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Abstract. With the development of next-generation sequencing technologies, many

large scale experimental efforts aim to map genotypic variability among individuals.

This natural variability in populations fuels many fundamental biological processes,

ranging from evolutionary adaptation and speciation to the spread of genetic diseases

and drug resistance. An interesting and important component of this variability is

present within the regulatory regions of genes. As these regions evolve, accumulated

mutations lead to modulation of gene expression, which may have consequences for

the phenotype. A simple model system where the link between genetic variability,

gene regulation and function can be studied in detail is missing. In this article we

develop a model to explore how the sequence of the wild-type lac promoter dictates the

fold change in gene expression. The model combines single-base pair resolution maps

of transcription factor and RNA polymerase binding energies with a comprehensive

thermodynamic model of gene regulation. The model was validated by predicting

and then measuring the variability of lac operon regulation in a collection of natural

isolates. We then implement the model to analyze the sensitivity of the promoter

sequence to the regulatory output, and predict the potential for regulation to evolve

due to point mutations in the promoter region.
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1. Introduction.

Despite efforts to understand genotypic variability within natural populations [1] and

recent interest in fine-tuning genetic circuits for synthetic biology [2], it still remains

unclear how, with base pair resolution, the sequence of a gene regulatory region can

be translated into output levels of gene expression [3]. Generally, classical population

genetics has treated regulatory architectures as changeless parameters, rather than po-

tential evolutionary variables, focusing on changes in protein structure rather than gene

regulation. However, genetic regulatory architecture can also determine the variation

of traits, and thus the evolutionary potential of these genes [4]. After all, the structure

of bacterial promoters dictates interactions among the transcriptional apparatus, and

through the modification of this structure, regulatory circuits can be modified to poten-

tially allow cells to occupy different niches [5, 6].

Thermodynamic models of gene regulation have been widely used as a theoretical

framework to dissect and understand genetic architectures [7, 8, 9, 10, 11]. Such dis-

sections have led to a quantitative understanding of how parameters such as binding

energies, transcription factor copy numbers, and the mechanical properties of the DNA

dictate expression levels. Recently the development of experimental techniques combin-

ing these types of models with cell sorting and high-throughput sequencing have made

it possible to understand gene regulation at single-base pair resolution [12, 13, 14], as

well as to deliberately design promoter architectures with desired input-output func-

tions [15]. These models connect the sequence of a promoter to the output phenotype,

making it possible to predict variability and evolutionary potential of gene regulatory

circuits.

The lac operon has served as a paradigm of a genetic regulatory system for more

than 60 years [16, 17]. This operon contains the molecular machinery that some bacte-

rial species, including the model organism E. coli, use to import and consume lactose.

Extensive quantitative characterization of the regulation of this genetic circuit [18, 19],

as well as of the link between fitness and expression of the operon [20, 21, 22, 23, 24]

make it an ideal system for exploring the evolutionary potential of a regulatory circuit.

With previous exhaustive description and quantification of the parameters controlling

the expression level of this genetic circuit [19, 25, 26, 27] we now have what we think is

a nearly complete picture of the regulatory knobs that can modify the expression level,

shown schematically in Figure 1(a). In this article we build upon this understanding

by directly linking the sequence of the promoter region with these control parameters,

thereby creating a map from genotype to transcriptional output.

Within a collection of E. coli isolated from different host organisms we observe

significant variability for the regulation of the lac operon, as shown in Figure 1(b). By

characterizing the variability of the regulatory control parameters shown in Figure 1(a)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2014. ; https://doi.org/10.1101/003772doi: bioRxiv preprint 

https://doi.org/10.1101/003772
http://creativecommons.org/licenses/by-nc-nd/4.0/


Comparison of the theoretical and real-world evolutionary potential of a genetic circuit.3

within these strains, we identified evolutionary trends in which certain parameters or

subsets of parameters are seen to vary more often than others within this collection

of natural isolates. Using the map of promoter sequence to transcriptional output,

we demonstrated that the regulatory input-output function for the lac promoter could

account for most of the natural variability in regulation we observed. We then implement

the map to explore the theoretical potential for this regulatory region to evolve. This

level of analysis gives us clues as to how selection could fine tune gene expression levels

according to the environmental conditions to which cells are exposed.

2. Results.

2.1. Quantitative model of the natural parameters that regulate gene expression

Thermodynamic models of gene regulation have become a widely used theoretical tool

to understand and dissect different regulatory architectures [3, 12, 19, 26, 27, 31]. The

lac promoter is one such regulatory architecture that has been studied in detail [32].

Models have been constructed and experimentally validated for both the wild-type lac

promoter and synthetic promoter regions built up from the lac operon’s regulatory com-

ponents [12, 15, 19, 26, 27, 32, 33, 34, 35, 36, 37]

In a simple dynamical model of transcription the number of messenger RNA

(mRNA) is proportional to the transcription rate and the degradation rate of the mRNA,

dm

dt
= −γ ·m+

∑
i

ri · pi, (1)

where γ is the mRNA degradation rate and m is the number of transcripts of the gene

per cell; ri and pi are the transcription rate and the probability of state i respectively.

We can think of pi as a measure of the time spent in the different transcriptionally ac-

tive states. Thermodynamic models assume that the gene expression level is dictated by

the probability of finding the RNA polymerase (RNAP) bound to the promoter region

of interest [7, 8, 9]. With a further quasi-equilibrium assumption for the relevant pro-

cesses leading to transcription initiation, we derive a statistical mechanics description

of how parameters such as transcription factor copy number and their relevant binding

energies, encoded in the DNA binding site sequence, affect this probability [10]. Quanti-

tative experimental tests of predictions derived from equilibrium models have suggested

the reasonableness of the assumption [15, 19, 26, 27], although caution should be used

as the equilibrium assumption is not necessarily valid in all cases. The validity of this

equilibrium assumption relies on the different time-scales of the processes involved in

the transcription of a gene. Specifically the rate of binding and unbinding of the tran-

scription factors and the RNAP from the promoter region should be faster than the

open complex formation rate; if so, the probability of finding the RNAP bound to the

promoter is given by its equilibrium value [9, 38]. For the case of the Lac repressor, the

rate of unbinding from the operator is 0.022 1/s [39], and the binding of an unoccupied
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Figure 1. (a) Regulatory knobs that control the expression of the lac operon and

the symbols used to characterize these knobs in the thermodynamic model. The

activator CRP increases expression, the Lac repressor binds to the three operators to

decreases expression, and looping can lock the repressor onto O1 leading to increased

repression. The interaction energy between RNAP and CRP reflects the stabilization

of the open complex formation due to the presence of the activator [28], and the

interaction between the Lac repressor and CRP stabilizes the formation of the upstream

loop [29]. (b) Variability in the repression level of E. coli natural isolates and the lab

control strain MG1655. Strains are named after the host organism from which they

were originally isolated [30]. Error bars represent the standard deviation from at least

three independent measurements. (c) Schematic representation of the repression level,

in which the role of the repressor in gene regulation is experimentally measured by

comparing the ratio of LacZ proteins in cells grown in the presence of 1 mM IPTG to

cells grown in the absence of IPTG. LacZ protein concentrations were measured using

a colorimetric assay.
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operator with 10 repressors per cell occurs at a similar rate [40]. Open complex forma-

tion, a rate limiting step in promoter escape, has been measured at a rate of 2 × 10−3

1/s [41]. Promoter escape is about an order to magnitude slower than the binding and

unbinding of the Lac repressor, and this separation of time scales supports the equi-

librium assumption for this particular case. We enumerate the possible states of the

system and assign statistical weights according to the Boltzmann distribution as shown

in Figure 2.

From these states and weights we derive an equation describing the probability of

finding the system in a transcriptionally active state, and therefore the production term

from Equation 1,∑
i

ripi =
∑
i

ri
Wi

Ztot

, (2)

where Wi is the statistical weight of states in which the polymerase is bound, which

are assumed to lead to the transcription of the operon (shaded blue in Figure 2), and

Ztot =
∑

All states
Wstate is the partition function, or the sum of the statistical weights of

all states. We connect this model to experimental measurements of repression, that is

the ratio of gene expression in the absence of the active repressor to gene expression in

the presence of active repressor, using:

repression =
gene expression (R = 0)

gene expression (R �= 0)
, (3)

where R is the number of repressor molecules per cell. The experimental equiv-

alent of repression is depicted in Figure 1(c). In experiments, isopropyl β-D-1-

thiogalactopyranoside (IPTG) is used to inactivate the Lac repressor, preventing it

from binding to the genome with high affinity [19]. Repression, as defined in Equation

3, has been a standard metric for the role of transcription factors, including the Lac

repressor, on gene expression [7, 42]. By measuring the ratio of steady-state levels of a

gene reporter protein, here LacZ, we are able to isolate the role of the repressor in gene

regulation, as described further in section S8 of the Supplemental Material.

Various models of the wild-type lac promoter have been reported in the past using

this simple structure. Our work builds upon the work by Kinney et al. [12]. Kinney and

collaborators combined a thermodynamic model of regulation with high-throughput se-

quencing to predict gene expression from statistical sequence information of the cAMP-

receptor protein (CRP) and the RNAP binding sites. To predict how the sequence of

the entire regulatory region influences expression, we adapted this model to account for

how the binding site sequence and copy number of the Lac repressor modulate gene ex-

pression. Our model also takes into account growth rate effects, captured in the RNAP

copy number [43, 44].

Based on previous work done on the lac operon [19, 12], we assumed that the

presence of the activator does not affect the rate of transcription (ri from Equation
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Figure 2. Thermodynamic model of gene regulation. The table shows all states

permitted within the model and their respective statistical weights as obtained using

statistical mechanics. In these weights P = number of RNAP per cell, R = number

of repressor molecules per cell, A = number of activator molecules per cell, ΔεOi
r =

binding energy of Lac repressor to the ith operator, Δεp = binding energy of RNA

polymerase to the promoter, Δεa = activator binding energy, ΔFloop(lij) = looping

free energy between operator Oi and Oj , NNS = number of nonspecific binding sites

on the genome, Δεap = interaction energy between the activator and the RNAP, Δεar
= interaction energy between the activator and the repressor, and β = inverse of the

Boltzmann constant times the temperature (see Supplemental Material for further

discussion). States with blue background are assumed to lead to transcription of the

operon.

1), but instead influences the probability of recruiting the polymerase to the promoter

(pi from Equation 1). Previous experimental characterization of the repressor binding

energy to the different operators [26], the looping free energy for the upstream loop

between O1 − O3 [27], activator concentration and its interaction energy with RNAP

[19], RNAP binding energy [15] and RNAP copy number as a function of the growth

rate [44], left us only with three unknown parameters for the model. One of these

missing parameters, a decrease in the looping free energy when CRP and Lac repressor

are bound at the same time, is a consequence of the experimental observation that the

presence of CRP stabilizes the formation of the loop between O1 − O3 [29, 45]. The

remaining two parameters, the looping energies for the O1−O2 and O3−O2 loops are not

well characterized. These looping energies may differ from upstream loops due to the

absence of the RNAP binding site which modifies the mechanical properties of the loop

[46]. We fit these parameters for our model using Oehler et al. repression measurements
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on lac operon constructs with partially mutagenized or swapped binding sites [42, 47]

(see section S5 of the Supplemental Material for further details). Using these parameters

the model is consistent with previous measurements (Figure S4). We emphasize that

having the 14 parameters of the model characterized (see Table S1) provides testable

predictions without free parameters that we compare with our experimental results.

2.2. Sensitivity of expression to model parameters

As an exploratory tool, the model can predict the change in regulation due to modifi-

cations in the promoter architecture. Figure 3 shows the fold-change in the repression

level as a function of each of the parameters, using the lab strain MG1655 as a reference

state (see Supplemental Material for further detail on these reference parameters). We

have reported parameters using strain MG1655 as a reference strain because this strain

served as the basis for which most parameter values were determined and the gene ex-

pression model was derived.

From this figure we see that within the confines of this model, modifications in the

O1 binding energy have the most drastic effect on the repression of the operon. For the

case of O2 we see that increasing its affinity for the repressor does not translate into

an increased ability to turn off the operon; but by decreasing this operator affinity the

model predicts a reduction in the repression with respect to the reference strain.

Surprisingly the repression level is predicted to be insensitive to activator copy

number. The same cannot be said about the affinity of the activator, since decreasing

the activator binding energy greatly influences the repression level.

2.3. Mapping from sequence space to level of regulation

Recent developments of an experimental technique called sort-seq, involving cell sorting

and high-throughput sequencing, have proved to be very successful in revealing how

regulatory information is encoded in the genome with base pair resolution [12]. This

technique generates energy matrices that make it possible to map from a given binding

site sequence to its corresponding binding energy for a collection of different proteins

and binding sites. Combining these energy matrices with thermodynamic models en-

ables us to convert promoter sequence to the output level of gene expression. Recently

these energy matrices have been used to deliberately design promoters with a desired

expression level, demonstrating the validity of these matrices as a design tool for syn-

thetic constructs [15]. We use the matrices for CRP and RNAP published previously

[12]. We experimentally determined the matrix for the LacI operator using previously

published methods [12], as discussed in Materials and Methods. Figure 4(a) shows a

schematic representation of the relevant protein binding sites involved in the regulation

of the lac operon and their respective energy matrices. Implementing these matrices

into the thermodynamic model gives us a map from genotype to phenotype. We use
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Figure 3. Sensitivity of phenotype to the parameters controlling the gene expression

level. Each graph shows how a specific model parameter changes the level of gene

expression. The log10 ratio of repression is calculated with respect to the predicted

repression for the lab strain MG1655. The vertical axis spans between 1000 fold

decrease to 1000 fold increase in repression with respect to this strain. The gray

dotted line indicates the reference value for the lab strain MG1655. Values above this

line indicate the operon is more tightly repressed and values below this line have a

leakier expression profile (see Table S1 for further detail on the reference parameters).

this map to calculate the fold-change in repression relative to MG1655 for all possible

point mutations in this region. Figure 4(b) shows the fold-changes in repression levels

for the two base pair substitutions at each position that result in the largest predicted

increase or decrease in repression.

Again we see that mutations in the O1 binding site have the largest effect on reg-

ulation since a single base pair change can lower the ability of the cell to repress the

operon by a factor of ≈ 20. With only two relevant mutation that could significantly

increase the repression level, this map reveals how this operator and its corresponding

transcription factor diverged in a coordinated fashion; the wild-type sequence has nearly

maximum affinity for the repressor [48]. It is known that the non-natural operator Oid

binds more strongly than O1 [42]. Oid is one base pair shorter than O1 and current

maps made with sort-seq cannot predict changes in binding affinity for binding sites

of differing length, although accounting for length differences in binding sites is not a

fundamental limitation of this method.

For the auxiliary binding sites, the effect discussed in section 2.2 is reflected in

this map: increasing the Lac repressor affinity for the O2 binding site does not increase

repression. Mutations in almost all positions can decrease repression, and no base pair
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substitutions significantly increase the repression level. Mutations in the O3 binding

site have the potential to either increase or decrease the repression level. With respect

to the RNAP binding site, we can see that, as expected, the most influential base pairs

surround the well characterized -35 and -10 boxes. The CRP binding site overlaps three

base pairs with the upstream Lac repressor auxiliary operator. As the heat-map reveals,

the binding energy is relatively insensitive to changes in those base pairs, so we assume

independence when calculating the binding energy and capture the synergy between the

Lac repressor bound to O3 and CRP with an interaction energy term.
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Figure 4. Mapping from promoter sequence to regulatory level. (a) Energy matrices

for the relevant transcription factors (Blue - RNAP, green - CRP, red - Lac repressor).

These matrices allow us to map from sequence space to the corresponding binding

energy. The contribution of each base pair to the total binding energy is color coded.

The total binding energy for a given sequence is obtained by adding together the

contribution of each individual base pair. (b) Using the energy matrices from (a)

and the model whose states are depicted in Figure 2, the log10 repression change was

calculated for all possible single point mutations of the promoter region. The height

of the bars represents the biggest possible changes in the repression level (gray bars

for biggest predicted decrease in repression, orange bar for biggest predicted increase

in repression) given that the corresponding base pair is mutated with respect to the

reference sequence (lac promoter region of the lab strain MG1655). The black arrows

indicate the transcription start site.

The construction of the sequence to phenotype map enables us to predict the

evolvability of the lac promoter region. We calculated the effect that all possible
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double mutations would have in the regulation of the operon, again with respect to

the predicted repression level of the reference strain MG1655. Figure 5 shows what we

call the “phenotype change distribution” obtained by mutating one or two base pairs

from the reference sequence, under the assumption of same growth rate and transcription

factor copy numbers as the reference strain. The distribution peaks at zero for both

cases, meaning that the majority of mutations are predicted not to change the repression

level with respect to the reference strain, and would result in genetic drift. However it is

interesting to note that the range of repression values predicted by the model with only

one mutation varied between 30 times lower and 4.6 times higher than the reference

value, and with two mutations the repression varied between 345 times lower and 15

times higher than the reference value. This suggests that regulation of this operon could

rapidly adapt and fine tune regulation given appropriate selection.
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Figure 5. Phenotype change distribution. Relative frequency of the predicted changes

in repression level by mutating one (solid blue line) or two (dashed red line) base pairs

from the reference sequence (MG1655 promoter region).

2.4. Promoter sequence variability of natural isolates and available sequenced genomes

In order to explore the natural variability of this regulatory circuit, we analyzed

the lac promoter region of 22 wild-type E. coli strains which were isolated from

different organisms [30], along with 69 fully sequenced E. coli strains (includ-

ing MG1655) available online (http://www.ncbi.nlm.nih.gov/genomes/MICROBES/

microbial_taxtree.html). Figure 6 summarizes the sequencing results; for compar-

ison, we plot the “genotype to phenotype map” from Figure 4(b) to gain insight into

how the sequence variability influences regulation in these strains. Figure 6(b) shows

the relative frequency of single nucleotide polymorphisms (SNP’s) with respect to the

consensus sequence. Qualitatively we can appreciate that the mutations found in these

strains fell mostly within base pairs which according to the model weakly regulated ex-

pression. To quantify this observation we mapped the sequences to their corresponding
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binding energies. As shown in Figure 6(c) the distribution of parameters is such that

the observed mutations result in relatively small changes to the binding energies, less

than 1 kBT relative to the reference sequence, except for the O3 binding energy that is

predicted to increase >1 kBT in 16 strains.
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Figure 6. Mutational landscape of the regulatory region of the lac operon. (a) The

genotype to phenotype map is reproduced from Figure 4(b) in order to show how each

base pair in the region influences gene regulation. (b) Comparing the sequence of the lac

promoter from 91 E. coli strains identifies which base pairs were mutated in this region.

The height of the bars represent the relative frequency of a mutation with respect to the

consensus sequence. The red part of each bar represents the 22 natural isolates from

different hosts [30] and the light blue part of these bars represents the 69 fully sequenced

genomes (http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.

html). Color coding of the binding sites and the transcription start site is as in Figure

4. (c) Using the energy matrices of Figure 4(a), we calculate the variability of protein

binding energies for all sequences. The red arrow indicates reference binding energies

for control strain MG1655.

2.5. Does the model account for variability in the natural isolates?

Next we further characterized the eight strains from Figure 1(b) in order to determine

if the observed variability in regulation could be accounted for in the model (see section

S2 for details on the 16S rRNA of this subset of strains). In particular, we measured

the in vivo repressor copy number with quantitative immunoblots (see Material and

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2014. ; https://doi.org/10.1101/003772doi: bioRxiv preprint 

https://doi.org/10.1101/003772
http://creativecommons.org/licenses/by-nc-nd/4.0/


Comparison of the theoretical and real-world evolutionary potential of a genetic circuit.12

Methods) and the growth rate. Table 1 shows the measured repressor copy number and

the doubling time for these strains.

Table 1. Lac repressor copy number as measured with the immunodot blots and

doubling time of the eight strains with measured repression level shown in Figure 1(b).

The errors represent the standard error of 3 independent experiments.

Strain Repressor/cell Doubling time [min]

Lab strain 21± 4 29.1± 0.2

Bat 12± 1 27.5± 0.2

Human-MA 20± 4 35.6± 0.6

Human-NY 23± 4 41.5± 0.4

Human-Sweden 28± 1 34.2± 0.3

Jaguar 21± 3 32.0± 0.2

Opossum 26± 2 33.5± 0.2

Perching bird 24± 4 30.2± 0.3

Using the thermodynamic model by taking into account the repressor copy number,

the promoter sequence and the growth rate, we predict the repression level for each of

the isolates measured in Figure 1(b). In Figure 7 we plot these predicted values vs.

the experimental measurements. We find that the model accounts for the overall trends

observed in the isolates, with the predictions for 6 of 8 strains falling within two standard

deviations of the measurements. A few of the measured repression values fall outside

of the prediction, suggesting that the model may not capture the full set of control

parameters operating in all of the strains.
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Figure 7. Comparison of model predictions with experimental measurements. Error

bars represent the standard deviation of at least 3 independent measurements each

with three replicates. The dotted line plots x = y.
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2.6. Exploring the variability among different species

We extended our analysis to different microbial species with similar lac promoter

architectures. After identifying bacterial species containing the lac repressor, we used

the sort-seq derived energy matrices shown in Figure 4(a) to identify the positions of the

transcription factor binding sites in each of these candidate strains. We identified a set

of eight species whose lac promoter architecture was similar to E. coli. Figure 8 shows

the 16S rRNA phylogenetic tree for these strains. The predicted change in regulation

was calculated for these strains using the model whose states are shown in Figure 2,

the energy matrices in Figure 4(a), and assuming all strains have the same growth rate

and transcription factor copy numbers as the lab strain MG1655. The repression level

relative to E. coli among these species is predicted to increase as much as a factor of

≈ 20 and decrease as much as a factor of ≈ 4. Regulation of the operon seems to follow

phylogenetic patterns in the 16S rRNA tree, with E. coli relatives having a similar

predicted repression level, Citrobacter evolved to increase repression, and Salmonella

evolved to decrease repression.

3. Discussion.

The approach presented here combines thermodynamic models of gene regulation with

energy matrices generated with sort-seq to produce a single-base pair resolution picture

of the role that each position of the promoter region has in regulation. These types

of models based on equilibrium statistical mechanics have been used previously for the

lac operon [19, 25], here we expanded the model to account for important cellular pa-

rameters such as growth rate, the binding site strengths of all transcription factors, and

the binding site strength of RNAP. Thermodynamic models are functions of the natural

variables of the system as opposed to the widely used phenomenological Hill functions

[49], where it is less straightforward how changes to a promoter region translate to

changes in regulatory parameters such as KM , the half saturation constant, and n, the

Hill coefficient. Currently our model assumes that protein-protein interactions and DNA

looping energies are kept constant, but these variables could also be a function of the

promoter sequence, affecting the positioning of the transcription factors and therefore

their interactions with the other molecules involved.

The underlying framework developed here can be applied to any type of architec-

ture. Here we use the lac operon because it is well characterized. There is no reason to

believe that this approach could not be extended to other regulatory regions, however

such an effort would require extensive quantitative characterization of the control pa-

rameters of each genetic circuit, such as protein copy numbers, interaction energies, and

binding affinities. Although this level of characterization requires additional experimen-

tal effort, we believe that developing such predictive, single-base pair models of gene

regulation can lead to significant insights into how genetic circuits function, interact
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(a)

(b)

Figure 8. Predicted variability among different microbial species based on genome

sequences and our model for regulation derived for E. coli. (a) On the left a 16S rRNA

phylogenetic tree of diverse species with a similar lac promoter architecture done with

the Neighbor-Joining algorithm. Vibrio cholerae was used as an outgroup species.

The scale bar represents the relative number of substitutions per sequence. On the

right the predicted log10 fold-change in repression with respect to E. coli MG1655

assuming the same growth rate and transcription factor copy numbers. The outgroup

species fold-change was not calculated. (b) Parameter distribution calculated using

the promoter region sequence and the energy matrices. The red arrow indicates the

MG1655 reference value. Strains lacking a binding site were binned as zero.

with each other, and evolve.

The majority of the natural variability found among the sequenced promoters

tended to fall in bases predicted to have low impact on overall regulation, as shown

in Figure 6. As an example the highly conserved mutation in the CRP binding energy

or the mutations along the RNAP binding site are predicted to change the binding en-

ergy by less than 1 kBT , having a very low impact on the repression level. With respect

to the repressor binding sites, among the sequenced natural isolates only one mutation

was found in the O2 binding site. Unlike the O1 and O3 operators, the evolution of O2

may be constrained given that its sequence encodes both gene regulatory information
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and is part of the coding region of the β-galactosidase gene.

As shown in Figure 7, after taking into account the variability in the promoter

sequence, changes in the repressor copy number, and changes in the growth rate the

model accounts for most of the variability in regulation for the majority of the isolates.

Linear regression of the entire experimental dataset weighted by the inverse of their

standard deviation gives a slope of 1.26 with an R2 of 0.24. It can be seen that many

of the points fall close to or on the x=y line, indicating that the poor fit is a result of

a few outliers within the dataset. Removing the outliers (Perching bird, Human-MA,

and Human-NY) results in a best fit line of slope 1.05 with R2 0.74, reiterating that the

model is consistent with the phenotype of 5 of 8 isolates. It is interesting that the three

isolates whose regulatory outputs were predicted poorly by the model (Perching bird,

Human-MA, and Human-NY in Figure 7) all have identical promoter sequences, which

is the consensus promoter sequence as shown in Figure S1. Although these three strains

have identical sequences, two strains repressed more than predicted and the other strain

repressed less. This indicates there are likely other cellular parameters that influence

gene expression levels that are not included in the model. Currently the model cannot

take into account variation in the protein structure of the transcription factors or the

RNAP and its sigma factors. Changes in these proteins could account for some of the

discrepancies between the model and the observed levels of regulation. It is likely that

some global parameters that modulate transcriptional outputs which are not accounted

for in the model also contribute to the disagreement with model predictions. We note

that repression is a measurement of expression relative to expression in the absence of

the repressor. This definition enables us to isolate the role of a particular transcription

factor in regulation. Therefore, as discussed in section S8, some global regulatory pa-

rameters such as ribosomal binding sites of the relevant genes and variables such as the

ribosome copy number should not impact repression levels.

From an evolutionary perspective, it is interesting that the regulation seems to be

more sensitive to changes in the activator binding energy than to the activator protein

copy number, as shown in Figure 3. This result might be attributed to the nature of this

transcription factor. CRP is known to be a “global” transcription factor that regulates

>50% of the E. coli transcription units [50]. Given its important global role in the

structure of the transcriptome, changing the copy number of CRP would have a global

impact on expression whereas tuning its binding affinity at a particular regulatory re-

gion has a local impact on one promoter. The regulatory knob of CRP copy number

not influencing expression at the lac operon indicates this regulatory region may have

evolved to be robust against changes in this global regulatory parameter.

The fact that the O3 operator has the possibility to change in both directions

(greater or lower affinity) as reflected in Figure 4(b) suggests plasticity of the operon,

allowing it to evolve according to environmental conditions. In fact this parameter
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changed the most among the related microbial species as shown in Figure 8(b), having

species such as Citrobacter koseri with an operator predicted to be 5 kBT stronger than

the reference value, and other species such as Salmonella bongori that completely lost

this binding site. Although we do not yet know whether these regulatory predictions

will be borne out in experimental measurements, this analysis demonstrates the utility

of our sequence-to-phenotype map in interpreting the consequences of variability within

the regulatory regions of sequenced genomes.

To the best of our knowledge Figure 5 shows the first quantification of how eas-

ily regulation can change given one or two point mutations along the entire promoter

region. Previous studies were limited to a subset of base pairs in the Lac repressor

operators and two amino acid substitutions in the Lac repressor [51]. The distribution

of predicted phenotypes is very sharp close to the reference value, as a consequence the

majority of the possible mutations would not be selected on. But given that regulation

can change by an order of magnitude or more in both directions (increased or decreased

repression) with only two mutations, changing the regulatory region of the gene could

function as a fast response strategy of adaptation.

It is known from previous work that lac operon expression can have an impact

on cell fitness [20, 21, 22, 24]. Under laboratory conditions, high expression of the lac

operon resulted in loss of fitness due to expression of lacY, a transporter which imports

lactose into the cell. This would suggest regulation is essential to avoid the negative

consequences of lacY overexpression, and tight regulation would be selected. However

it is possible that natural selection would act also to modulate the magnitude of the

response. Strains exposed to environments with periodical bursts of lactose could trig-

ger instantly a high gene dosage, resulting in a steeper slope on an induction curve,

while strains rarely exposed to lactose would have a moderate response, i.e. a less steep

induction curve. Our exploration and prediction of regulatory phenotypes in sequenced

genomes shows that the biggest changes in regulation were found to increase repression

(Figure 6(c)), suggesting that lactose might not be present regularly in the natural en-

vironment of some strains.

The combination of thermodynamic models with sort-seq generated energy matrices

presented here promises to be an useful tool to study the evolution of gene regulation.

This theoretical framework allows us to explore the effect that the modification of control

parameters can have on the expression levels, and to predict how point mutations in

gene promoter regions enable cells to evolve their gene regulatory circuits.
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4. Materials and methods

4.1. Growth conditions

Unless otherwise indicated, all experiments started by inoculating the strains from frozen

stocks kept at -80◦C. Cultures were grown overnight in Luria Broth (EMD, Gibbstown,

NJ) at 37◦C with shaking at 250 rpm. In all of the experiments these cultures were used

to inoculate three replicates for each of the relevant conditions, diluting them 1:3000

into 3 mL of M9 buffer (2 mM MgSO4, 0.10 mM CaCl2, 48 mM Na2HPO4, 22 mM

KH2PO4, 8.6 mM NaCl, 19 mM NH4Cl) with 0.5% glucose and 0.2% casamino acids

(here referred to as “supplemented M9”). Cells were cultured at 37◦C with shaking at

250 rpm and harvested at the indicated OD600.

4.2. Gene expression measurements

To perform the LacZ assay we followed the protocol used by Garcia and Phillips [26].

Strains were grown in supplemented M9 for approximately 10 generations and harvested

at an OD600 around 0.4. A volume of the cells was added to Z-buffer (60 mM Na2HPO4,

40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, 50 mM β-mercaptoethanol, pH 7.0)

for a total volume of 1 mL. For fully induced cells we used 50 μL and for uninduced

cultures we concentrated the cells by spinning down 1 mL of culture and resuspending

in Z-buffer. The cells were lysed by adding 25 μL of 0.1% SDS and 50 μL of chloroform

and vortexing for 15 seconds. To obtain the readout, we added 200 μL of 4 mg/mL

2-nitrophenyl β-D-galactopiranoside (ONPG). Once the solution became noticeably yel-

low, we stopped the reaction by adding 200 μL of 2.5 M Na2CO3.

To remove cell debris we spun down the tubes at 13000×g for 3 minutes. 200 μL of

the supernatant were read at OD420 and OD550 on a microplate reader (Tecan Safire2).

The absolute activity of LacZ was measured in Miller units as

MU = 1000× OD420 − 1.75×OD550

t× v ×OD600

× 0.826, (4)

where t is the time we let the reaction run and v is the volume of cells used in mL.

The factor of 0.826 adjusts for the concentration of ONP relative to the standard LacZ

assay.

4.3. Measuring in-vivo lac repressor copy number

To measure the repressor copy number of the natural isolates we followed the same

procedure reported by Garcia and Phillips [26]. Strains were grown in 3 mL of supple-

mented M9 until they reached an OD600 ≈ 0.4 − 0.6. Then they were transferred into

47 mL of warm media and grown at 37◦C to an OD600 of 0.4-0.6. 45 mL of culture were

spun down at 6000×g and resuspended into 900 μL of breaking buffer (0.2 M Tris-HCl,

0.2 M KCl, 0.01 M Magnesium acetate, 5% glucose, 0.3 mM DTT, 50 mg/100 mL
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lysozyme, 50μg/L phenylmethanesulfonylfluoride (PMSF), pH 7.6).

Cells were lysed by performing four freeze-thaw cycles, adding 4 μL of a 2,000 Ku-

nitz/mL DNase solution and 40 μL of a 1 M MgCl2 solution and incubating at 4◦C
with mixing for 4 hours after the first cycle. After the final cycle, cells were spun down

at 13,000×g for 45 min at 4◦C. We then obtained the supernatant and measured its

volume. The pellet was resuspended in 900 μL of breaking buffer and again spun down

at 15,000×g for 45 min at 4◦C. In order to review the quality of the lysing process, 2

μL of this resuspended pellet was used as a control to ensure the luminescent signal of

the resuspension was <30% of the sample.

To perform the immuno-blot we pre-wet a nitrocellulose membrane (0.2 μM, Bio-

Rad) in TBS buffer (20 mM Tris − HCl, 500 mM NaCl) and left it to air dry. For

the standard curve a purified stock of Lac repressor tetramer [46] was serially diluted

into HG105 (ΔlacI strain) lysate. 2 μL were spotted for each of the references and each

of the samples. After the samples were visibly dried the membrane was blocked using

TBST (20 mM Tris Base, 140 mM NaCl, 0.1% Tween 20, pH 7.6) +2% BSA +5% dry

milk for 1 h at room temperature with mixing. We then incubated the membrane in a

1:1000 dilution of anti-LacI monoclonal antibody (from mouse; Millipore) in blocking

solution for 1.5 h at room temperature with mixing. The membrane was gently washed

with TBS ≈ 5 times. To obtain the luminescent signal the membrane was incubated

in a 1:2000 dilution of HRP-linked anti-mouse secondary antibody (GE Healthcare) for

1.5 h at room temperature with mixing and washed again ≈ 5 times with TBS. The

membrane was dried and developed with Thermo Scientific Super-Signal West Femto

Substrate and imaged in a Bio-Rad VersaDoc 3000 system.

4.4. Constructing the in-vivo lac repressor energy matrix

The energy matrix was inferred from sort-seq data in a manner analogous to methods

described in Kinney PNAS 2010 [12]. Briefly, a library of mutant lac promoters was

constructed in which the region [-100:25] (where coordinates are with respect to the

transcription start site) was mutagenized with a 3% mutation rate. The transcriptional

activity of each mutant promoter was measured by flow cytometry using a GFP reporter.

To fit the LacI energy matrix, we used a Markov chain Monte Carlo algorithm to fit

an energy matrix to the LacI O1 binding site by maximizing the mutual information

between energies predicted by the matrix and flow cytometry measurements. The

justification for maximizing mutual information is described in detail in [12, 52].
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Supplemental Material

S1. Alignment of promoter sequences

Figure S1 shows the alignment of the promoter regions of the E. coli wild isolates

sequenced.

Figure S1. Promoter alignment of the sequenced strains. Highlighted bases differ

from the consensus sequence on top. Colored boxes indicate the relevant binding sites

for the Lac repressor (red), CRP (green) and RNAP (blue)

S2. 16S rRNA sequences

To confirm the identity of the strains we analyzed 490 bp of the 16S rRNA. Figure

S2 shows a schematic representation of the sequences. Colored basepairs represent

mutations with respect to the consensus sequence. All sequences were found to be

≥99% similar to the reference E. coli MG1655 sequence.

Figure S2. 16S sequence alignment. Black lines represent mutations with respect to

the consensus sequence.
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S3. Model parameters

Table S1 shows the values of the reference parameters for MG1655 obtained from

different sources.

Table S1. Reference parameters for the strain MG1655.
Parameter Symbol Value Units Reference

O1 repressor operator binding energy ΔεO1
r -15.3 kBT [1]

O2 repressor operator binding energy ΔεO2
r -13.9 kBT [1]

O3 repressor operator binding energy ΔεO3
r -9.7 kBT [1]

Repressor copy number R 20 tetramer/cell Measured

Activator binding energy Δεa -13 kBT [2, 3]

Number of active activators A 55 active molecules/cell [2]

RNAP binding energy for the lac promoter Δεp -5.35 kBT [4]

RNAP copy number P 5500 active molecules/cell [5]

Number of nonspecific binding sites NNS 4.6× 106 - GenBank: U00096.2

Looping free energy between O1 −O2 ΔFloop(l12) 4.7 kBT Fit to data from [6, 7]

Looping free energy between O1 −O3 ΔFloop(l13) 9 kBT [8]

Looping free energy between O2 −O3 ΔFloop(l23) 5.2 kBT Fit to data from [6, 7]

RNAP-CRP interaction energy Δεap -5.3 kBT [9, 2]

Lac repressor - CRP interaction energy Δεar -5.5 kBT Fit to data from [6, 7]

S4. Derivation of the repression level equation

Thermodynamic models of gene regulation consider that the gene expression level is

proportional to the probability of finding the RNAP bound to the promoter region

[3, 10, 11, 12]. This biologically simplistic but powerful predictive tool allows us to

study the effect of different transcription factors in different promoter architectures. In

the case of the wild-type (WT) lac operon promoter architecture, where we have two

different transcription factors involved in the regulation - the activator CRP and the

Lac repressor.

The Lac repressor molecule, when bound to the main operator O1, blocks the poly-

merase from binding to the promoter region, stopping the transcription of the operon.

CRP plays a double role in the regulation of the operon, activating transcription by re-

cruiting RNAP to the promoter region, and as several experiments have shown, enhanc-

ing repression by facilitating the formation of the upstream loop between the O1 − O3

operators [13, 14, 15]. Enhanced repression by CRP is due to pre-bending the DNA

between 90◦ and 120◦ [16], thereby increasing the probability of looping by bringing the

lac operators closer together. The model captures this effect by adding an interaction

term Δεar in the states where CRP is bound and the Lac repressor forms a loop between

operators O1 and O3.
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Assuming quasi-equilibrium conditions for the relevant processes involved in

transcription, we can use the Boltzmann distribution to compute the probability of

finding the RNAP bound to the promoter region, obtaining

GE ∝
P

NNS
e−βΔεp

{
1 + 2R

NNS

[
e−βΔεO2

r + e−βΔεO3
r

(
1 + A

NNS
e−βΔεa

)]
+

4R(R−1)

N2
NS

e
−β

(
ΔεO2

r +ΔεO3
r

) (
1 + A

NNS
e−βΔεa

)
+ A

NNS
e
−β

(
Δεa+Δεap

) (
1 + 2R

NNS
e−βΔεO2

r

)}

Ztot
,

(1)

where GE stands for gene expression, Ztot represents the partition function for the

states shown in Figure 2 in the main text. The presence of CRP in the promoter re-

gion is not assumed to influence the kinetics of promoter escape, only the probability

of RNAP binding. Tagami and Aiba [17] found that the role of CRP in the activation

of the lac operon is restricted to the steps up to the formation of the open complex,

in other words, the interaction between CRP and the RNAP are not essential for tran-

scription after the formation of the open complex. In our model we capture this effect

by including an interaction energy between CRP and the RNAP, Δεap, that has been

measured experimentally [2, 9].

In the activation mechanism proposed by Tagami and Aiba [17] CRP bends the

DNA and RNAP recognizes the CRP-DNA bent complex. This model would imply that

RNAP makes additional contacts with the upstream region of the promoter. Based on

this model we assume that the presence of the Lac repressor bound on the O3 operator

and CRP bound on its binding site (without forming a DNA loop between O1 − O3)

allows transcription to occur. Since the RNAP cannot contact the upstream region of

the promoter because of the presence of the repressor, the interaction energy between

CRP and RNAP is not taken into account in these states.

In order to quantify the influence of Lac repressor on expression levels, we measure

repression, which is the fold change in gene expression as a result of the presence of

the repressor. This metric has the benefit of normalizing to a strain with an identical

genetic background, thus isolating the role of the repressor in regulation. This relative

measurement is defined as

repression ≡ gene expression (R = 0)

gene expression (R �= 0)
, (2)

where R is the Lac repressor copy number. Computing this we obtain

repression =
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(3)

This can be further simplified, resulting in

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2014. ; https://doi.org/10.1101/003772doi: bioRxiv preprint 

https://doi.org/10.1101/003772
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Material 4

repression =
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, (4)

the expression we use to predict the repression level of the natural isolates.

S4.1. Estimating the number of active CRP molecules

The Catabolite Activator Protein, also known as cAMP-receptor protein (CRP) is a

global transcriptional regulator in E. coli [18]. As it exists in two forms, the cAMP-CRP

complex which is considered as the active state and the inactive state without cAMP

bound, the number of active molecules is a function of the cAMP cellular concentration.

From a thermodynamic perspective we can estimate this number as

[CRP − cAMP ] = [CRP ]
[cAMP ]

KcAMP + [cAMP ]
, (5)

where [CRP − cAMP ] is the concentration of active proteins, [CRP ] is the total con-

centration of this transcription factor, [cAMP ] is the cellular concentration of cAMP

and KcAMP is the in vivo dissociation constant of the cAMP-CRP complex.

Kuhlman et al. [2] reported the values for the CRP concentration ([CRP ] ≈ 1500

nM) and the dissociation constant (KcAMP = 10 μM). Epstein et al. [19] measured

the intracellular cAMP concentration in different media, including minimal media with

glucose and casamino acids ([cAMP ] ≈ 0.38μM). Using these values we calculate the

number of active CRP molecules as

A = 1500

(
0.38μM

10μM + 0.38μM

)
≈ 55

molecules

cell
, (6)

where we used the rule of thumb that 1 nM≈ 1molecule
E. coli

. This rule of thumb is enough

for our predictions since the repression level is predicted to be largely insensitive to the

activator copy number as shown in Figure 3 in the main text.

S4.2. Estimating the number of available RNAP

In order to estimate the available number of RNAP molecules, we appeal to the work

of Klumpp and Hwa [5] where they calculated the total number of RNAP molecules

as well as the fraction of these molecules available for transcription as a function of

the growth rate. Figure S3 shows the number of available RNAP as a function of the

doubling cycles per hour.

Using these results, we estimate 5500 RNAP
cell

for cells grown in 0.6% glucose + 0.2%

casamino acids (with a doubling time of ≈ 30 min.). We interpolate between these data

to obtain the RNAP copy number for each of the natural isolates.
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Figure S3. Adapted from Klumpp and Hwa [5]. RNAP available for transcription as

a function of the number of doubling cycles per hour.

S4.3. Estimating CRP’s Binding energy

The activator binding energy was estimated as reported by Bintu et al. [3]. Using the

reported dissociation constants from the specific binding site, KNS
CRP , and nonspecific

sequences, KS
CRP , we can compute the binding energy as

Δεa
kBT

= ln

(
KNS

CRP

KS
CRP

)
. (7)

Bintu et al. also reported the following values for both dissociation constants

(KNS
CRP = 104 nM and KS

CRP = 0.02 nM), which gives us Δεa ≈ −13 kBT .

S5. Fitting parameters and testing the model

The three unknown parameters, the looping energies for the O1 − O2 and O3 − O2

loops and the decrease in the looping free energy when CRP and Lac repressor are

bound at the same time, were inferred from the classic work of Oehler et al. [7, 6].

In these papers Oehler and collaborators measured the repression level of different lac

operon constructs with either mutagenized or swapped Lac repressor binding sites while

changing the repressor copy number. Because they reported the mutagenized sequences

for the repressor binding sites we used the sort-seq derived energy matrix to calculate

the residual energies of these modified binding sites. The three unknown parameters

were fitted by minimizing the mean square error of the measurements,

f(x∗) ≤ f(x) ∀ x ∈ R (8)

f(x∗) =

{
min

N∑
i=1

(
Yi (x)− Ȳi

)2
N

: x ∈ R

}
(9)
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where Yi is the predicted value, Ȳi is the experimental repression level for each of the

constructs measured by Oehler et al. and x are the fitting parameters. Using this

method we fit for the values of ΔFloop(l13), ΔFloop(l23), and Δεar using the data from

references [7, 6]. The three parameter values are listed in Table S1.

S6. Testing the model with different data

We used the model to predict the repression level of constructs reported by Oehler et al.

[7, 6] and Müller et al. [20]. Figure S4 shows the comparison of the model predictions

and the experimental results. The calculations were done using the model whose states

are depicted in Figure 2, assuming a wild type repressor copy number of 10 repressors

per cell, and calculating all the residual binding energies with the Lac repressor sort-seq

derived energy matrix.

●●

●●●

●

●●●

Experimental repression level

Th
eo

re
tic

al
 re

pr
es

si
on

 le
ve

l

●

Oehler et al. 1990
Oehler et al. 1994
Müller et al. 1996

101 102 103 104

101

102

103

104

Figure S4. Comparing the experimental data from Oehler et al. [7, 6] and Müller et

al. [20] with the model prediction.

S7. Error propagation

To calculate a confidence interval of the model, we used the law of error propagation [21]

where we compute the contribution of the uncertainty in parameters to the uncertainty

of the repression level as

σrepression =

√√√√∑
i

(
∂repression

∂xi

)2

σ2
i , (10)
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where xi represents each of the parameters of the model (binding energies, transcription

factors copy number, looping energies, etc.) and σi represents the standard deviation of

each of these parameters.

Paradoxically, calculating the contribution of each parameter to the uncertainty of

the model requires “certainty” about the variability of these parameters. This means

that we can only include the uncertainty of the parameters whose uncertainty mea-

surements represents the natural variability in its value and not mostly error due to

experimental methods. Table S2 lists the uncertainty of the parameters considered in

this analysis given that the in vivo error was reported in the listed bibliography.

Table S2. Standard deviation of the parameters considered for the calculation of the

confidence interval.

Parameter Deviation Units Reference

R Measured for each strain LacI/cell -

ΔεO1
r ±0.2 kBT [1]

ΔεO2
r ±0.2 kBT [1]

ΔεO3
r ±0.1 kBT [1]

Δεa ±1.1 kBT [2]

We used a customized Mathematica script (Wolfram Research, Champaign, IL) to

calculate the partial derivatives. Figure S5 reproduces Figure 7 from the main text,

including the predicted standard deviation.
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Figure S5. Comparison of the model prediction with the experimental measurement.

Vertical error bars represent the standard deviation of at least three independent

measurements each with three replicates. Horizontal error bars represent the 68%

confidence interval of the model calculated by using the law of error propagation with

the parameter uncertainties listed in Table S2.

S8. Measuring repression level decouples growth rate effects in translation

from effects in transcription

From previous work it was determined that one key regulatory parameter that is

influenced by growth rate is the RNAP copy number [22]. However other cellular

parameters such as ribosomal copy number and the dilution of mRNA concentration

due to growth are also impacted. These parameters will influence protein copy number

by influencing the efficiency of mRNA translation. In a very simple dynamical model of

transcription, we can imagine that the change in the number of messenger RNA (mRNA)

is proportional to the transcription rate and the degradation rate of the mRNA,

dmRNA

dt
= kt · pbound − βmRNA ·mRNA, (11)

where kt is the maximum transcription rate when the operon is fully induced and pbound
is the probability of finding the RNAP bound to the relevant promoter, as derived using

statistical mechanics, βmRNA is the mRNA degradation rate and mRNA is the number

of transcripts of the gene per cell. This equation assumes that the most relevant effect

for mRNA depletion is the degradation of the transcripts, compared with the dilution

effect due to the growth rate. It is known that this degradation term is not strongly

affected by the growth rate [22], so we assume that this term remains constant. In steady
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state, when cells are in the exponential growth phase, the concentration of mRNA is

mRNA =
kt · pbound
βmRNA

. (12)

The Miller assay (LacZ assay) quantifies the level of LacZ expression, and we assume that

the number of proteins is directly proportional to the mRNA copy number. Due to the

relatively fast doubling time we assume that dilution is the relevant effect diminishing

protein copy number, leading us to

dLacZ

dt
= γ ·mRNA− μ · LacZ, (13)

where γ is the proportionality constant of how many proteins per mRNA are produced,

μ is the growth rate, and LacZ is the β-galactosidase enzyme copy number. γ can be

a function of the growth rate due to the changes in the number of available ribosomes,

but still we argue that measuring the repression level should reduce the importance of

these effects. If we substitute Equation 12 into 13 and assume steady state we obtain

LacZ =
γ · kt · pbound
μ · βmRNA

. (14)

By computing the repression level as measured in the LacZ assay we obtain

repression =
LacZ(R = 0)

LacZ(R �= 0)
=

pbound(R = 0, P )

pbound(R �= 0, P )
. (15)

In this ratio γ, kt, μ, and βmRNA cancel each other leaving only a ratio of pbound’s.

S9. Related microbial species lac operon phylogenetic tree
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Figure S6. lac operon phylogenetic tree of diverse species with a similar lac promoter

architecture done with the Neighbor-Joining algorithm. The scale bar represents the

relative number of substitutions per sequence.

S10. Epistasis Analysis

Epistasis can be defined as the effect of mutations on the phenotypes caused by

other mutations. Our theoretical model explicitly ignores possible interactions between

mutations when calculating the transcription factor binding energies with the sort-seq

energy matrices; but the same cannot be directly assumed for the phenotypic output.

As shown in Figure 3 in the main text, the phenotypic response depends on the model

parameters in a highly non-linear way. Given this non-linear relation we decided to

perform an epistasis analysis on the data, where we defined epistasis as [23, 24]

ε = Wxy −Wx ·Wy (16)

where ε is the epistasis, Wxy is the repression value for the double mutant at positions

x and y normalized to the reference MG1655 repression level, and Wx and Wy are the

repression values for the single mutants in their respective positions also normalized

to the same reference value. This multiplicative epistasis model indicates the type of

interaction between mutations; ε = 0 indicates no epistasis, ε < 0 indicates antagonistic

epistasis and ε > 0 indicates synergistic epistasis [23].

We calculated this epistasis metric for all the double mutants of the 134 base-pairs

considered in the regulatory region of the lac operon including the O2 downstream

repressor binding site. For each pair of bases we calculated the epistasis for the two nu-

cleotides with the biggest change with respect to our reference strain MG1655. Figure

S7 shows the distribution of the epistasis values for the 8911 possible double mutants.

As we initially assumed, most of the base-pairs do not interact with each other. Only

0.5% of the double mutants have an ε < −0.5, and 1% have an ε > 0.5.
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Figure S7. Epistasis level (Equation 16) distribution of all the possible double

mutants of the lac operon regulatory region.

In order to find the base-pairs in the regulatory region predicted to have the biggest

interactions Figure S8 shows the heat-map of the ε values. It is interesting to note that

the few regions predicted to have significant epistasis fall mostly within a single binding

site, i.e., basically no interaction is predicted between mutations located in different

binding sites. The RNAP binding site is predicted to have antagonistic epistasis (ε < 0),

while the CRP binding site is predicted to have strong synergistic epistasis (ε > 0). The

O3 binding site also presents synergistic interactions. This predicted epistasis can be

attributed to the highly non-linear dependence of the repression level on these binding

energies. Since, for example, the linear regime of the O1 binding energy extends over a

larger range of values (Figure 3 on the main text) two mutations are unable to move this

parameter to the non-linear region and no epistasis would be expected at this binding

site. Interestingly the only interactions between different binding sites are predicted to

be between CRP and RNAP.
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Figure S8. Epistasis level heat-map for all the possible double mutants. The binding

sites positions are indicated with the lateral color bars.
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