref-
erences can be combined with measurements of mutation rates to create a parameter-free evo-
lutionary model that describes the phylogeny of influenza nucleoprotein far better than existing
non-site-specific models that contain numerous free parameters (Bloom, 2014). Here I extend that
work by showing that it is also possible to create an experimentally informed evolutionary model
for another gene. I do this using deep mutational scanning data published by Firnberg et al. (2014)
that quantifies the effects of nearly all amino-acid mutations on TEM-1 beta-lactamase. In this
case, no measurements of mutation rates are available, so I construct an evolutionary model that is
informed by the experimentally measured site-specific amino-acid preferences but also contains a
few free parameters representing the mutation rates. I also augment this model with an additional
parameter that reflects the stringency of the site-specific amino-acid preferences in natural evolu-
tion versus the deep mutational scanning experiment used to measure these preferences. I show
that this evolutionary model greatly improves the phylogenetic fit to both TEM and SHV beta-
lactamases, the latter of which are substantially diverged (about 35% divergence at the protein
level) from the TEM-1 parent that was the subject of the deep mutational scanning by Firnberg
et al. (2014). These results generalize previous work on experimentally determined evolutionary
models, and suggest that site-specific amino-acid preferences are sufficiently conserved during

evolution to be applicable to gene homologs that span a substantial range of sequence divergence.
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Results

Evolutionary model
Summary of evolutionary model

I have previously described a codon-level phylogenetic evolutionary model for influenza nucleo-
protein for which both the site-specific amino-acid preferences and the nucleotide mutation rates
(assumed to be identical across sites) were determined experimentally (Bloom, 2014). The current
work examines a protein for which the site-specific amino-acid preferences have been measured
experimentally, but for which the nucleotide mutation rates are unknown. It is therefore necessary
to extend the evolutionary model to treat the nucleotide mutation rates as unknown free parame-
ters. Here I describe this extension.
In the model used here, the rate P, ,, of substitution from codon = to some other codon y at
site 7 is
Pray = Quy X Frzy, (Equation 1)

where (), denotes the rate of mutation from x to y, and F; ,, gives the probability that a mutation
from x to y fixes if it occurs. This equation assumes that mutation rates are uniform across sites,
and that the selection on mutations is site-specific but site-independent (i.e. the fixation probability

at one site is not influenced by mutations at other sites).

Fixation probabilities from amino-acid preferences

The fixation probability of a mutation from codon z to y is assumed to depend only on the encoded
amino acids .4 (z) and A (y), as synonymous mutations are assumed to be selectively neutral. The
fixation probabilities I ,, are defined in terms of the experimentally measured amino-acid pref-
erences at site 7, where 7, , denotes the preference for amino-acid a at site r, and the preferences

at each site sum to one (1 = > _ 7, ).

As in previous work (Bloz)m, 2014), I consider two different mathematical relationships be-
tween the amino-acid preferences and the fixation probabilities. However, novel to this work, I
consider a generalization of these relationships that allows the stringency of the amino-acid prefer-
ences to differ between natural sequence evolution and the deep mutational scanning experiments
used to measure 7, . Specifically, I take the probability of fixation to depend on (mﬂ)ﬁ where [3 is

a free parameter (constrained to have values > 0) that scales the stringency of the amino-acid pref-
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erences. A value of 5 = 1 implies equally stringent preferences in natural evolution and the deep
mutational scanning experiments. A value of § < 1 corresponds to less stringent preferences
in natural evolution than in the deep mutational scanning experiments, while a value of 5 > 1
corresponds to more stringent preferences in natural evolution in the deep mutational scanning
experiments. Naively, one might conjecture that 3 will typically have values > 1, since laboratory
experiments tend to be less stringent than natural evolutionary selection. In the following sections,
I will describe testing evolutionary models models that constrain 3 = 1 versus models that treat 3
as a free parameter.

With the addition of the stringency parameter 3, I consider the following relationships be-
tween the amino-acid preferences and the fixation probabilities. The first relationship derives
from considering the amino-acid preferences to be directly related to selection coefficients, and is

a generalization of the ninth equation derived by Halpern and Bruno (1998):

1 if 7TT7,4(3;) = 7Tr,A(y)

) — Bxln(w) (Equation 2)
ray rA@) otherwise.

Note that in Equation 2 the mutation terms in the original equation derived by Halpern and Bruno
(1998) are all set to be equal since the calculations of the amino-acid preferences ., from the
deep mutational scanning experiments already correct for differences in the mutagenesis rates,
whereas Halpern and Bruno (1998) were inferring the preferences from natural sequences and so
had to account for the mutation rates during natural evolution. Note also that the ninth equation of
Halpern and Bruno (1998) contains a typographical error in the denominator which is corrected
in Equation 2. Halpern and Bruno (1998) derive Equation 2 with 3 = 1 by assuming that the
sequences are evolving in the weak-mutation limit, and rigorous application of this relationship
with # = 1 in the context of the current work requires assuming that the effective population size
in the deep mutational scanning experiment is equivalent to that for the natural sequences that are
being phylogenetically analyzed.

The second relationship is based on considering the amino-acid preferences to reflect the frac-
tion of genetic backgrounds that tolerate specific mutations rather than selection coefficients in
any one genetic background. Specifically, experiments have shown that mutations that are dele-
terious in one genetic background can sometimes be neutral (or even advantageous) in a related

genetic background (Lunzer et al., 2010; Gong et al., 2013). One reason that mutational effects
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depend on genetic background is that most proteins are under selection to maintain their overall
stability above some critical threshold (Gong et al., 2013). This type of threshold selection gives
rise to the evolutionary dynamics described in Bloom et al. (2007), where stabilizing mutations
are always tolerated but destabilizing mutations are only tolerated in a fraction of genetic back-
grounds. In this case, mutations to higher preference (putatively more stabilizing) amino acids
will always be able to fix without deleterious effect, but mutations to lower preference (putatively
less stabilizing) amino acids are only sometimes tolerated. One way to represent these dynamics

is to use a relationship equivalent to the Metropolis et al. (1953) sampling criterion:

1 if T, A(y) > T, A(z)

B

Tr,,, 1 -

<ﬂ> otherwise.
TA(x)

Fr,a:y - (Equation 3)

Both of these relationships (Equation 2 and Equation 3) share the feature that mutations to
higher-preference amino acids fix more frequently than mutations to lower-preference amino acids

as long as 5 > 0.

Mutation rates

The rate of mutation (), from codon z to y is defined in terms of the underlying rates of nucleotide

mutation. Let R,,_,,, denote the rate of mutation from nucleotide m to n. Then

0 if x and y differ by more than on nucleotide )
Quy = (Equation 4)
R,,., if x differs from y by a single-nucleotide change of m to n.

Assuming that the same mutation process operates on both the sequenced and complementary

strands of the nucleic acid gives the constraint
Ryon = Ry, (Equation 5)

where m, denotes the complement of nucleotide m, since for example a mutation from A to G
on one strand induces a mutation from 7" to C' on the other strand. There are therefore six unique
nucleotide mutation rates: Ri.c = Rr.q, Baoa = Rr-c, Rast = Rroa, Rooa = Raor,
Rc.g = Rgc,and Ror = Rg_ 4.

In principle, these six mutation rates could be measured experimentally for the system of
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interest. In my previous work on influenza nucleoprotein (Bloom, 2014), I was able to devise an
experimental system for measuring the mutation rates for influenza in cell culture. The mutation
rates measured for influenza in this system were roughly symmetric (R,,-, = R,,—»), which was
sufficient to make the overall evolutionary model in Equation 1 reversible. However, in general it
is unlikely to be feasible to measure the mutation rates for most systems of interest. Furthermore,
it is known that mutation process is A7 -biased for many species (Hershberg and Petrov, 2010),
meaning that in general mutation rates will not be symmetric. Therefore, in general (and also for
lactamase specifically) it is necessary to infer the mutation rates from the sequence data without
assuming that they are symmetric.

In the absence of any constraints on the six mutation rates given above, the overall evolutionary
model defined by Equation 1 will not necessarily be reversible. However, it turns out (see Meth-
ods) that placing the following constraint on the mutation rates is sufficient to make the overall

evolutionary model reversible:
Ra.g X Re, .
Reor = A ey (Equation 6)
Rasc

This constraint lacks a biological justification, and is assumed purely for the mathematical con-
venience that it makes the model reversible. Although there is no biological reason to believe
that Equation 6 actually holds for real evolution, it is possible to give interpretations about what
assuming this equation implies about the mutational process. One interpretation is that the prob-
ability of mutating from C' to GG via an intermediate mutation to 7" is equal to the probabil-
ity of mutating from C to GG via an intermediate mutation to A, as Equation 6 implies that
Reor X Rr.¢ = Reo.a X Ra.g. Another interpretation is that the AT bias is the same for
transitions and transversions, as Equation 6 implies that Ro.7/Rr.c = Ro.a/Ra-c-

In the absence of independent information to calibrate absolute values for the branch lengths
or mutation rates, one of the rates is confounded with the branch-length scaling and so can be
assigned an arbitrary value > 0 without affecting the tree or its likelihood. Here the choice is
made to assign

Ric=1 (Equation 7)

so that all other mutation rates are defined relative to this rate. With these constraints, there are
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now four independent mutation rates that must be treated as unknown free parameters:

r
RA—>G

. RA—>T .
unknown mutation rate parameters = (Equation 8)

Reoa

\ Reoa

In practice, these four mutation rate parameters will be estimated at their maximum likelihood

values given the sequences and tree topology.

Equilibrium frequencies

Calculation of a phylogenetic likelihood requires assigning evolutionary equilibrium frequencies
to the possible codons in addition to specifying the transition probabilities given by Equation 1. In
many conventional phylogenetic models, these equilibrium frequencies are treated as free param-
eters that are estimated empirically from the sequence data. However, in reality the equilibrium
frequencies are the result of mutation and selection, and so can be calculated as the stationary
state of the stochastic process defined by the evolutionary model. Specifically, it can be shown
(see Methods) that for the evolutionary model in Equation 1, the equilibrium frequency p, , of
codon x at site 7 is
B (WT,A(x))B X (x
b (7o) % 4y

Dra (Equation 9)

where ¢, is given by

qr X (RA_@ + Rpeg + Rroc + RTQG)S_NAT(QC) X (Rc_nq + Roor + Rgoa + RGQT)NAT(QC)
x (Rc. A)NAT(@ (Equation 10)

where Nt (x) is the number of A and T nucleotides in codon x, the proportionality constant
is never needed since ¢, values always appear in the form of ratios, and the simplification from
the first to second line follows from Equation 5, Equation 6, and Equation 7. The equilibrium
frequencies p, , are therefore completely determined by knowledge of the experimentally deter-
mined amino-acid preferences m, ,, the mutation rate parameters in Equation 8, and the value of

the stringency parameter (3.
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Experimentally determined amino-acid preferences for beta-lactamase

The site-specific amino-acid preferences for beta-lactamase were determined using data from a
previously published deep mutational scanning experiment performed by Firnberg et al. (2014).
Specifically, Firnberg et al. (2014) created nearly all possible amino-acid mutants of TEM-1 beta-
lactamase and then used antibiotic selection to enrich for functional variants at various antibiotic
concentrations. Next, they used high-throughput sequencing to examine how the frequencies of
mutations changed during this functional selection. They analyzed their data to estimate the im-
pact of individual mutations on TEM-1 function, and had sufficient data to estimate the impact of
96% of the 297 x 19 = 5,453 possible amino-acid mutations.

Firnberg et al. (2014) report the impact of mutations in terms of what they refer to as the
“fitness” effects. Firnberg et al. (2014) calculate these fitness values from their deep mutational
scanning experiment in such a way that a mutation’s fitness effect is approximately proportional to
the highest concentration of antibiotic on which bacteria carrying that beta-lactamase variant are
able to grow. Therefore, although the fitness values are not calculated in a true population-genetics
framework, they certainly reflect effects of specific mutations on the ability of TEM-1 mutants to
function.

Here I use the fitness values provided by Firnberg et al. (2014) to estimate the preferences for
each of the 20 amino acids at each site in TEM-1. Specifically, let w, , be the fitness value for
mutation to amino-acid a at site r reported by Firnberg et al. (2014) in Data S2 of their paper. |

calculate the preference m, , for a at site r as

w .
Tra = =—— (Equation 11)
Z wr,a’
a/

where the sum over @’ ranges over all 20 amino acids, the wild-type amino acid at site r is assigned
a fitness of w, , = 1 in accordance with the normalization scheme used by Firnberg et al. (2014),
and the w, , values for the 4% of mutations for which no value is estimated by Firnberg et al.
(2014) are set to the average w, , of all non-wildtype amino acids at site r for which a w, , value
is provided.

The amino-acid preferences calculated in this manner are displayed graphically in Figure 1
along with information about residue secondary structure and solvent accessibility (see Supple-
mentary file 1 for numerical data). As is extensively discussed by Firnberg et al. (2014) in their

original description of the data, these preferences are qualitatively consistent with known informa-
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tion about highly constrained positions in TEM-1, and show the expected qualitative patterns of
higher preferences for specific (particularly hydrophobic) amino acids at residues that are buried in
the protein’s folded structure. Here I focus on using these amino-acid preferences in a quantitative

phylogenetic evolutionary model as described in the next section.

Experimentally determined amino-acid preferences improve phylogenetic fit
TEM and SHYV beta-lactamase phylogenetic trees

To test if evolutionary models informed by the experimentally determined amino-acid preferences
are superior to existing alternative models, I compared the fit of various models to beta-lactamase
sequence phylogenies. Firnberg et al. (2014) performed their deep mutational scanning on TEM-1
beta-lactamase. There are a large number of TEM beta-lactamases with high sequence identity
to TEM-1; the next closest group of lactamases is the SHV beta-lactamases (Bush et al., 1995),
which on average have 62% nucleotide and 65% protein identity to TEM beta-lactamases. I
assembled a collection of TEM and SHV beta-lactamases from the manually curated Lahey Clinic
database (http://www.lahey.org/Studies/). These sequences were aligned to TEM-1,
and highly similar sequences (sequences that differed by less than four nucleotides) were removed.
The resulting alignment contained 85 beta-lactamase sequences (Supplementary file 2), of which
49 were TEM and 36 were SHV.

Maximum-likelihood phylogenetic trees of the TEM and SHV beta-lactamases were con-
structed using codonPhyML (Gil et al., 2013) with the codon substitution model of either Goldman
and Yang (1994) or Kosiol et al. (2007). The resulting trees are displayed in Figure 2. The two
different substitution models give similar tree topologies — the Robinson-Foulds distance (Robin-
son and Foulds, 1981) between the trees inferred with the two different models is calculated by
RAxML (Stamatakis, 2006) to be 0.14. In both cases, the trees partition into two clades of closely
related sequences, corresponding to the TEM and SHV beta-lactamases.

Experimentally informed models are superior for combined TEM and SHV phylogeny

To compare the evolutionary models, HYPHY (Pond et al., 2005) was used to optimize the branch
lengths and free parameters of the evolutionary models to their maximum likelihood values on the
fixed tree topologies in Figure 2. This analysis showed that the evolutionary models informed by
the experimentally determined amino-acid preferences were clearly superior to commonly used

alternative codon-substitution models.
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Specifically, Table 1 and Table 2 show that the experimentally informed evolutionary mod-
els fit the combined TEM and SHV phylogeny with higher likelihoods than any of a variety of
commonly used alternative models, regardless of which tree topology from Figure 2 is used. This
superiority is despite the fact that the alternative models (Goldman and Yang, 1994; Kosiol et al.,
2007) contain many more free parameters. For instance, the most heavily parameterized alter-
native model contains 60 empirically estimated equilibrium frequency parameters plus an op-
timized parameter corresponding to the transition-transversion ratio, two optimized parameters
corresponding to a gamma distribution of nonsynonymous-synonymous ratios across sites (Yang
et al., 2000), and an optimized parameter corresponding to a distribution of substitution rates
across sites (Yang, 1994). In contrast, the experimentally informed models only contain four or
five free parameters (the mutation rates and optionally the stringency parameter 3) — yet these
experimentally informed models have substantially higher likelihoods. When AIC (Posada and
Buckley, 2004) is used to penalize parameters, the superiority of the experimentally informed
models is even more clear.

The experimentally informed models are superior to the non-site-specific models even when
the stringency parameter [ is fixed to one; however, the phylogenetic fit is substantially enhanced
by treating § as a free parameter (Table 1 and Table 2). In all cases, fitting of the stringency
parameter yields values of # > 1, indicating that natural evolution is more stringent than the ex-
periments in its preferences for specific amino-acids. This result is consistent with the notion that
selection during real evolution selection is more sensitive than the typical laboratory experiment.

To confirm that the superiority of the experimentally informed models is due to the fact that
the deep mutational scanning of Firnberg et al. (2014) captures information about the site-specific
amino-acid preferences, I tested evolutionary models in which these preferences were randomized
among sites or were set to the average frequencies of all amino-acids in the lactamase alignments.
In the former case, the , , values are randomly shuffled among sites, where in the latter case
T q for all values of r is set to the average frequency of amino-acid a over the entire lactamase
alignment. As can be seen from Table 1 and Table 2, these non-site-specific models perform
substantially worse than even the simplest versions of the models of Goldman and Yang (1994)
and Kosiol et al. (2007). This result shows that the improved performance of the experimentally
informed evolutionary models is overwhelmingly due to incorporation of information on the site-

specific amino-acid preferences rather than better modeling of the mutational process.
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Experimentally informed models are superior for individual TEM and SHV phylogenies

The foregoing results show that experimentally informed models are superior for describing the
combined TEM and SHV beta-lactamase phylogeny. Given that the amino-acid preferences were
determined by experiments using a TEM-1 parent, it is worth asking whether these preferences
accurately describe the evolution of both the TEM and SHV sequences, or whether they more
accurately describe the TEM sequences (which are closely related to TEM-1, Figure 2) than the
SHYV sequences (which only have about 65% protein identity to TEM-1, Figure 2). This question
is relevant because the extent to which site-specific amino-acid preferences are conserved during
protein evolution remains unclear. For instance, while several experimental studies have sug-
gested that such preferences are largely conserved among moderately diverged homologs (Ashen-
berg et al., 2013; Serrano et al., 1993), a simulation-based study has argued that preferences shift
substantially during protein evolution (Pollock et al., 2012; Pollock and Goldstein, 2014). If the
site-specific amino-acid preferences are largely conserved during the divergence of the TEM and
SHYV sequences, then the experimentally informed models should work well for both these groups
— but if the preferences shift rapidly during evolution, then the experimentally informed models
should be effective only for the closely related TEM sequences.

To test these competing possibilities, I repeated the analysis in the foregoing section separately
for the TEM and SHV clades of the overall phylogenetic tree (the red versus blue clades in Fig-
ure 2). This analysis found that the experimentally informed evolutionary models were clearly
superior to all alternative models for the SHV as well as the TEM clade (Table 3, Table 4, Table
5, Table 6). In fact, the extent of superiority of the experimentally informed model (as quantified
by AIC) was greater for the SHV clade than the TEM clade, despite the fact that the former has
fewer sequences. These results suggest that the applicability of the experimentally determined
amino-acid preferences extends to beta-lactamase homologs that are substantially diverged from

the TEM-1 parent that was the specific subject of the experiments of Firnberg et al. (2014).

The stringency parameter (5 generally improves experimentally informed models

The results in the foregoing sections show that use of the stringency parameter (3 improves the phy-
logenetic fit of the experimentally informed models of lactamase evolution. Previous work (Bloom,
2014) has shown that an experimentally informed evolutionary model without a stringency param-
eter (8 = 1) improves the phylogenetic fit to influenza nucleoprotein sequences relative to non-

site-specific models. To test whether the fitting of a stringency parameter further improves the
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experimentally informed evolutionary model of nucleoprotein, I repeated the analysis of Bloom
(2014) but also included a model variant in which 8 was fit by maximum likelihood.

Table 7 shows that fitting the stringency parameter substantially improves the phylogenetic fit
of the experimentally informed model of nucleoprotein evolution. This table also shows that as
with the lactamase models described above, the fitted value of $ was greater than one. Overall,
this result suggests that inclusion of a stringency parameter generally improves the phylogenetic
fit of experimentally informed evolutionary models. Presumably this improvement arises from the
fact that deep mutational scanning experiments are generally less stringent than real evolution, and
so values of 5 > 1 help scale the experimentally determined site-specific amino-acid preferences

to a stringency more reflective of those that constrain real evolution.

Experimentally informed models are slightly better for many sites

The results described above and in Bloom (2014) demonstrate that experimentally informed evo-
lutionary models improve phylogenetic relative to non-site-specific models when analyzing the
entire gene sequences of lactamase or nucleoprotein. It is interesting to investigate which sites
are described more accurately by the experimentally informed models. This can be done by ex-
amining the differences in per-site likelihoods between models after fixing the branch lengths and
model parameters to their maximum likelihood values for the entire gene.

Figure 3 compares the per-site likelihoods for the best experimentally informed evolutionary
model for lactamase and for nucleoprotein relative to the best non-site-specific model for each
of these genes (using the models from Table 1 and Table 7). For both lactamase and nucleopro-
tein, the experimentally informed models lead to small improvements for many sites. Overall,
72% (207 of 286) lactamase sites are described better by the experimentally informed model
(Supplementary file 3), and 82% (407 of 498) of nucleoprotein sites are described better by the
experimentally informed model (Supplementary file 4). There appears to be a slight trend for
improvements due to the experimentally informed models to be most common for buried sites,
but the experimentally informed models lead to small improvements for sites spanning a range of
solvent accessibilities and secondary structures.

Interestingly, for both genes there are also a few sites for which the experimentally informed
models are far worse than the non-site-specific models. Presumably these sites are modeled poorly
because the preferences determined by the deep mutational scanning experiments do not accu-
rately capture the real preferences of natural evolution. Such discrepancies could arise from either

a failure of the deep mutational scanning experiments to fully reflect natural selection pressures,
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or from epistatic interactions that strongly shift the site preferences during natural evolution away
from those measured for the parent gene by the experiments. I was unable to observe any obvious
features of the specific sites that were described poorly by the experimentally informed models
(Supplementary file 3, Supplementary file 4). It therefore remains an open question why cer-
tain sites are described very poorly by the experimentally informed models even though the vast

majority of sites are described better by these models.

Comparison of different methods for computing fixation probabilities

In the foregoing analyses, two different mathematical relationships were used to mathematically
relate the experimentally determined amino-acid preferences to the substitution probabilities in
the evolutionary models. One relationship (Equation 2) is based on a true population-genetics
derivation by Halpern and Bruno (1998) under the assumption that the preferences are reflec-
tive of selection coefficients for amino acids at specific sites (an assumption that would only be
strictly true only in the unlikely case that individual sites in a gene contribute independently to
fitness). The other relationship (Equation 3) is a more ad hoc one that I suggested in previous
work (Bloom, 2014) on the grounds that the amino-acid preferences might be best envisioned not
as selection coefficients, but rather as measurements of the fraction of genetic backgrounds that
tolerate a specific mutation, as would be implied by the evolutionary dynamics described in Bloom
et al. (2007). Although both relationships share the qualitative feature that mutations to higher-
preference amino acids are favored over mutations to lower-preference ones, they differ in their
quantitative details. In previous work on influenza nucleoprotein (Bloom, 2014), I reported that
the relationship in Equation 3 outperformed the one in Equation 2 derived by Halpern and Bruno
(1998).

In contrast, for the beta-lactamase sequences studied here, the relationship of Halpern and
Bruno (1998) outperforms the one in Equation 3 (Table 1, Table 2, Table 3, Table 4, Table 5, Table
6). The reason for and relevance of these discordant results remains unclear. There are almost cer-
tainly differences in the evolutionary conditions (population size, degree of polymorphism, etc)
for influenza nucleoprotein and beta-lactamase that influence the relationship between selection
coefficients and fixation probabilities. In addition, there are substantial differences between the
experiments of Firnberg et al. (2014) on beta-lactamase and my previous work on nucleoprotein
— in particular, Firnberg et al. (2014) examine the effects of single mutations to the parental gene,
whereas the nucleoprotein experiments examined the average effects of individual mutations in

variants that often contained multiple mutations. Finally, the experimental measurements are im-
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perfect — for nucleoprotein, the preferences determined by independent biological replicates of the
experiments only had a Pearson correlation coefficient of 0.79; Firnberg et al. (2014) do not pro-
vide data on the consistency of their measurements across biological replicates, but it seems safe
to assume that their experiments are also imperfect. Therefore, further work is probably needed to
determine if any meaning can be ascribed to the differences in fit for Equation 2 versus Equation
3, as well as to identify the optimal mathematical relationship for connecting experimentally mea-
sured amino-acid preferences to substitution probabilities in evolutionary models. However, both
the results presented here and in Bloom (2014) strongly suggest that using any reasonable math-
ematical relationship to inform evolutionary models with experimentally determined amino-acid
preferences is sufficient to lead to dramatic improvements in phylogenetic fit.

It is also interesting to speculate on the precise meaning of the stringency parameter 5. Ac-
cording to population-genetics theory, the strength of selection increases with effective population
size. It is therefore tempting to interpret [ as reflecting differences in the effective population size
in the deep mutational scanning experiments relative to natural evolution. Indeed, one could imag-
ine even attempting to use the inferred value of J to indirectly quantify effective population size.
However, it is important to temper this tantalizing possibility with the reminder that the fixation
probabilities over the entire phylogeny can be related to the fitness effects of specific mutations
only under the unrealistic assumption that the fitness contributions of mutations at different sites
are entirely independent, since these probabilities reflect the effect of a mutation averaged over all
genetic backgrounds in the phylogeny. So while the fact that using S > 1 consistently improves
phylogenetic does indicate that natural evolution is more stringent in its site-specific amino-acid

preferences than the experiments, the exact population-genetics interpretation of /3 is unclear.
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Discussion

I have shown that an evolutionary model informed by experimentally determined site-specific
amino-acid preferences fits beta-lactamase phylogenies better than a variety of existing models
that do not utilize site-specific information. When considered in combination with prior work
demonstrating that an experimentally determined evolutionary model dramatically improves phy-
logenetic fit for influenza nucleoprotein (Bloom, 2014), these results suggest that experimentally
informed models are generally superior to non-site-specific models for phylogenetic analyses of
protein-coding genes. The explanation for this superiority is obvious: proteins have strong prefer-
ences for certain amino acids at specific sites (Ashenberg et al., 2013; Halpern and Bruno, 1998)
which are ignored by non-site-specific models. The use of experimentally measured site-specific
amino-acid preferences improves evolutionary models by informing them about the complex se-
lection that shapes actual sequence evolution. Interestingly, inclusion of a parameter that allows
the stringency of site-specific amino-acid preferences during natural evolution to exceed those
measured by experiments further improves phylogenetic fit, suggesting that deep mutational scan-
ning experiments remain less sensitive than actual natural selection.

I have not compared the experimentally informed evolutionary models to more recent site-
specific models that infer aspects of the substitution process from the sequence data itself (Lartillot
and Philippe, 2004; Rodrigue et al., 2010; Le et al., 2008; Wu et al., 2013; Wang et al., 2008). Such
a comparison is desirable since these site-specific models will almost certainly compare more fa-
vorably to the experimentally informed models used here. Unfortunately, such a comparison is
sufficiently technically challenging to be beyond the scope of the current work, since it requires
comparing between maximum-likelihood and Bayesian approaches. In any case, the experimen-
tally informed evolutionary models described here should not be viewed purely as competitors for
existing site-specific substitution models. Rather, one can imagine future approaches that integrate
the results of a deep mutational scanning experiment with additional site-specific details inferred
from natural sequence data to create even more nuanced evolutionary models.

An advantage of experimentally informed evolutionary models is that they naturally lend them-
selves to interpretation in terms of quantities that can be directly related to both specific biochem-
ical measurements and the underlying processes of mutation and selection. This stands in con-
trast to most existing models, which are phrased in terms of heuristic parameters (such as codon
“equilibrium frequencies”) that reflect the combined action of mutation and selection and are not

accessible to direct experimental measurement. Experimentally informed evolutionary models
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therefore have the potential to facilitate connections between the phylogenetic substitution pro-
cesses and the underlying biochemistry and population genetics of gene evolution (Thorne et al.,
2007; Halpern and Bruno, 1998).

The major drawback of experimentally informed models is their more limited scope. Most
existing codon-based evolutionary models can be applied to any gene (Goldman and Yang, 1994;
Muse and Gaut, 1994; Kosiol et al., 2007) — but experimentally informed models require experi-
mental data for the gene in question. However, this requirement may not be as crippling as it ini-
tially appears. The first experimentally determined evolutionary model for influenza nucleoprotein
required direct measurement of both the site-specific amino-acid preferences and the underlying
mutation rates (Bloom, 2014). However, the model presented here only requires measurement of
the amino-acid preferences, as the mutation rates are treated as free parameters. Rapid advances
in the experimental technique of deep mutational scanning are making such data available for
an increasing number of proteins (Fowler et al., 2010; Roscoe et al., 2013; Starita et al., 2013;
Melamed et al., 2013; Traxlmayr et al., 2012; McLaughlin Jr et al., 2012; Firnberg et al., 2014;
Bloom, 2014).

In this respect, it is encouraging that the site-specific amino-acid preferences determined ex-
perimentally for TEM-1 improve phylogenetic fit to substantially diverged (35% protein sequence
divergence) SHV beta-lactamases as well as highly similar TEM beta-lactamases. As discussed
in the Introduction, there are two major limitations to most existing evolutionary models: they
treat sites identically, and they treat sites independently. Experimentally informed evolutionary
models of the type described here have the potential to completely remedy the first limitation as
deep mutational scanning defines site-specific selection with increasing precision. However, such
models still treat sites independently — and this limitation will never be completely overcome by
experiments, since the unforgiving math of combinatorics means that no experiment can examine
all arbitrary combinations of mutations (for example, TEM-1 has only 5453 single amino-acid
mutants, but it has 14815801 double mutants, 26742520805 triple mutants, and over 10'® quadru-
ple mutants). The utility of experimentally informed evolutionary models therefore depends on
the extent to which site-specific amino-acid preferences measured for one protein can be extrapo-
lated to other homologs — in other words, are sites sufficiently independent that the preferences at
a given position remain similar after mutations at other positions? This question remains a topic of
active debate, with experimental studies suggesting that site-specific preferences are largely con-
served among closely and moderately related homologs (Ashenberg et al., 2013; Serrano et al.,

1993), but some computational studies emphasizing substantial shifts in preferences during evo-
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lution (Pollock et al., 2012; Pollock and Goldstein, 2014). The fact that the TEM-1 experimental
data informs a model that accurately describes the substantially diverged SHV homologs suggests
reasonable conservation of site-specific amino-acid preferences among beta-lactamase homologs.

This apparent conservation of site-specific amino-acid preferences suggests that the phyloge-
netic utility of experimentally informed evolutionary models may extend well beyond the imme-
diate proteins that were experimentally characterized. This type of experimental generalization
would have precedent: only a tiny fraction of proteins have been crystallized, but because struc-
ture is largely conserved during protein evolution, it is frequently possible to use a structure deter-
mined for one protein to draw insights about a range of related homologs (Lesk and Chothia, 1980;
Sander and Schneider, 1991). It seems plausible that the conservation of site-specific amino-acid
preferences could similarly enable deep mutational scanning to provide the experimental data to
inform evolutionary models of sufficient scope to improve the accuracy and interpretability of

phylogenetic analyses for a substantial number of proteins of interest.
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Methods

Availability of computer code and data

The phylogenetic analyses were performed using the software package phyloExpCM (phylogenetic

analyses with experimental codon models, https://github.com/jbloom/phyloExpCM),

which primarily serves as an interface to run HYPHY (Pond et al., 2005). Input data, computer

code, and a description sufficient to enable replication of all analyses reported in this paper are

available via http://Jjbloom.github.io/phyloExpCM/example_2014Analysis_
lactamase.html andhttp://jbloom.github.io/phyloExpCM/example_2014Analysis_
Influenza_NP_Human_1918_Descended_withbeta.html.

Equilibrium frequencies and reversibility

Here I show that the evolutionary model defined by Equation 1 is reversible (satisfies detailed
balance), and has p, , defined by Equation 9 as its equilibrium frequency.

First, note that the fixation probabilities F) ., defined by both Equation 2 and Equation 3
satisfy reversibility with respect to the stringency-adjusted amino-acid preferences (7@, A(y))ﬂ -
namely that

(71—7"1“4(5’3))6 X Fm:y = (WT,A(y))/B X Fr,ym, (Equation 12)

as can be verified by direct substitution. This relationship means that if all codon interchanges
were equally likely (all @,, values are equal), then the equilibrium frequency p, , of codon x
would simply be proportional to the stringency-adjusted preference (m, A(x))ﬁ for the encoded
amino acid.

However, in practice all codon interchanges are not equally likely, so the actual equilibrium
frequencies p, , will also depend on the mutation rate parameters [7,,.,, listed in Equation 8. This
dependence is given by the ¢, terms in Equation 9. These ¢, terms can be thought of as the
expected equilibrium frequencies of the codons in a hypothetical situation in which there is no
selection and all 64 codons are equally fit (all F,. ,, values are equal). In other words, the g, terms
define the stationary state of the reversible stochastic process defined by the mutation rates @),,.

In order to show ¢, given Equation 10 defines this stationary state, it is necessary to show that

qz X Qxy =gy X ny' (Equation 13)
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There are up to 12 possible types of single-nucleotide mutations that can be made to a codon z
to create a different codon y (three possible mutations to each of the four possible nucleotides);
however only four of these types of mutations require independent verification of Equation 13.
Specifically, the possible types of mutations that require independent verification of Equation 13
are when x differs from y by a mutation of A - T, of C' - G, of A —» C, or of A — GG. The other
eight types of mutations do not have to be verified because they are equivalent to one of these first
four cases: C' — A is equivalent to A — C' by symmetry (i.e. interchange of the labels of codons x
and y), G — Ais equivalentto A — G by symmetry, 7' — A is equivalent to A — T by symmetry,
G — C'is equivalent to C' — G by symmetry, ' — G is equivalent to A — C because of Equation
5,T — C is equivalent to A — G because of Equation 5, G — T is equivalent to C' - A by
Equation 5 and then to A — C' by symmetry, and C' — T is equivalent to G — A by Equation 5
and then A — G by symmetry. So below I verify Equation 13 for the four independent types of
mutations, full verifying Equation 13.

The first case is where x differs from y by a mutation of A — T, such that ), = R4_r and

Qyz = Rr_ 4. In this case, we have

dx X Q:By - (RCQA)NAT(Z‘) X RA—>T
- (RC—LA)NAT(ZJ) X RT—>A

= qy X Qya, (Equation 14)

where the first line substitutes the definitions of Equation 10 and Equation 4, the second line
follows from Equation 5 and the fact that N7 (x) = Nar (y) if « and y differ only by an A —» T
mutation, and the final line again substitutes the definitions of Equation 10 and Equation 4.

The second case is where z differs from y by a mutation of C' — G, such that Q),, = Rcoq

and )y, = Rg_.c. In this case, we have

Qe X Qzy = (RC—»A)NAT(I) X Reoa
_ (RCqA)NAT(y) x Raoc

= qy X Qya, (Equation 15)

where the justifications for the three lines are identical for those used for Equation 14.

The third case is where x differs from y by a mutation of A — C, such that Q),, = R4.c and
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Qyz = Rc- 4. In this case, we have

Gz X Qa:y -

= qy X Qua (Equation 16)

where the first line substitutes the definitions of Equation 10 and Equation 4, the second line uses
Equation 7, the third line is simple algebra, the fourth line follows from the fact that Va7 (z)—1 =
Nar (y) if z can be converted to y by an A — C mutation, and the final line again substitutes the
definitions of Equation 10 and Equation 4.

The fourth and final case is where z differs from y by a mutation of A — G, such that Q,, =

Ra-¢ and @y, = Rg- 4. In this case, we have

4z X Qxy ==

= gy X Qua (Equation 17)

where the first line substitutes the definitions of Equation 10 and Equation 4, the second line uses
Equation 6 and Equation 7, the third line is simple algebra, the fourth line follows from the fact
that N7 () — 1 = Nar (y) if 2 can be converted to y by an A — C mutation, the fifth line
follows from Equation 5, and the final line again substitutes the definitions of Equation 10 and
Equation 4.

Taken together, Equation 14, Equation 15, Equation 16, and Equation 17 establish that Equa-
tion 13 holds for all possible independent types of mutations.

Finally, to show that the overall evolutionary model in Equation 1 is reversible and has p, ,

defined by Equation 9 as its equilibrium frequency, it is necessary to show that p, , X P, ., =
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Pry X

(. A<z>)

P, .. This follows trivially from Equation 12 and Equation 13:

qu

pr,:p X Pr,:vy

X Fyya ) X (qy X Qya)

- B

Z (WT,A(Z) X g

z

B
_ (71—7'7“4(?/)) X qy (Q % F )
- yx YT
> (WT,A(Z)) X g

= DPry X Pr,yx (Equation 18)

The fact that P, ., defines a reversible Markov process with stationary state p,., means that it

is possible to define a symmetric matrix S, such that

S, diag (...

where diag (..., pz, - -

P, diag (...,Ii,...),wehave

7pr,a:7 =

.) is the diagonal matrix with p, , along its diagonal.

) =P, (Equation 19)

Noting S,

o= 0 if x and y differ by more than one nucleotide mutation,
Y
Sy = Proy _ (Z (7rr A=z )6 X qz) @E—“ﬁ if x and y differ by one nucleotide,

Pruy e W (mrae))

];“” otherwise.

(Equation 20)
This matrix is symmetric since S, ;, = S, ,. as can be verified from the fact that Q” Qq” and
Fray 7 = Frye 5 as is guaranteed by Equation 12 and Equation 13.

(WT,A(y)) (ﬂ—r,A(ac))
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parameters
log (optimized +
model AAIC likelihood empirical) optimized parameters
experimental, Equation 2, free 3 0.0 -4020.6 5(5+0) Ra.qg=23,Ra.7=06,Rc,2=08 Rcc=07,6=1.6
experimental, Equation 2, 5 = 1 46.4 -4044.8 4(4+0) Ra.g=23,Ro.7=06,Rc_.4=0.8, Re_g=0.8
experimental, Equation 3, free 3 71.3 -4059.3 5(5+0) Rpoa.g=22,Rp.7=06,Rc,4=08 Rc,g=07,6=12
experimental, Equation 3, 5 = 1 85.7 -4064.5 4(4+0) Ra.g=22,Rp_7=06,Rc.4=08, Re_g=0.8
GY94, gamma w, gamma rates 392.4 -4208.8 134 +9) K =2.8, w shape = 0.4, mean w = 0.7, rate shape = 1.2
KOSIO7+F, gamma w, gamma rates 410.7 -4167.0 64 (4 + 60) Kk = 0.3, w shape = 0.4, mean w = 4.5, rate shape = 1.4
GY94, gamma w, one rate 460.9 -4244.1 12(3+9) K =2.7, w shape = 0.3, mean w = 1.0
KOSIO7+F, gamma w, one rate 467.0 -4196.1 63 (3 + 60) K = 0.3, w shape =0.3, mean w =5.3
GY94, one w, gamma rates 528.9 -4278.1 12(3+9) K =2.5, w=0.4, rate shape = 1.2
KOSIO7+F, one w, gamma rates 551.3 -4238.3 63 (3 + 60) K =0.4, w=2.1, rate shape = 1.5
KOSIO7+F, one w, one rate 632.9 -4280.1 62 (2 + 60) k=04, w=20
GY94, one w, one rate 656.2 -4342.7 112+9) k=24, w=04
randomized, Equation 3, free 8 724.5 -4382.9 5(5+0) Ra.g=24,Rpa7=06,Rc.4=09, Re_c=09,5=0.1
randomized, Equation 2, free 3 735.1 -4388.2 55+0) Rpo.g=24,Rp.7=06,Rc.4=09, Ro,5=09,5=00
avg. frequencies, Equation 3, free 3 820.8 -4371.0 65 (5 + 60) Raog=24,Rpa_7=06,Rc4=10,Rc_.5=09,8=0.5
avg. frequencies, Equation 2, free 3 841.8 -4381.5 65 (5 +60) Rpa.g=24,Rp.7=06,Rc,4=10,Rc,5=09,5=03
avg. frequencies, Equation 3, 8 = 1 858.0 -4390.6 64 (4 + 60) RA.g=23,Rp7=06,Rca=11,Rc.ag=10
avg. frequencies, Equation 2, 8 =1 900.7 -4412.0 64 (4 + 60) Ra.g=24 Ra_7=06,Rc_a=11,Rc_a=10
randomized, Equation 3 1264.9 -4654.1 4(4+0) Rag=23,Rp7=06,Rc4=09, Rog =09
randomized, Equation 2 1474.5 -4758.9 4(4+0) RA.g=26,Ra_7=06,Rc_.4=09, Rc_a=10

Table 1: Experimentally informed evolutionary models fit the combined TEM and SHV beta-
lactamase phylogeny in Figure 2A much better than models that do not utilize experimental data.
Shown are the difference in AIC relative to the best model (smaller AAIC indicates better fit),
the log likelihood, the number of free parameters, and the values of key parameters. For each
model, the branch lengths and model parameters were optimized for the fixed tree topology in
Figure 2A. The “experimental” models use amino-acid preferences derived from the data of Firn-
berg et al. (2014) plus four mutation rate parameters (Equation 8) and optionally the stringency
parameter (3. For the “randomized” models, the experimentally measured amino-acid preferences
are randomized among sites — these models are far worse since the preferences are no longer
assigned to the correct positions. For the “avg. frequencies” models, the amino-acid prefer-
ences are identical across sites and are set to the average frequency of that amino acid in the
entire lactamase sequence alignment — these models are also far worse than the experimentally
informed models, since they do not utilize site-specific information. Fitting the stringency param-
eter to a value of 5 > 1 improves the fit of the experimentally informed models by enhancing
the importance of the site-specific amino-acid preferences. Fitting the stringency parameter to a
value of § < 1 improves the fit of the randomized and avg. frequencies model by effectively
equalizing the preferences across amino acids. “GY94” denotes the model of Goldman and Yang
(1994) with 9 equilibrium frequency parameters calculated using the CF3x4 method (Pond et al.,
2010). “KOSIO7+F” denotes the model of Kosiol et al. (2007) with 60 equilibrium frequency
parameters calculated using the F methods. All variants of GY94 and KOSIO7+F have a sin-
gle transition-transversion ratio (x) estimated by maximum likelihood. Different model variants
either have a single nonsynonymous-synonymous ratio (w) or values drawn from four discrete
gamma-distributed categories (Yang et al., 2000), and either a single rate or rates drawn from
four discrete gamma-distributed categories (Yang, 1994). The data and source code used to gen-
erate this table are provided via http://Jbloom.github.io/phyloExpCM/example_

2014Analysis_lactamase.html.
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parameters
log (optimized +
model AAIC likelihood empirical) optimized parameters
experimental, Equation 2, free 3 0.0 -4019.9 5(5+0) Ra.g=22,Rpo.7=05 Rc.4=08 Rc,c=08,8=1.6
experimental, Equation 2, § =1 48.3 -4045.1 4(4+0) Ra,g=22,Ra.7=05 Rc.a4=08 Rc.g=038
experimental, Equation 3, free 3 76.1 -4058.0 5(5+0) Rpo.g=21,Rp.7=05 Rc.,4=08 Rc,c=08,8=13
experimental, Equation 3, 5 = 1 85.6 -4063.7 4(4+0) Ra.g=21,Rp.7=05 Rc.4=08, Reg=0.8
GY94, gamma w, gamma rates 398.0 -4210.9 134 +9) K =2.8, w shape = 0.4, mean w = 0.6, rate shape = 1.3
KOSIO7+F, gamma w, gamma rates 402.2 -4162.0 64 (4 + 60) Kk =0.3, w shape = 0.4, mean w = 4.2, rate shape = 1.4
KOSIO7+F, gamma w, one rate 455.1 -4189.5 63 (3 +60) K = 0.3, w shape = 0.4, mean w =4.3
GY94, gamma w, one rate 464.4 -4245.1 12(3+9) K =2.7, w shape = 0.3, mean w = 0.9
GY94, one w, gamma rates 527.9 -4276.9 12(3+9) Kk =2.5, w=0.4, rate shape = 1.2
KOSIO7+F, one w, gamma rates 529.8 -4226.9 63 (3 +60) K = 0.4, w=2.0, rate shape = 1.6
KOSIO7+F, one w, one rate 608.3 -4267.1 62 (2 + 60) k=04, w=20
GY94, one w, one rate 651.9 -4339.9 112+9) k=23, w=04
randomized, Equation 3, free 8 726.3 -4383.1 5(5+0) Raog=24,Rpa_7=05 Rc.4=09, Rc_g=09,8=0.1
randomized, Equation 2, free 8 737.0 -4388.4 5(5+0) Roa.g=24,Rpa7=05 Rc.4=09, Roc,g=09,8=0.0
avg. frequencies, Equation 3, free 8 823.7 -4371.8 65 (5 +60) Raog=24,Ra7=06Roca=10, Rcg=10,8=0.5
avg. frequencies, Equation 2, free 3 844.8 -4382.3 65 (5 + 60) Ra.g=24,Rpo7=06,Rc.4=10,Rc_c=1.0,8=0.3
avg. frequencies, Equation 3, 8 = 1 862.1 -4392.0 64 (4 + 60) Raog=23,Rpoo7=06,Rc,a=11, Roc,g=10
avg. frequencies, Equation 2, 5 =1  907.1 -4414.5 64 (4 + 60) Ra,g=24,Ra_.7=06,Rc_a=11,Rcg=11
randomized, Equation 3 1265.1 -4653.5 4(4+0) RaLg=23,Rp7=05 Rc.4=08, Roc.g=10
randomized, Equation 2 1474.1 -4758.0 4(4+0) RA.g=25 Rpa7=05 Rc.,4=08, Reg=1.1

Table 2: Experimentally informed evolutionary models also provide a superior phylogenetic fit

when the tree topology is estimated using the model of Kosiol et al. (2007) rather than that of
Goldman and Yang (1994). This table differs from Table 1 in that the phylogenetic fit is to all
TEM and SHV sequences using the tree topology in Figure 2B rather than that in Figure 2A.
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parameters
log (optimized +
model AAIC likelihood empirical) optimized parameters
experimental, Equation 2, free 3 0.0 -2374.3 5(5+0) Ra.g=19,Rpo.7=04, Rca=11,Rc,c=05,68=15
experimental, Equation 2, 5 = 1 23.1 -2386.8 4(4+0) Ra.g=19,Rp_7=04, Rc.a=11, Rc_g=0.5
experimental, Equation 3, free 3 81.8 -2415.2 5(5+0) Roa.g=18 Rp.7=04,Rca=11,Rc,c=05,6=12
experimental, Equation 3, 5 = 1 83.6 -2417.1 4(4+0) Ra.g=18 Rpo.7=04, Rc.a=11, Rc_cg=0.5
GY94, gamma w, gamma rates 252.2 -2492.4 134 +9) Kk =3.1, w shape = 0.3, mean w = 1.3, rate shape = 0.4
GY94, one w, gamma rates 317.6 -2526.1 12(3+9) K =3.0, w = 1.1, rate shape = 0.3
GY94, gamma w, one rate 318.5 -2526.5 12(3+9) K =3.2, w shape =0.2, mean w = 1.6
KOSIO7+F, gamma w, gamma rates 326.9 -2478.7 64 (4 + 60) r = 0.3, w shape = 0.3, mean w = 10.4, rate shape = 0.4
KOSIO7+F, gamma w, one rate 394.9 -2513.8 63 (3 + 60) x =0.3, w shape = 0.2, mean w = 13.7
KOSIO7+F, one w, gamma rates 412.0 -2522.3 63 (3 +60) K =0.3, w="7.9, rate shape = 0.3
randomized, Equation 3, free 8 465.8 -2607.2 5(5+0) Ra.cg=21,Rp,7=05 Rc.a=12, Rc_c=0.5,6=0.0
randomized, Equation 2, free 3 466.2 -2607.4 55+0) Rpo.g=21,Rp7=05 Rc.a=12,Roc=05,6=00
GY94, one w, one rate 483.3 -2609.9 112+9) k=29, w=1.1
KOSIO7+F, one w, one rate 556.7 -2595.7 62 (2 + 60) k=03, w=72
avg. frequencies, Equation 2, free 3 574.6 -2601.6 65 (5 + 60) Ra.g=21,Ra.7=05 Rc.a=12,Rcc=05,3=03
avg. frequencies, Equation 3, free 3 577.9 -2603.2 65 (5 + 60) Ra.g=21,Rp7=05 Rc.a=12, Rc_c=05,5=0.3
avg. frequencies, Equation 2, § = 1 609.1 -2619.8 64 (4 + 60) Ra.g=21,Rp7=05 Rc_.a=13,Rc.g =06
avg. frequencies, Equation 3, 8 =1 622.7 -2626.7 64 (4 + 60) RA.g=20,Ra_7=05 Rc_.a=13,Rc_.a=06
randomized, Equation 3 976.6 -2863.6 4(4+0) RALg=20,Rp7=05 Rc,a=11, Rcog =05
randomized, Equation 2 1007.8 -2879.2 4(4+0) RaA.g=23,Rp.7=05 Rc.a=11,Rc.g=0.5

Table 3: Experimentally informed evolutionary models also provide a superior phylogenetic fit
when the analysis is limited only to TEM beta-lactamase sequences. This table differs from Table
1 in that the phylogenetic fit is only to the TEM sequences (the portion of the tree shown in red in
Figure 2A.)
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parameters
log (optimized +
model AAIC likelihood empirical) optimized parameters
experimental, Equation 2, free 3 0.0 -1728.5 5(5+0) Ra.g=44,Rpo7=19,Rc,4=05 Rc,g=11,8=25
experimental, Equation 3, free 8 34.9 -1746.0 5(5+0) Ra.cg=42,Rpo7=19,Rc.4=05 Ro_g=1.1,=22
experimental, Equation 2, 5§ =1 106.2 -1782.7 4(4+0) Rag=45Rpa7=19,Rc,4=0.6, Rcg=12
experimental, Equation 3, 5 = 1 116.5 -1787.8 4(4+0) Ra.g=44, Ra_7=19,Rc.4=0.6, Rc_g=12
KOSIO7+F, gamma w, gamma rates 489.0 -1914.0 64 (4 + 60) Kk =0.2, w shape = 0.5, mean w = 2.9, rate shape = 0.2
KOSIO7+F, one w, gamma rates 499.7 -1920.4 63 (3 + 60) K =0.2, w = 1.8, rate shape = 0.3
GY94, gamma w, gamma rates 505.8 -1973.4 13(4+9) K = 3.6, w shape = 0.6, mean w = 0.5, rate shape = 0.2
GY94, one w, gamma rates 514.0 -1978.5 12(3+9) K = 3.4, w=0.3, rate shape = 0.2
KOSIO7+F, gamma w, one rate 555.7 -1948.4 63 (3 + 60) K =0.3, w shape = 0.3, mean w = 2.0
KOSIO7+F, one w, one rate 573.6 -1958.3 62 (2 + 60) k=03, w=1.8
GY94, gamma w, one rate 581.5 -2012.3 12(3+9) Kk = 3.4, w shape = 0.3, mean w = 0.4
randomized, Equation 3, free 3 601.7 -2029.4 5(5+0) Rpo.g=50,Rpa7=18 Rc,4=06, Rog=14,5=0.1
GY94, one w, one rate 602.6 -2023.8 112+9) k=34, w=03
randomized, Equation 2, free 8 602.7 -2029.9 5(5+0) Ra.g=51,Rp7=18 Rc,a=06 Ro.g=15,8=0.0
avg. frequencies, Equation 3, free 3 711.5 -2024.3 65 (5 + 60) Raog=50,Ra.7=20,Rc4=07, Rcc=15,8=03
avg. frequencies, Equation 2, free 3 715.7 -2026.4 65 (5 + 60) Racg=51,Ra7=19,Rc.4=0.7, Ro_g=1.5,5=0.3
avg. frequencies, Equation 3, 8 = 1 749.8 -2044.5 64 (4 + 60) Rag=49,Rp7=21,Rc4=08, Ro.g =16
avg. frequencies, Equation 2, 8 =1 758.8 -2048.9 64 (4 + 60) Ra.g=52,Rp7=21,Rc.4=08, Reg =17
randomized, Equation 3 1047.0 -2253.1 4(4+0) Rag=48, Ro7=18 Rc,4=06,Roc_g=14
randomized, Equation 2 1071.2 -2265.2 4(4+0) Ra.g=53,Rpo7=17,Rc.4=06,Rcg=1.5

Table 4: Experimentally informed evolutionary models also provide a superior phylogenetic fit

when the analysis is limited only to SHV beta-lactamase sequences. This table differs from Table
I in that the phylogenetic fit is only to the SHV sequences (the portion of the tree shown in blue
in Figure 2A.)
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parameters
log (optimized +
model AAIC likelihood empirical) optimized parameters
experimental, Equation 2, free 3 0.0 -2378.5 5(5+0) Raog=19,Rpo.7=05 Rca=11,Ro,c=04,8=15
experimental, Equation 2, 5 = 1 254 -2392.2 4(4+0) Ra-g=19,Rpo_7=05 Roca=11,Rog=05
experimental, Equation 3, free 3 80.6 -2418.8 5(5+0) Rpoag=18 Rp7=05 Rca=11,Ro,c=04,8=12
experimental, Equation 3, 8 = 1 83.7 -2421.4 4(4+0) Ra.g=18 Ra.7=05 Rc_a=11,Rcog=04
GY94, gamma w, gamma rates 257.6 -2499.3 134 +9) Kk =3.1, w shape = 0.4, mean w = 1.2, rate shape = 0.4
GY94, one w, gamma rates 317.7 -2530.4 12(3+9) K = 3.0, w = 1.0, rate shape = 0.3
GY94, gamma w, one rate 324.1 -2533.6 12(3+9) x =3.1, w shape = 0.2, mean w = 1.5
KOSIO7+F, gamma w, gamma rates 325.7 -2482.4 64 (4 + 60) Kk = 0.3, w shape = 0.3, mean w = 9.6, rate shape = 0.4
KOSIO7+F, gamma w, one rate 393.5 -2517.3 63 (3 + 60) x =0.3, w shape = 0.2, mean w = 12.1
KOSIO7+F, one w, gamma rates 402.4 -2521.7 63 (3 +60) K = 0.3, w =74, rate shape = 0.3
randomized, Equation 3, free 8 472.0 -2614.5 505+0) Rag=21,Ra_7=05 Rcoa=12,Rc_c=05,3=00
randomized, Equation 2, free 8 472.4 -2614.7 5(5+0) Ra.g=21,Rp7=05 Rca=12,Roc=05,6=00
GY94, one w, one rate 488.0 -2616.5 11 2+9) k=29, w=1.0
KOSIO7+F, one w, one rate 550.4 -2596.7 62 (2 + 60) k=03, w=6.7
avg. frequencies, Equation 2, free 3 581.6 -2609.3 65 (5 + 60) Ra.g=21,Rpa.7=05 Rc,a=12,Rc,c=05,3=03
avg. frequencies, Equation 3, free 3 584.2 -2610.6 65 (5 + 60) Raog=21,Rpa7=05 Rocsa=12,Rc,5=05,3=03
avg. frequencies, Equation 2, 8 = 1 617.3 -2628.2 64 (4 + 60) Ra,g=21,Rp7=05 Rc,a=13,Rc_cg =06
avg. frequencies, Equation 3, 8 =1 629.2 -2634.1 64 (4 + 60) RaA-g=20,Rpa_7=05 Rca=13, Ro_g=0.6
randomized, Equation 3 980.7 -2869.9 4(4+0) Ra.ag=21,Rp_7=05 Rc.a=11,Rcg=05
randomized, Equation 2 1014.6 -2886.8 4(4+0) Ra.g=23,Rp7=05 Rc,a=11,Rcg =05

Table 5: Experimentally informed evolutionary models also provide a superior phylogenetic fit
to the TEM beta-lactamases when the tree topology is estimated using the model of Kosiol et al.
(2007) rather than that of Goldman and Yang (1994). This table differs from Table 3 in that the
phylogenetic fit is to the TEM sequences using the red portion of tree topology in Figure 2B rather
than the red portion of the tree topology in Figure 2A.
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parameters
log (optimized +
model AAIC likelihood empirical) optimized parameters
experimental, Equation 2, free 3 0.0 -1725.4 5(5+0) Ra.g=44, Rpo7=15 Rc.2=05 Rc,g=13,68=24
experimental, Equation 3, free 8 34.1 -1742.4 5(5+0) Ra.g=42,Rp7=16, Rc.4=05 Ro_g=12,=22
experimental, Equation 2, 5 =1 104.4 -1778.5 44+0) Rag=44,Rp7=15 Rc,4=06, Rcg=13
experimental, Equation 3, 8 = 1 114.6 -1783.7 4(4+0) Ra.g=43, Rp7=16, Rc,4=06, Rcg=13
KOSIO7+4F, gamma w, gamma rates 486.6 -1909.6 64 (4 + 60) Kk =0.2, w shape = 0.8, mean w = 2.1, rate shape = 0.3
KOSIO7+F, one w, gamma rates 491.7 -1913.2 63 (3 + 60) K =0.3, w=1.7, rate shape = 0.3
GY9%4, gamma w, gamma rates 497.3 -1966.0 134 +9) Kk = 3.4, w shape = 1.0, mean w = 0.4, rate shape = 0.2
GY94, one w, gamma rates 501.5 -1969.1 12(3+9) K =3.4, w=0.3, rate shape = 0.2
KOSIO7+F, gamma w, one rate 547.6 -1941.2 63 (3 + 60) K =0.3, w shape =0.3, mean w = 1.9
KOSIO7+F, one w, one rate 562.5 -1949.6 62 (2 + 60) k=03, w=1.7
GY94, gamma w, one rate 568.0 -2002.4 12(33+9) K = 3.3, w shape = 0.3, mean w = 0.4
GY94, one w, one rate 586.2 -2012.5 112+9) k=33, w=0.3
randomized, Equation 3, free 8 597.7 -2024.2 5(5+0) Ra.g=50,Ra7=15 Rc.,2=06,Rc_c=16,5=0.1
randomized, Equation 2, free 8 598.7 -2024.7 505+0) Ra-g=50,Rpa_7=15 Rc.4=06 Rog=16,8=0.0
avg. frequencies, Equation 3, free 3 706.4 -2018.6 65 (5 + 60) Rao.g=50,Rpa7=16,Rc,4=07,Roc=17,8=03
avg. frequencies, Equation 2, free 3 710.9 -2020.8 65 (5 + 60) Ra.cg=50,Rp7=16, Rc.4=0.7, Rc_c=17,6=0.3
avg. frequencies, Equation 3, 5 = 1 745.9 -2039.3 64 (4 + 60) RAg=49,Rp7=18 Ro,4=08, Rcg=1.8
avg. frequencies, Equation 2, 8 =1 755.3 -2044.0 64 (4 + 60) Ra.g=51,Ra7=17, Ro.4=08, Rc.ag =19
randomized, Equation 3 1040.9 -2246.8 4(4+0) Raqg=47, Rp.7=15 Rc.4=06,Rcg=15
randomized, Equation 2 1063.9 -2258.3 4(4+0) Ra.g=53,Rao7=14, Rc,4=06, Rccg =17

Table 6: Experimentally informed evolutionary models also provide a superior phylogenetic fit
to the SHV beta-lactamases when the tree topology is estimated using the model of Kosiol et al.
(2007) rather than that of Goldman and Yang (1994). This table differs from Table 4 in that the
phylogenetic fit is to the SHV sequences using the blue portion of tree topology in Figure 2B
rather than the blue portion of the tree topology in Figure 2A.
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parameters
log (optimized +
model AAIC likelihood empirical) optimized parameters
experimental, Equation 3, free 3 0.0 -12144.2 1(1+0) B=1.7
experimental, Equation 3, § =1 391.8 -12341.1 00+0) none
GY94, gamma w, gamma rates 1453.0 -12858.7 134 +9) K =5.9, w shape = 0.2, mean w = 0.2, rate shape = 2.5
GY94, gamma w, one rate 1616.0 -12941.2 12(3+9) K =5.6, w shape = 0.2, mean w = 0.2
KOSIO7+F, gamma w, gamma rates 1845.6 -13004.0 64 (4 + 60) K = 0.2, w shape = 0.2, mean w = 0.9, rate shape = 1.8
GY94, one w, gamma rates 1884.1 -13075.3 12(33+9) Kk =5.9, w=0.1, rate shape = 2.0
GY94, one w, one rate 2153.2 -13210.8 112+9) k=55 w=0.1
KOSIO7+F, gamma w, one rate 2153.6 -13159.0 63 (3 + 60) Kk =0.2, w shape = 0.2, mean w = 1.2
KOSIO7+F, one w, gamma rates 2227.3 -13195.9 63 (3 +60) Kk =0.2, w=0.7, rate shape = 1.6
KOSIO7+F, one w, one rate 2650.1 -13408.3 62 (2 + 60) k=02,w=0.7
avg. frequencies, Equation 3, free 5 3736.2 -13952.3 61 (1 +60) pB=12
avg. frequencies, Equation 3, 3 =1  3742.2 -13956.3 60 (0 + 60) none

Table 7: Fitting of the stringency parameter [ also improves the phylogenetic fit of an ex-
perimentally informed evolutionary model for influenza nucleoprotein. The data in this table
were generated by exactly repeating the analysis in the sixth table of Bloom (2014) except in-
cluding the additional models listed here, which include a model with a stringency parameter.
With the exception of the stringency parameter, the experimentally informed evolutionary model
used here is derived entirely from experimental measurements, since both the mutation rates and
amino-acid preferences were measured in Bloom (2014). Only the model using fixation probabil-
ities calculated from Equation 3 are reported, since Bloom (2014) shows that this is the best
model for influenza nucleoprotein. The data and source code used to generate this table are
available via http://Jjbloom.github.io/phyloExpCM/example_2014Analysis_
Influenza NP_Human_1918_Descended_withbeta.html.
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amino-acid hydrophobicity relative solvent accessibility (RSA) secondary structure (SS)
[ — ] [ — ] [ s |
4 2 0 -2 -4 0 0.5 strand helix loop

Figure 1: The amino-acid preferences for TEM-1 beta-lactamase, calculated from the data of
Firnberg et al. (2014). The heights of letters are proportional to the preference for that amino acid
at that position in the protein. Residues are numbered using the scheme of Ambler et al. (1991).
Letters are colored according to the hydrophobicity of the amino acid. Bars above the letters
indicate the secondary structure and relative solvent accessibility as calculated from the crystal
structure in PDB entry 1XPB (Fonzé et al., 1995) using DSSP (Kabsch and Sander, 1983; Joosten
et al., 2011), with maximum solvent accessibilities taken from Tien et al. (2013). The figure
was generated using WebLogo (Crooks et al., 2004) integrated into the mapmuts software pack-
age (Bloom, 2014). The data and source code used to create this plot are provided via http: //
Jbloom.github.io/phyloExpCM/example_2014Analysis_lactamase.html.
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Figure 2: Phylogenetic trees of TEM (red) and SHV (blue) beta-lactamases inferred using codon-

PhyML (Gil et al., 2013) with the codon substitution model of (A) Goldman and Yang (1994) or
(B) Kosiol et al. (2007). The scale bars have units of number of codon substitutions per site.
The inferred trees are similar for both models; the distance between the trees computed using
the measure of Robinson and Foulds (1981) is 0.14. The TEM and SHV sequences each cluster
into closely related clades: the average number of nucleotide and amino-acid differences between
sequence pairs within these clades is 13 and 7 for the TEM sequences, and 10 and 5 for the SHV
sequences. There is extensive divergence between these two clades: the average number of nu-
cleotide and amino-acid differences between sequence pairs across the clades is 326 and 100.
For both substitution models, a single transition-transversion ratio (<) and four discrete gamma-
distributed nonsynonymous-synonymous ratios (w) were estimated by maximum likelihood. The
equilibrium codon frequencies were determined empirically using the CF3x4 method (Pond et al.,
2010) for the model of Goldman and Yang (1994), or the F method for the model of Kosiol et al.
(2007) The data and source code used to create these trees are provided via http://Jjbloom.
github.io/phyloExpCM/example_2014Analysis_lactamase.html.
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Figure 3: Comparison of likelihoods on a per-site basis between the best experimentally
informed site-specific evolutionary model and the best conventional non-site-specific model. The
experimentally informed models are slightly better (positive A (log likelihood)) for most sites,
but far worse for a handful of sites. (A), (B) The best experimentally informed lactamase model in
Table 1 versus the best GY94 variant in Table 1. The experimentally informed model has a higher
log likelihood for 72% of lactamase sites. (C), (D) The best experimentally informed nucleo-
protein model in Table 7 versus the best GY94 variant in Table 7. The experimentally informed
model has a higher log likelihood for 82% of sites. For both genes, the per-site likelihoods were
computed after fixing the model parameters and branch lengths to their maximum-likelihood
values for the entire gene. Sites are classified in terms of their relative solvent accessibility or
secondary structure as computed using DSSP (Kabsch and Sander, 1983; Joosten et al., 2011)
from PDB structures 1XPB (Fonzé et al., 1995) or 2IQH (Ye et al., 2006), normalizing solvent
accessibilities to the values provided by Tien et al. (2013). The per-residue numerical data are in
Supplementary file 3 and Supplementary file 4. The code and data used to create this figure are
provided via http://jbloom.github.io/phyloExpCM/example_2014Analysis_
lactamase.html and  http://Jbloom.github.io/phyloExpCM/example_
2014Analysis_Influenza_NP_Human_1918_Descended_withbeta.html.
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Supplementary file 1: This text file contains the amino-acid preferences displayed graphically
in Figure 1. In this file, the amino acids are numbered sequentially starting at one with the N-
terminal methionine, rather than using numbering scheme of Ambler et al. (1991) that is employed
in Figure 1.

Supplementary file 2: This FASTA file contains the alignment of TEM and SHV beta-lactamase
sequences used to create the phylogenetic trees in Figure 2.

Supplementary file 3: This text file shows the per-site likelihoods for the lactamase phylogeny
and their differences between the best experimentally informed evolutionary model and the best
variant of the Goldman and Yang model listed in Table 1. Sites are numbered sequentially begin-
ning with 1 at the N-terminal methionine. This is the file sitelikelihoods.txt described at http: //
jbloom.github.io/phyloExpCM/example_2014Analysis_lactamase.html.
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Supplementary file 4: This text file shows the per-site likelihoods for the nucleoprotein phy-
logeny and their differences between the best experimentally informed evolutionary model and
the best variant of the Goldman and Yang model listed in Table 7. Sites are numbered se-
quentially beginning with 1 at the N-terminal methionine. This is the file sitelikelihoods.txt
described at http://Jjbloom.github.io/phyloExpCM/example_2014Analysis_
Influenza_NP_Human_1918_Descended_withbeta.html.
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