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Abstract

We have built a statistical package called Ballgown for estimating differential ex-
pression of genes, transcripts, or exons from RNA sequencing experiments. Ballgown
is designed to work with the popular Cufflinks transcript assembly software and uses
well-motivated statistical methods to provide estimates of changes in expression. It
permits statistical analysis at the transcript level for a wide variety of experimental
designs, allows adjustment for confounders, and handles studies with continuous covari-
ates. Ballgown provides improved statistical significance estimates as compared to the
Cuffdiff2 differential expression tool included with Cufflinks. We demonstrate the flexi-
bility of the Ballgown package by re-analyzing 667 samples from the GEUVADIS study
to identify transcript-level eQTLs and identify non-linear artifacts in transcript data.
Our package is freely available from: https://github.com/alyssafrazee/ballgown

A key advantage of RNA sequencing (RNA-seq) over hybridization-based technologies
such as microarrays is that RNA-seq makes it possible to reconstruct complete gene struc-
tures, including multiple splice variants, from raw RNA-seq reads without relying on pre-
viously established annotations [17, 29, 8]. The price for this flexibility is a dramatically
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larger quantity of raw data [20] and much greater computational cost associated with as-
sembly and quantification of transcript expression[25]. The most widely used pipeline for
transcript assembly, quantification, and differential expression analysis is the Tuxedo suite,
which aligns reads with Bowtie and Tophat2 [10], assembles transcripts with Cufflinks [29]
and performs differential expression analysis with Cuffdiff2 [28]. This suite has been used
in many influential projects [16, 32, 15], including the ENCODE [5] and modENCODE [9]
consortium projects.

We have developed software called Tablemaker that takes a GTF file and a set of BAM
files and generates a set of linked, tab-delimited text files. These text files contain the
structure of assembled transcripts, mappings from exons and splice junctions to transcripts,
and expression data measured by FPKM (Fragments Per Kilobase of transcript per Million
reads sequenced) and by average per-base coverage (Figure 1a, Supplementary Material:
Tablemaker output files). The Ballgown package can then be used to read these data into
an easy-to-access and analyze R object for downstream analysis (Figure 1b), and Ballgown
includes a flexible linear model framework for differential expression analysis (Supplementary
Material: Data and Notation, statistical methods for detecting differential expression). It is
also possible to link BAM [14] files to the Ballgown object and use them to plot the read-
level coverage for transcripts of interest. Ballgown can work with any assembly tool that
outputs assembled transcripts and expression estimates in the same format as tablemaker
output (Supplementary Material: Tablemaker output files).
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Figure 1: The Ballgown pipeline. a. To use Ballgown run the standard steps in the
Cufflinks pipeline until Cuffmerge. Then run Tablemaker on each sample to calculate per
sample FPKMs and average coverage numbers. These tables can then be loaded into R

using the Ballgown package. b. The Ballgown package loads data into an object with
linked tables for expression levels of exons, introns and transcripts. The object also loads
information about the exon, intron and transcript structures and corresponding indexes for
matching structures to expression and phenotype data to genomic measurements.
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Statistical significance comparisons

Cuffdiff2 is designed for two-class differential expression analysis. It has been observed that
Cuffdiff2 produces conservatively biased statistical results when evaluating differential ex-
pression between two groups [7, 28]. To confirm this result, we collected Cuffdiff2 output
from InSilico DB [3] for two experiments with sufficient sample sizes for differential expression
analysis (Supplementary Section: Data Analyses, InSilico DB Analysis). The first experi-
ment [11] compared lung adenocarcinoma (n = 12) and normal control samples (n = 12)
in nonsmoking female patients. The second experiment [31] compared cells at five develop-
mental stages. We analyzed the data from two stages: embryonic stem cells (n = 34) and
pre-implantation blastomeres (n = 78). We compared only transcripts with average FPKM
greater than one across all samples within a study to avoid test results from transcripts with
little or no observed expression.

Comparing transcript expression between either tumor and normal samples or between
developmental cell types should show strong differential expression signals, given the sample
size and distinct phenotypes. In the cancer versus normal comparison, there were 4454
transcripts with an average FPKM greater than one. Cuffdiff2 identified 1 transcript as
differentially expressed at the FDR 5% level, while Ballgown’s F-test identified 2178. When
comparing developmental phenotypes, there were 12,469 assembled transcripts with average
FPKM greater than one, and Cuffdiff2 identified 0 differentially expressed transcripts versus
Ballgown’s 7236. These results on large scale studies suggest that Cuffdiff2’s statistical
significance estimates of differential expression at the isoform level show a strong conservative
bias (Figure 2a,2b).

To confirm this result, we created an open-source tool called polyester for generating
simulated RNA-seq reads from experiments with biological replicates and transcript-level
differential expression (Supplementary Material: Simulation studies). We simulated a dif-
ferential expression experiment with n = 10 samples in each of two groups, from m = 2, 745
annotated transcripts on human chromosome 22 from the Ensembl [6] annotation (GRCh37
build, v74). We set 274 transcripts to be differentially expressed with a fold change of 6
between groups, with an equal number of transcripts differentially expressed in each direc-
tion. In the simulated data, Cuffdiff2 showed the same strong conservative bias, calling 0
transcripts differentially expressed (controlling FDR at the 5% level), compared to 80 using
Ballgown ’s F-test (Supplementary Material: Simulation studies, Model fitting in simulated
data). Accordingly, the p-value distributions showed similar patterns to those we observed in
the adenocarcinoma and developmental cell datasets (Figure 2c). Ballgown also produced a
more accurate ranking of transcripts for differential expression than Cuffdiff2: 78 of the top
100 transcripts called differentially expressed were truly differentially expressed for Ballgown
versus 63 for Cuffdiff2, a 23% increase in truly differentially expressed genes (Figure 2d).
We further investigated the source of the conservative bias of Cuffdiff2 and found that when
we sampled reads with equal probability from each transcript, ignoring transcript length,
Cuffdiff2 produced accurate measures of statistical significance (Supplmentary Figure 1).
This result suggests that the conservative bias may be due to transcript length normaliza-
tion in the Cuffdiff2 software.
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Figure 2: Comparison of statistical significance for Cuffdiff2 and Ballgown a. His-
tograms of p-values from the comparison of 12 lung adenocarcinomas and 12 normal con-
trols from female patients who never smoked (Ballgown in blue, Cuffdiff2 in orange). b.
Histograms of p-values from the comparison of 78 pre-implantation blastomere samples and
34 embryonic stem cell samples (Ballgown in blue, Cuffdiff2 in orange). c. Histograms of
p-values from a simulated data set of 2,745 transcripts in 10 cases and 10 controls. 10% of
transcripts were simulated to be differentially expressed at a fold change of 6. We observe
the same strong conservative bias as in the two reanalyzed studies. d. A plot of the ranking
of transcripts from most to least differentially expressed based on p-value (x-axis) versus
the number of truly differentially expressed transcripts (y-axis), using the simulated dataset.
Among the top 100 transcripts ranked by each method for differential expression, 63 are
truly differentially expressed for Cuffdiff2 and 78 are for Ballgown.
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1 Flexibility of statistical models

The main advantage of Ballgown over Cuffdiff2 is the added flexibility to compare any nested
set of models for differential expression or to apply standard differential expression tools in
Bioconductor, such as the limma package [24] (Supplementary Material: Data and Notation,
statistical methods for detecting differential expression). To demonstrate Ballgown’s flexib-
lity, we performed two analyses that are not possible with Cuffdiff2: modeling continuous
covariates and eQTL.

Analysis of quantitative covariates

In the first analysis, we treated RNA Integrity Number (RIN) [22] as a continuous covariate
[26] and used Ballgown ’s modeling framework to discover transcripts in the GEUVADIS
dataset [12] whose expression levels were significantly associated with RIN (Supplementary
Material: Data Analysis). Of 43,622 assembled transcripts with average FPKM above 0.1,
19,118 showed a significant effect (q < 0.05) of RIN on expression, using a natural cubic
spline model for RIN and adjusting for population and library size [18]. The populations
included in the study were Utah residents with Northern and Western European ancestry
(CEU), Yoruba in Ibadan, Nigeria (YRI), Toscans in Italy (TSI), British in England and
Scotland (GBR), and Finnish in Finland (FIN).

A previous analysis of the GEUVADIS data modeled variation in RNA-quality as a linear
effect [1]. We fit this model and identified an enrichment of transcripts that showed positive
correlation between FPKM values and RNA-quality as expected (Supplementary Figure 2).
To investigate the impact of using a more flexible statistical model to detect artifacts, we
tested whether a 3rd-order polynomial fit for RIN on transcript expression was significantly
better than simply including a linear term for RIN after adjusting for population. We found
that the cubic fit was significantly better than the linear fit (q < 0.05) for 1,450 transcripts
(Figure 3), suggesting that simple linear adjustment for confounding variables such as RNA
quality might not be sufficient to capture unwanted sources of variation in transcript data.

Expression quantitative trait locus analysis

To demonstrate the flexibility of using the post-processed Ballgown data for differential
expression compared to Cuffdiff2, we next performed an eQTL analysis of the 464 non-
duplicated GEUVADIS samples across all populations (Supplementary Material: Data Anal-
yses, eQTL analysis). We filtered to transcripts with an average FPKM across samples
greater than 0.1 and removed SNPs with a minor allele frequency less than 5%, resulting
in 7,072,917 SNPs and 44,140 transcripts. We constrained our analysis to search for cis-
eQTLs where the genotype and transcript pairs were within 1000kb of each other resulting
in 218,360,149 SNP-transcript pairs. To adjust for potential confounding factors, we adjusted
for the first three principal components of the genotype data [19] and the first three principal
components of the observed transcript FPKM data [13]. The analysis was performed in 2
hours and 3 minutes on a standard Desktop computer using the MatrixEQTL package [23].
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Figure 3: Non-linear effects of RNA quality on transcript expression These tran-
scripts (FDR < 0.001) and 1,448 others showed a relationship with RNA quality (RIN) that
was significantly better captured by a non-linear trend with three degrees of freedom than a
standard linear model. Colored lines shown are predicted values from a natural cubic spline
fit and represent predictions for the specified population, assuming average library size.
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Figure 4: An assembled transcript that does not overlap previously annotated
transcripts but shows a significant eQTL. a. A diagram of the transcript structures
for the three assembled transcripts at this locus. The green transcripts had an average
FPKM < 0.1, the red transcript had a significant eQTL (FDR < 1%). b. A boxplot of the
FPKM values for the middle transcript from panel a. showing a consistent and statistically
significant eQTL.

Visual inspection of the distribution of statistically significant results and corresponding
QQ-plot indicated that our confounder adjustment was sufficient to remove major sources
of bias (Supplementary Figure 3). We identified significant eQTL at the FDR 1% level for
17,276 transcripts overlapping 10,624 unique Ensembl-annotated genes. We calculated a
global estimate of the number of null hypotheses and estimated that 5.8% of SNP-transcript
pairs showed differential expression. 57% and 78% of transcript-SNP pairs significant at
FDR of 1% appeared in the list of significant transcript eQTL identified in the original
analysis of the EUR and YRI populations individually. 14% of eQTL pairs were identified
for transcripts that did not overlap Ensembl annotated transcripts (Figure 4).

Computational time comparison

Next we investigated the computational efficiency of our approach compared to the standard
Cufflinks pipeline. Tophat and Cufflinks can be run on each sample separately, but Cuffdiff2
must be run on all samples simultaneously. While Cuffdiff2 can make use of many cores on
a single computer, is not parallelizable across computers. It has been noted that Cuffdiff2
can take weeks or longer to run on experiments with a few hundred samples. This issue
has led consortia and other groups to rely on unpublished software for transcript abundance
estimation[1, 4].
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a	   b	   c	  

Figure 5: Timing results for the 667 GEUVADIS samples at each stage of the
pipeline. a. Timing (in hours) for each sample to run through TopHat2. b. Timing (in
hours) for each sample to run through Cufflinks. c. Timing (in hours) for each sample to
run through Tablemaker.

We compared each component of the pipeline in terms of computational time on the sim-
ulated dataset with 20 samples and 2,745 transcripts. The Tophat2 - Cufflinks -Tablemaker-
Ballgown pipeline was fastest, taking about 3 minutes per sample for Tablemaker, 7 seconds
to load transcript data into R and less than 1 second for differential expression analysis.
This is faster than the recently published Tophat2 - Cufflinks -Cuffquant -Cuffdiff2 pipeline
[27], which required about 4 minutes per sample for Cuffquant, 23 minutes for differential
expression analysis with Cuffdiff2. The Ballgown -tablemaker pipeline was also substantially
faster than directly running Cufflinks -Cuffdiff2 , where the Cuffdiff2 step took about 75
minutes. For all these pipelines, Tophat2 took about 2 hours per sample and Cufflinks about
5 minutes per sample. All possible multicore processes (Tophat2 , Cufflinks , Cuffdiff2 ,
Cuffquant, Tablemaker) were run on 4 cores.

We also calculated the per-sample distribution of processing times for each step in the
Tophat2 - Cufflinks - Tablemaker pipeline for all 667 samples in the GEUVADIS study
[12] (Figure 5a-c). Tablemaker took a median of 0.97 hours per sample (IQR 0.24 hours)
on a standard 4 core computer; this calculation can be parallelized across samples. By
contrast, Cuffdiff2 would take months to perform this analysis on a standard 4 core computer.
Ballgown multiclass differential expression analysis between the CEU (n = 162), YRI (n =
163), FIN (n = 114), GBR (n = 115) and TSI (n = 93) samples for 334,206 transcripts took
42 minutes on a single core Desktop computer.
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Figure 6: Using average per-base coverage as transcript expression measurement
instead of FPKM. a. Differential expression ranks in the simulated dataset using FPKM
(x-axis) vs. using average coverage (y-axis). b. Distribution of p-values from differential
expression tests between 10 cases and 10 controls, using average coverage as the expression
measurement. This distribution is very similar to the distribution observed when using
FPKM as the expression measurement (Figure 2c). c. Similar to Figure 2d, ranking of
transcripts from most differentially expressed to least (x-axis) versus the number of truly
differentially expressed transcripts (y-axis), using the simulated dataset. Among the top
100 transcripts ranked by each method for differential expression, 63 are truly differentially
expressed for Cuffdiff2 , 78 are for Ballgown (FPKM), and 82 are for Ballgown (average
coverage). d. Differential expression ranks in the GEUVADIS dataset using FPKM (x-axis)
vs. using average coverage (y-axis) to analyze differential expression based on RIN value.
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Comparison of average coverage and FPKM for differ-

ential expression

There are two major classes of statistical methods for differential expression analysis of
RNA-seq: those based on RPKMs or FPKMs, as exemplified by Cufflinks, and those based
on counting the reads overlapping specific regions, as exemplifed by DESeq [2] and edgeR
[21]. Tablemaker produces both FPKM estimates from Cufflinks and average coverage of
each exon, intron, and transcript (Supplementary Materials: Tablemaker output files). We
used our simulated dataset to investigate the impact of using average coverage as the tran-
script expression measurement, compared to using FPKM, as was done in our previous
analyses. To do this comparison, we re-ran the same Ballgown model as in our simulation
study (Figure 2), but used average coverage as the expression measurement. The differential
expression rankings were highly correlated when using either FPKM or average coverage
(Figure 6a). The p-value distribution using average coverage (Figure 6b) was similar to the
p-value distribution using FPKM (Figure 2c), and the ranking accuracy of the transcript
ranks was almost the same, whether average coverage or FPKM was used (Figure 6c). We
also observed correlated ranks between the differential expression results by RIN value in
the GEUVADIS dataset (Figure 6d). These results confirm the expected result: in dif-
ferential expression analyses, count-based and FPKM-based (length-normalized) expression
measurements perform similarly. Ballgown allows users to perform analyses with whatever
expression measurement is available in their dataset, so other expression measurements, such
as transcripts per million (TPM) [30] could also be explored within our framework.

The Ballgown R package includes functions for interactive exploration of the transcrip-
tome assembly, visualization of transcript structures and feature-specific abundances for each
locus, and post-hoc annotation of assembled features to annotated features. Direct avail-
ability of feature-by-sample expression tables makes it easy to apply alternative differential
expression tests or to evaluate other statistical properties of the assembly, such as dispersion
of expression values across replicates or genes. The tablemaker preprocessor writes the tables
directly to disk and they can be loaded into R with a single function call. The Ballgown
, tablemaker and polyester software are available from GitHub (Supplementary Material:
Software), and code and data from the analyses presented here are in the process of being
uploaded to GitHub (Supplementary Material: Scripts and Data).
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