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Introduction

A key advantage of RNA sequencing (RNA-seq) over hybridization-based technologies such
as microarrays is that RNA-seq makes it possible to reconstruct complete gene structures,
including multiple splice variants, from raw RNA-seq reads without relying on previously-
established annotations [20], 32, [9]. But with this added flexibility, there are increased compu-
tational demands on upstream processing tasks such as alignment and assembly [28]. There
is also a large and active community of developers contributing to downstream statistical
modeling through the Bioconductor project [7]. However, there has been a gap between
upstream processing tools and downstream statistical modeling tools that made it difficult
to analyze assembled transcriptomes using Bioconductor. This gap has prevented rigorous
statistical analysis of eQTL, timecourse, continuous covariate, or confounded experimental
designs and has led to considerable controversy in the analysis of population-level RNA-seq
data [4].

We have developed software that bridges the gap between transcriptome assembly and
fast, flexible differential expression analysis (Supplementary Figure 1). First, our tool called
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Tablemaker uses a GTF file (output from any transcriptome assembler) and spliced read
alignments to generate files that explicitly specify the structure of assembled transcripts,
mappings from exons and splice junctions to transcripts, and several measures of feature
expression, including FPKM (Fragments Per Kilobase of transcript per Million reads se-
quenced) and average per-base coverage (Supplementary Section 1). Tablemaker calls Cuf-
flinks to estimate FPKM for each assembled transcript.

After the transcriptome assembly is processed with Tablemaker, it can be explored inter-
actively in R using the Ballgown package. Ballgown reads Tablemaker’'s assembly structure
and expression estimates into an easy-to-access R object (Supplementary Section 2) for down-
stream analysis. Alternatively, the Tablemaker step can be skipped, and the R object can be
created from a transcriptome whose expression estimates have been calculated with RSEM’s
rsem-calculate-expression [16]. Once the data has been loaded, Ballgown functions can
be used to visualize the internals of a transcript assembly on a gene-by-gene basis, extract
any of several relevant abundance estimates for exons, introns, transcripts, or genes, and
perform straightforward linear-model-based differential expression analyses (Supplementary
Section 3). The default statistical modeling framework included in Ballgown is flexible and
computationally efficient, and its statistical significance and false discovery rate estimates
exhibit better properties than Cuffdiff2’s (Figure ,b). These model comparisons are es-
sentially equivalent to the modeling implemented in limma [27], though no empirical Bayes
shrinkage has been implemented in Ballgown. However, almost any differential expression R
package can easily be incorporated into the Ballgown workflow, since the main data structure
provides easy access to feature-by-sample expression matrices, phenotype data, and paths
to read alignment (BAM [17]) files.

Here we illustrate the advantage of this approach using the widely used pipeline for
transcript assembly, quantification, and differential expression analysis, the Tuxedo suite.
This software suite aligns reads with Bowtie and Tophat?2 [11], assembles transcripts with
Cufflinks [32] and performs differential expression analysis with Cuffdiff2 [31]. This suite
has been used in many influential projects [19, B34, 18], including the ENCODE [5] and
modENCODE [10] consortium projects. However, Cuffdiff2’s statistical analysis capabilities
are limited in terms of flexiblity, computational efficiency, accuracy of statistical significance
and false discovery rate estimates. While several other fast, accurate tools for differential
expression analysis like EdgeR [23], DESeq [2], and Voom [I4] exist in the Bioconductor
project [§], there is no existing infrastructure connecting these tools to assembly tools like
the Tuxedo suite. Further, tools requiring per-feature read counts are often difficult to use
for isoform-level analysis, since same-gene isoforms tend to have a high degree of overlap,
and consequently, ambiguous read counts. We use tablemaker and Ballgown to integrate
the Tuxedo suite with downstream statistical models in Bioconductor to improve statistical
accuracy, flexibility of statistical modeling, and computational speed.

Negative control experiment

First, we demonstrate that the default methods in Ballgown perform appropriately in a
scenario where there is no differential expression signal. To create such a scenario, we
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downloaded and processed data from the GEUVADIS RNA sequencing project [13] [1] (Sup-
plementary Section 4). After aligning RNA-seq reads, assembling the transcriptome, and
processing the results with Tablemaker, we used Ballgown to load the data into R, where we
extracted a single-population subset of data to study. The populations included in the GEU-
VADIS study were Utah residents with Northern and Western European ancestry (CEU),
Yoruba in Ibadan, Nigeria (YRI), Toscani in Italy (TSI), British in England and Scotland
(GBR), and Finnish in Finland (FIN). Considering only individuals in the FIN population
(n = 95), we randomly assigned subjects to one of two groups and tested all assembled tran-
scripts for differential expression between those two groups. We compared the results from
using linear models (Ballgown), Cuffdiff2 , and EdgeR [23] (at the exon level). For Ballgown,
we used transcript FPKM as the transcript expression measurement, and we used per-exon
read counts for EdgeR. In this type of experiment, the distribution of the p-values from all
the transcripts should be approximately uniformly distributed, and g-values [29] should be
quite high.

As expected, the transcript-level p-values from the linear model tests implemented in Ball-
gown were approximately uniformly distributed (Figure (1), and all transcripts had g-values
of approximately 1, indicating that these models are not overly liberal or prone to discovering
signal where there is none. We compared this result to the statistical results from Cuffdiff2
(version 2.2.1, the newest release available as of August 2014) on the same dataset, and we
found that the p-values obtained using Cuffdiff2 were not uniformly distributed, but that the
distribution had more mass near 1 than near 0 (Supplementary Figure 5a). This indicates
that Cuffdiff2 may be somewhat conservatively biased, and calls into question the use of the
g-value as a multiple testing adjustment, since it assumes uniformly-distributed p-values.
Finally, at the exon level, EdgeR called two exons differentially expressed with ¢ < 0.05, and
the exon-level p-value distribution was not uniform, having a bit of extra mass around 0.1
(Supplementary Figure 5b). This result demonstrates that using a well-established, count-
based methods gives a slightly too-liberal result on this kind of experiment, that Cuffdiff2
is likely conservatively biased, and that using a linear model test like that implemented in
Ballgown gives a reasonable p-value distribution without calling any transcripts differentially
expressed.

For this experiment, the linear models from Ballgown took 18 seconds to run on a stan-
dard laptop (MacBook Pro, 8G memory). For comparison, Cuffdiff2 took 69 hours and 148G
of memory using 4 cores on a cluster node. EdgeR was also run on the laptop and took 2.5
minutes.

Positive control experiment

The previous analysis showed that Ballgown’s default statistical tests are appropriately con-
servative when there is no signal present in the data. Here we present results from another
idealized experiment to show that these default statistical tests are capable of making dis-
coveries when differential expression really is present. For this experiment, we analyzed
differential expression of Y-chromosome transcripts between males and females, so all tran-
scripts should be differentially expressed. We again used the 95 FIN individuals in the


https://doi.org/10.1101/003665
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/003665; this version posted September 5, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

GEUVADIS RNA-seq dataset (58 females, 37 males).

As expected, the p-value histogram from this experiment using the linear model frame-
work implemented in Ballgown shows a very strong signal (Figure ) Of the 433 assembled
transcripts on the Y chromosome, 225 had a mean FPKM greater than 0.01 in the males.
Of those 225, 58% had g-values less than 0.05, and 72% had g¢-values less than 0.2, demon-
strating that the models in Ballgown are capable of discovering true signal in the dataset.
The p-value histogram for the latest Cuffdiff2 version (2.2.1) does show some signal (Sup-
plementary Figure 6), which is an improvement over earlier versions of Cuffdiff2 on similar
Y-chromosome tests [6]. However, only 29 of the 433 assembled transcripts were tested. Of
those 29, 24 had ¢ < 0.05 and 26 had ¢ < 0.2, so Cuffdiff2 2.2.1 seems to perform adequately
when tests are actually completed.

The Y chromosome linear models from Ballgown took less than 0.1 seconds to run after
Tablemaker , and Cuffdiff2 took 58 hours and 178G of memory on 4 cores. (Likely this
footprint could have been substantially reduced by subsetting all BAM files and the merged
assembly to only the Y chromosome, though this would require some extra processing time
up front).

Confirmation of statistical properties using inSilicoDB and simu-
lated data

The experiments in the previous sections were designed to show that the default statistical
modeling framework implemented in the Ballgown package is computationally efficient and
gives reasonable results. However, those experiments do not necessarily represent realistic
differential expression scenarios: usually some, but not all, features are truly differentially
expressed between populations. We provide differential expression results from Ballgown and
Cuffdiff2 (versions 2.0.2 and 2.2.1) on two publicly-available experimental datasets (Supple-
mentary Section 5.2). The first experiment [12] compared lung adenocarcinoma (n = 12) and
normal control samples (n = 12) in nonsmoking female patients. The second experiment [33]
compared cells at five developmental stages; we analyzed the data from two stages: embry-
onic stem cells (n = 34) and pre-implantation blastomeres (n = 78). On these datasets, the
p-value distributions from the linear model tests implemented in Ballgown were reasonable,
as were the p-value distributions from Cuffdiff2 version 2.2.1, though Cuffdiff2 2.2.1 was more
conservative than Ballgown . However, results from Cuffdiff2 version 2.0.2 (downloaded from
the InSilico DB database [3]) showed noticeable conservative bias (Supplementary Figure 7).

We also performed two simulation studies (Supplementary Section 5.3) to illustrate that
a simple linear modeling approach like that implemented in Ballgown has better sensitivity
and specificity than the Cuffdiff2 approach.

Analysis of RNA-seq experiments with complex designs

The Ballgown infrastructure also gives researchers the flexibility to explore the effects of
using alternative expression measurements for analysis. There are two major classes of sta-
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tistical methods for differential expression analysis of RNA-seq: those based on RPKMs
or FPKMs, as exemplified by Cufflinks, and those based on counting the reads overlap-
ping specific regions, as exemplifed by DESeq [2] and edgeR [23]. Tablemaker outputs both
FPKM estimates from Cufflinks and average coverage of each exon, intron, and transcript
(Supplementary Section 1). We investigated the effect of expression measurement using
both simulated data and the GEUVADIS dataset, and we confirmed the expected result:
differential expression results using average coverage and using FPKM were largely corre-
lated (Supplementary Section 6). So in differential expression analyses, simple expression
measurements like average per-base coverage may be sufficient.

An advantage of the Ballgown framework over Cuffdiff2 is the added flexibility to compare
any nested set of models for differential expression or to apply standard differential expression
tools in Bioconductor, such as the limma package [26]. To demonstrate Ballgown’s flexiblity,
we performed two popular analyses that have not been possible with standard transcrip-
tome assembly and differential expression tools: modeling continuous covariates and eQTL
analysis.

Analysis of quantitative covariates

In the first analysis, we treated RNA Integrity Number (RIN) [24] as a continuous covariate
[30] and used Ballgown’s modeling framework to discover transcripts in the GEUVADIS
dataset [I3] whose expression levels were significantly associated with RIN (Supplementary
Section 4). Of 43,622 assembled transcripts with average FPKM above 0.1, 19,203 showed
a significant effect (¢ < 0.05) of RIN on expression, using a natural cubic spline model for
RIN and adjusting for population and library size [21].

A previous analysis of the GEUVADIS data modeled variation in RNA-quality as a linear
effect [1]. We fit a model with a linear RIN effect and population and library size adjustments
to each transcript, and we identified an enrichment of transcripts showing positive correla-
tion between FPKM values and RNA-quality as expected (Supplementary Figure 3). To
investigate the impact of using a more flexible statistical model to detect RIN artifacts, we
tested whether a 3rd-order polynomial fit for RIN on transcript expression was significantly
better than simply including a linear term for RIN after adjusting for population. We found
that the cubic fit was significantly better than the linear fit (¢ < 0.05) for 1,499 transcripts
(Figure —d), suggesting that flexible non-linear models may be helpful when measuring the
relationship between quantitative covariates and transcript abundance levels.


https://doi.org/10.1101/003665
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/003665; this version posted September 5, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Frequency

log2(transcript expression + 1)

(a)

2000 3000 4000
]

1000
1

0
L

Negative Control

p-values

transcript 25081, chr1: 236712305-236721692

TSI ®e oo

RIN

Chr1:64193406-64195282

64193500

T T T T
64194000 64194500 64195000

genomic position

Frequency

log2(transcript expression + 1)

FPKM

40 60 80 100 120 140

20

1.0

0.8

0.6

0.4

0.2

0.0

Positive Control

(b)

r T T T T
0.2 0.4 0.6 0.8

<4
S}

p-values

—_—

d ) transcript 37164, chr10: 98981790-99052661

YRI
CEU
FIN
GBR
TSI

g

@)
_'_._ .

—e

T
1

Copies of Minor Allele for SNP Chr1:Pos 64122505

E'g?:j


https://doi.org/10.1101/003665
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/003665; this version posted September 5, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Figure 1 (previous page): Experimental results obtained with the Ballgown frame-
work. a. Distribution of transcript-level p-values obtained with Ballgown’s F-tests in an
experiment without signal. b. Transcript-level p-value distribution from Ballgown’s F-tests
for expression differences in Y-chromosome transcripts between males and females. c-d.
Non-linear effects of RNA quality on transcript expression. These two transcripts (FDR
< 0.001) and 1,497 others showed a relationship with RNA quality (RIN) that was signifi-
cantly better captured by a non-linear trend with three degrees of freedom than a standard
linear model. Colored lines shown are predicted values from a natural cubic spline fit and
represent predictions for the specified population, assuming average library size. e-f. An
assembled transcript that does not overlap any annotated transcripts but shows a significant
eQTL. Panel e displays transcript structures for the locus in question; Panel f is a boxplot of
the FPKM transcripts for the middle (red) transcript from panel e, which shows a consistent
and statistically significant eQTL.

Expression quantitative trait locus analysis

To demonstrate the flexibility of using the post-processed Ballgown data for differential
expression, we next performed an eQTL analysis of the 464 non-duplicated GEUVADIS
samples across all populations (Supplementary Section 4). We filtered to transcripts with
an average FPKM across samples greater than 0.1 and removed SNPs with a minor allele
frequency less than 5%, resulting in 7,072,917 SNPs and 44,140 transcripts. We constrained
our analysis to search for cis-eQTLs where the genotype and transcript pairs were within
1000kb of each other resulting in 218,360,149 SNP-transcript pairs. To adjust for potential
confounding factors, we adjusted for the first three principal components of the genotype
data [22] and the first three principal components of the observed transcript FPKM data
[15]. The analysis was performed in 2 hours and 3 minutes on a standard Desktop computer
using the MatrixEQTL package [25].

Visual inspection of the distribution of statistically significant results and corresponding
QQ-plot indicated that our confounder adjustment was sufficient to remove major sources
of bias (Supplementary Figure 4). We identified significant eQTL at the FDR 1% level for
17,276 transcripts overlapping 10,524 unique Ensembl-annotated genes. We calculated a
global estimate of the number of null hypotheses and estimated that 5.8% of SNP-transcript
pairs showed differential expression. 57% and 78% of the transcript-SNP called significant
in the original analysis of the EUR and YRI populations [13], respectively, appeared in our
list of significant transcript eQTL. 14% of eQTL pairs were identified for transcripts that
did not overlap Ensembl annotated transcripts (Figure [Ie-f).

Computational Efficiency

The linear model differential expression testing framework built into Ballgown or limma
provides computational benefits by taking advantage of the Bioconductor infrastructure.
Supplementary Section 7 details timing and memory-use results for experiments presented
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here. These timing results show that Cuffdiff2 is extremely computationally intensive, and
since straightforward, flexible linear models are more accurate even for transcript-level anal-
ysis (Figure —b, Supplementary Figures 5, 6, 8), a framework like Ballgown will drastically
reduce the computational burden of differential expression analysis of assembled transcrip-
tomes while still providing meaningful results.

Summary

We have proposed the Ballgown suite as a bridge between upstream assembly tools and
downstream statistical modeling tools in Bioconductor. The Ballgown suite includes func-
tions for interactive exploration of the transcriptome assembly, visualization of transcript
structures and feature-specific abundances for each locus, and post-hoc annotation of assem-
bled features to annotated features. Direct availability of feature-by-sample expression tables
makes it easy to apply alternative differential expression tests or to evaluate other statistical
properties of the assembly, such as dispersion of expression values across replicates or genes.
The tablemaker preprocessor writes the tables directly to disk and they can be loaded into
R with a single function call. The Ballgown, Tablemaker and Polyester software packages
are available from Bioconductor and GitHub (Supplementary Section 8), and code and data
from the analyses presented here are available on GitHub (Supplementary Section 9).
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