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Abstract 17 

Aim:  18 

The Maximum Entropy Theory of Ecology (METE) is a unified theory of biodiversity that 19 

attempts to simultaneously predict patterns of species abundance, size, and spatial structure. The 20 

spatial predictions of this theory have repeatedly performed well at predicting diversity patterns 21 

across scales. However, the theoretical development and evaluation of METE has focused on 22 

predicting patterns that ignore inter-site spatial correlations. As a result the theory has not been 23 

evaluated using one of the core components of spatial structure.  We develop and test a semi-24 

recursive version of METE’s spatially explicit predictions for the distance decay relationship of 25 

community similarity and compare METE’s performance to the classic random placement model 26 

of completely random species distributions. This provides a better understanding and stronger 27 

test of METE’s spatial community predictions. 28 

Location:  29 

New world tropical and temperate plant communities. 30 

Methods:  31 

We analytically derived and simulated METE’s spatially explicit expectations for the Sorensen 32 

index of community similarity. We then compared the distance decay of community similarity of 33 

16 mapped plant communities to METE and the random placement model.   34 

Results:  35 

The version of METE we examined was successful at capturing the general functional form of 36 

empirical distance decay relationships, a negative power function relationship between 37 

community similarity and distance. However, the semi-recursive approach consistently over-38 
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predicted the degree and rate of species turnover and yielded worse predictions than the random 39 

placement model. 40 

Main conclusions:  41 

Our results suggest that while METE's current spatial models accurately predict the spatial 42 

scaling of species occupancy, and therefore core ecological patterns like the species-area 43 

relationship, its semi-recursive form does not accurately characterize spatially-explicit patterns 44 

of correlation. More generally, this suggests that tests of spatial theories based only on the 45 

species-area relationship may appear to support the underlying theory despite significant 46 

deviations in important aspects of spatial structure. 47 

 48 

49 
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Introduction 50 

Community structure can be characterized using a variety of macroecological relationships 51 

such as the species-abundance, body size, and species spatial distributions. Increasingly 52 

ecologists have recognized that many of these macroecological patterns are inter-related, and 53 

progress has been made toward unifying the predictions of multiple patterns using theoretical 54 

models (Storch et al., 2008; McGill, 2010). One approach to predicting suites of macrecological 55 

patterns are process-based models such as niche and neutral dispersal models, which have the 56 

potential to provide biological insight into the process structuring ecological systems (Adler et 57 

al., 2007). Alternatively, a new class of constraint-based models suggest that similar patterns 58 

may be produced by different sets of processes because the form of the predicted pattern is due 59 

to the existence of statistical constraints rather than directly reflecting detailed biological 60 

processes (Frank, 2009, 2014; McGill & Nekola, 2010; Locey & White, 2013).  61 

The Maximum Entropy Theory of Ecology (METE) is a recent attempt to explain a 62 

number of ecological patterns from the statistical constraint perspective (Harte et al., 2008, 2009; 63 

Harte, 2011; Harte & Newman, 2014).  METE uses the principle of entropy maximization, that 64 

the most likely distribution is the one with the least information (i.e., the one closest to the 65 

uniform distribution) subject to a set of constraints (i.e., prior information), to predict 66 

distributions of species abundance, body size, and spatial structure. A frequentist perspective on 67 

the Maximum Entropy modeling approach is that every possible configuration of a system is 68 

equally likely; therefore, the probability of a particular distribution is directly proportional to the 69 

number of configurations that distribution is compatible with (Harte, 2011; Harte & Newman, 70 

2014). The distribution with the largest number of compatible system configurations is the 71 

predicted most likely state of the system. In contrast to detailed biological models of community 72 
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assembly, METE has no free parameters and only requires information on total community area, 73 

total number of individuals, total number of species, and total metabolic rate of all individuals to 74 

generate its predictions. 75 

 There is strong empirical support for METE's predictions for the species abundance 76 

distribution and patterns related to the spatial distribution of individuals and species (Harte et al., 77 

2008, 2009; Harte, 2011; White et al., 2012a; Xiao et al., 2013; McGlinn et al., 2013; Newman 78 

et al., 2014). Specifically, METE has been successful at predicting spatially implicit patterns of 79 

community structure such as the species spatial abundance distribution and the species-area 80 

relationship (Harte et al., 2008, 2009; McGlinn et al., 2013). It has even been proposed that the 81 

METE spatial predictions yield a widely applicable universal species-area relationship (Harte et 82 

al., 2009, 2013, but see Šizling et al., 2011, 2013). However all of METE’s spatial predictions 83 

that have been tested focus on spatially implicit patterns that ignore spatial correlations. As a 84 

result the theory has not been evaluated using one of the core components of spatial structure. 85 

This is due in part to the fact that METE’s spatial correlation predictions have not been fully 86 

derived. 87 

The most commonly studied ecological pattern that relies on these spatial correlations is 88 

the distance decay relationship (DDR) in which the similarity of species composition decreases 89 

with distance (Nekola & White, 1999).  The DDR provides a spatially-explicit, community-level 90 

characterization of intra-specific aggregation patterns including correlations in space (Plotkin & 91 

Muller-Landau, 2002; Palmer, 2005; Morlon et al., 2008; McGlinn & Palmer, 2011), and 92 

predicting the DDR is an important area of future development for METE because the DDR is 93 

necessary to accurately extrapolate community patterns to unsampled areas (Harte, 2011). 94 
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Here we explore METE’s spatially explicit predictions for the DDR by developing 95 

analytical and simulation based solutions and comparing them to empirical data. We build on the 96 

Hypothesis of Equal Allocation Probabilities (HEAP, Harte et al. 2005, Harte 2007) using an 97 

approach that combines elements of both a non-recursive and recursive version of METE 98 

(McGlinn et al. 2013).  We test those predictions using data from 16 spatially explicit plant 99 

communities and compare METE’s performance to the classic Random Placement Model (RPM) 100 

in which individuals are randomly placed on the landscape (Coleman, 1981). Our approach 101 

provides a stronger evaluation of the performance of this model and whether it can explain 102 

patterns of spatial structure in the absence of detailed biological processes. 103 

Methods 104 

METE has thus far been used to derive the probability that a random cell on a landscape will 105 

be occupied by a given number of individuals (i.e., the intra-specific spatial abundance 106 

distribution). Predictions for this distribution have been based either on recursively subdividing 107 

an area in half or on predicting species abundances directly at smaller scales (Harte, 2011; 108 

McGlinn et al., 2013).  In addition to the spatial abundance distribution, the DDR requires a 109 

prediction for the correlations in abundance among neighboring cells, which has proven difficult 110 

to derive for METE (Harte 2011).  111 

Developing METE’s Spatially Explicit Predictions 112 

 METE’s spatial predictions depend on two conditional probability distributions which are 113 

computed using independent applications of MaxEnt:  114 

1) the species abundance distribution (SAD), Φ(n | S0, N0), the probability that a species has 115 

abundance n in a community with S0 species and N0 individuals, and 116 
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2) the intra-specific spatial abundance distribution, Π(n | A, n0, A0), the probability that n 117 

individuals of a species with n0 total individuals are located in a random quadrat of area A 118 

drawn from a total area A0. 119 

The METE prediction for Φ is calculated using entropy maximization with constraints on the 120 

average number of individuals per species (N0/S0) and the maximum number of individuals N0 121 

for a given species, which yields a truncated log-series abundance distribution (Harte et al., 2008; 122 

Harte, 2011). The spatially implicit Π distribution is solved for using entropy maximization with 123 

constraints on the average number of individuals per unit area (n0/A0) and the maximum number 124 

of individuals n0 of a given species. Although METE requires information on total metabolic rate 125 

to derive its predictions, the exact value that this constraint takes has no influence on Φ and Π 126 

(Harte et al., 2009; Harte, 2011).  127 

Previous studies have downscaled (or upscaled) METE’s predictions using recursive and 128 

non-recursive approaches. Here we develop a spatially explicit approach to downscaling 129 

METE’s predictions that combines elements of both approaches and builds off an existing 130 

theoretical framework for modeling the DDR. With the recursive version of METE, Φ and Π are 131 

solved for at each successive halving or bisection of A0 until the area of interest is reached. After 132 

each bisection, Φ and Π are calculated and used to derive predicted values of average S and N at 133 

that scale which provide updated constraints for the next bisection (Harte et al. 2009). 134 

Alternatively, a non-recursive approach can be used in which, Φ and Π at the spatial grain of 135 

interest can be solved for directly from the constraints placed at A0 (Harte et al. 2008). A semi-136 

recursive approach is also possible in which Π is recursively downscaled but Φ is not. The semi-137 

recursive predictions of METE have not been previously examined but this model builds directly 138 

on the existing theoretical derivations of the DDR by Harte (2007) for the Hypothesis of Equal 139 
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Allocation Probabilities (HEAP). In Appendix A, Fig. A1 and A2 we examine how the semi-140 

recursive formulation of METE differs from a previous examination of the METE recursive and 141 

non-recursive SARs (McGlinn et al. 2013), and in Appendix B we develop the analytical 142 

derivations of the semi-recursive formulation of the DDR. 143 

In the semi-recursive formulation of the DDR, multi-cell correlations emerge from the 144 

spatially nested application of a recursive bisection scheme in which individuals are randomly 145 

placed in the left or right half of a cell at each bisection (Fig. 1). Biologically, this can be thought 146 

of as a sequentially dependent colonization rule in which individuals randomly choose to occupy 147 

the left or right side of an area depending on the existing number of individuals in each half 148 

(Harte et al. 2005, Harte 2007, and Conlisk et al. 2007).  Our version of METE assumes that for 149 

a single bisection there is an equal likelihood for every possible spatial configuration of 150 

indistinguishable individuals (Eq. B1). Multi-cell spatial correlations emerge from this approach 151 

because the two cells that are formed from a common parent cell are adjacent to one another and 152 

are likely to be more similar in abundance than other cells on the landscape (Fig. 1). This 153 

approach has three important and inter-related limitations: 1) At each stage in the bisection 154 

algorithm, information about the cells surrounding the parent cell is ignored when determining 155 

allocations within the parent cell, 2) between-cell distance is defined in reference to an artificial 156 

bisection scheme which does not have a one-to-one correspondence with physical distance, and 3) 157 

the correlation between cells does not decrease smoothly with physical distance. Alternative 158 

approaches have been proposed for deriving the DDR for METE based on computing the single-159 

cell Π distribution at two or more scales and then using the scaling of this marginal distribution 160 

to infer the probabilities of a given spatial configuration of abundance (Harte 2011). However, 161 

these approaches have yet to yield predictions for the DDR. 162 
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The analytical forms of the semi-recursive formulation (Appendix B) are time-intensive 163 

to compute due to the multiple levels of recursion, ignore patterns of abundance (i.e., are 164 

formulated only in terms of presence-absence), and are not exact. An alternative approach to 165 

deriving semi-recursive METE predictions for the DDR is to use a spatially-explicit simulation. 166 

Spatially Explicit METE Simulation 167 

 To simulate semi-recursive METE’s spatial predictions, the equal probability rule (Eq. 168 

B1) that METE assumes when total area is halved is recursively applied starting at the anchor 169 

scale A0 and progressively bisecting the area until the finest spatial grain of interest is achieved 170 

(Fig. 1).  Abundance in the simulation model can be parameterized using an observed SAD or 171 

using a random realization of the METE SAD given the values of S0 and N0.  Once the 172 

abundances of the species are assigned, each species is independently spatially distributed. 173 

Because the equal probability rule requires that there is an equal probability of 0 to n0 individuals 174 

occurring on the left or right side of the total area A0, the number of individuals in the left side 175 

can be set as a draw from a discrete random uniform distribution between 0 and n0 and the 176 

remaining number of individuals are placed on the right hand side.  177 

Datasets 178 

 We used a database of 16 spatially explicit and contiguous community datasets compiled 179 

by McGlinn et al. (2013) to evaluate the DDR predictions of recursive METE (Table 1). All of 180 

the sites were terrestrial, woody plant communities with the exception of the serpentine grassland 181 

dataset which covered a terrestrial, herbaceous plant community.  In the woody plant 182 

communities, all stems were recorded that were at least 10 mm in diameter at breast height (i.e., 183 

1.4 m from the ground) with the exception of the Oosting and Cross Timbers sites where the 184 

minimum diameter was 20 and 25 mm respectively. Recursive METE only generates predictions 185 
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for bisections of total area; therefore, we restricted our analysis to square or rectangular areas 186 

with a length-to-width ratio of 2:1. Two of the sites had irregular plot designs: Sherman and 187 

Cocoli. At these sites we partitioned the datasets into two 2:1 rectangles and analyzed each half 188 

independently and then averaged the results (see Supplemental Information: Fig. S1 in McGlinn 189 

et al. 2013).  See McGlinn et al. (2013) for additional information on site selection criteria, and 190 

in particular their Supplemental Table 1, which provides a more complete description of the 191 

datasets used in our analysis. 192 

Data Analysis 193 

 We compared the fit of METE with and without the observed SAD and the random 194 

placement model (RPM) to the empirical DDRs.  The METE predictions represented averages of 195 

the abundance-based Sørensen index across 200 simulated communities. The abundance-based 196 

RPM predictions were generated by distributing the observed number of individuals of each 197 

species randomly in space and then computing the average abundance-based Sørensen index 198 

across 500 permutations (Morlon et al., 2008).  199 

The DDR is sensitive to the choice of the spatial grain of comparison (Nekola & White, 200 

1999); so, we examined the DDR at several spatial grains for each dataset. We examined spatial 201 

grains resulting from 3-13 bisections of A0. To ensure that the samples at a given grain were 202 

square we only considered odd numbers of bisections when A0 was rectangular and even 203 

numbers of bisections when A0 was square.  To ensure the best possible comparison between the 204 

observed data and METE and to avoid detecting unusual spatial artefacts in the METE predicted 205 

patterns we employed the “user rules” of Ostling et al. (2004) such that samples at a specific 206 

grain (i.e., level of bisection) were only compared if they were separated by a specific line of 207 

bisection (i.e., a given separation order, Fig. 1 and Appendix A, Fig. A3).  This approach was 208 
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taken rather than the standard method of constructing the DDR from all possible pairwise sample 209 

comparisons without reference to an imposed bisection scheme. We computed geographic 210 

distance by averaging the distance between all the compared samples compared at a given 211 

separation order. For the Crosstimbers study site we were not able to examine the DDR based on 212 

the METE SAD because of difficulty in generating random realizations of the METE SAD 213 

needed for the community simulator when S0 is less than approximately 10. Typically averages 214 

of community similarity are used to examine the geometry of the DDR; however, in some cases 215 

the distribution of the similarity metric may be strongly skewed and therefore we computed both 216 

averages and medians of community similarity at each separation order. 217 

We used weighted least squares (WLS) regression to account for differences in the 218 

number of pairwise comparisons at different spatial lags (there are many more comparisons at 219 

short lags) when fitting the power and exponential models of the DDR (Venables & Ripley, 220 

2002).  We examined the power model and exponential models because they are the simplest 221 

statistical models of the DDR, and it was recently suggested that at fine spatial scales the DDR 222 

should be best approximated by a power model (Nekola & White, 1999; Nekola & McGill, 223 

2014).  224 

We checked that our results were consistent with the results provided in previous studies 225 

(Harte, 2007, Fig. 6.7 and 6.8, 2011, Fig. 4.1), and that the DDR generated by the community 226 

simulator closely agreed with the analytical solution Eq. B5 (Appendix B, Fig. B1). The code to 227 

recreate the analysis is provided as Appendix D and at the following publicly available 228 

repository: http://dx.doi.org/10.6084/m9.figshare.978918. 229 
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Results 230 

In general, the semi-recursive METE distance decay relationship (DDR) provided a poor 231 

fit to the empirical DDR (Figs. 2 and 3). The average and median community similarity results 232 

were highly correlated (r = 0.98) and generated qualitatively similar results (Appendix A Figs. 233 

A5 and A8); therefore, we focus on the results based on averaging similarity. While the METE 234 

DDRs exhibited the general functional form of the empirical DDRs, an approximately power-law 235 

decrease in similarity with distance, they typically had lower intercepts and steeper slopes than 236 

the empirical DDRs (Fig. 2, Appendix A, Fig. A4 and A6). Both the empirical and METE 237 

predicted DDR were better approximated by power rather than exponential models (Appendix A, 238 

Fig. A6). METE converged towards reasonable predictions at fine spatial grains; however, this is 239 

to be expected because at these scales similarity in both the observed and predicted patterns must 240 

converge to zero due to low individual density (grey points in Fig. 3A,B). This is because when 241 

individual density is low the probability of samples sharing species decreases rapidly simply due 242 

to chance. The RPM is known to be a poor model for distance decay because it does not exhibit a 243 

decrease in similarity with distance. However, it fit the empirical DDR slightly better than 244 

METE (Figs. 2 and 3). 245 

The METE DDR was not strongly influenced by the choice of using the observed or the 246 

METE SAD (Figs. 2 and 3A,B). The METE SAD typically yielded a DDR with a slightly lower 247 

intercept with the exception of the four tropical sites where it produced DDRs with slightly 248 

higher intercepts. In general, we did not observe strong consistent differences between the 249 

habitat types (Fig. 2, Appendix A, Fig. A7). 250 

Our formulation of a semi-recursive METE produced SARs that generally agreed (i.e., 251 

within the 95% CI) with the recursive and non-recursive formulations of METE (Harte et al. 252 
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2009); however, it did appear that the semi-recursive approach systematically deviated towards 253 

lower richness at fine spatial scales which is consistent with predicting stronger patterns of 254 

spatial aggregation compared to the other formulations of METE (Appendix A, Fig. A1 and A2).  255 

Discussion 256 

The semi-recursive METE distance decay relationship (DDR) was well approximated by 257 

a decreasing power function, and thus consistent with the general form of empirical DDRs, but it 258 

provided a poor fit to empirical data. Specifically, the slope and the intercept of this power 259 

function deviate substantially from empirical data resulting in a poor fit. These deviations 260 

contrast with a number of studies showing that the theory successfully predicts both the Π 261 

distribution and the SAR (Harte et al., 2008, 2009; Harte, 2011; McGlinn et al., 2013; but see 262 

Šizling et al., 2011). Both Π and the SAR are influenced by the spatially explicit pattern of 263 

intraspecific aggregation but neither pattern reflects inter-quadrat correlations and therefore they 264 

represent coarse metrics of spatial structure. The combination of a well fit SAR and a poorly fit 265 

DDR suggests that the current version of METE accurately characterizes average occupancy, but 266 

fails to characterize the spatial relationships among cells (McGeoch & Gaston, 2002; Storch et 267 

al., 2003; McGlinn & Hurlbert, 2012; Nekola & McGill, 2014). 268 

These results only apply directly to the particular HEAP-based semi-recursive version of 269 

the spatial METE theory, which represents a middle ground in terms of approach between Harte 270 

et al. (2008) and Harte et al. (2009). Other approaches to deriving the METE DDR may perform 271 

better than the semi-recursive approach if they can be developed. It has been suggested that there 272 

is no a priori reason to prefer one version of the theory and that the best way to choose among 273 

the different versions is empirically (Haegeman & Etienne, 2010; Harte, 2011). However, the 274 

traditionally defined recursive and non-recursive versions of METE have shortcomings with 275 
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respect to how their assumptions and predictions are scaled, and the semi-recursive approach we 276 

defined is limited by its dependence on an artificial bisection scheme.  Specifically the recursive 277 

approach predicts that the SAD has the same functional form, a truncated log-series, at all scales. 278 

This is problematic because SADs are typically not scale-invariant if, as METE predicts, species 279 

display intraspecific spatial aggregation (Green & Plotkin, 2007; Šizling et al., 2009). The non-280 

recursive approach does not suffer from this problem because the SAD is only solved for at the 281 

anchor scale; however, Haegemann and Etienne (2010) found that the non-recursive predictions 282 

for a multi-cell generalization of the Π distribution were scale-inconsistent. The semi-recursive 283 

approach does not suffer from this shortcoming because its multi-cell form (see Eq. 2.2 in 284 

Conlisk et al., 2007) is only defined over the set of bisections that are consistent with a landscape 285 

in which n0 individuals are distributed (see Appendix C for proof). However, the set of bisections 286 

is artificial and multi-cell correlations only emerge from this approach in reference to bisection 287 

distance rather than directly to physical distance between cells such that cells have equal 288 

magnitude of correlation regardless of their physical distance if they have equivalent separation 289 

orders (see Conlisk et al., 2007 for a critique of distances defined by separation indices). An 290 

important future direction for METE is to attempt to develop spatial multi-cell predictions using 291 

approaches that avoid these shortcomings and the two approaches suggested by Harte (2011) for 292 

deriving the METE DDR may provide a useful starting point for future development. 293 

Our results suggest that semi-recursive METE differs from spatial patterns observed in 294 

nature. This deviation could indicate that the emergent statistical approach to modeling spatial 295 

structure is incorrect, with specific biological processes such as dispersal limitation or 296 

environmental filtering directly controlling spatial correlation (Condit et al., 2002; Gilbert & 297 

Lechowicz, 2004; Karst et al., 2005; Seidler & Plotkin, 2006; Chase, 2007; McGlinn & Palmer, 298 
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2011). Alternatively it could mean that while the general idea underlying the theory is valid, the 299 

specific formulation is wrong. For example it could be that the approaches outlined by Harte 300 

(2011) that are more sophisticated in how they handle spatial correlations will be more 301 

appropriate or that a generalized version of this kind of recursive approach like that developed by 302 

Conlisk et al. (2007) in which the degree of aggregation is a tunable parameter will capture the 303 

reality of biological systems more precisely.  However, process-, and constraint-based models 304 

should not necessarily be treated as mutually exclusive. For example other process-based 305 

theories make power-law like predictions for the form of the DDR. In fact, it has recently been 306 

suggested that at fine spatial scales most theories will make predictions that are approximately 307 

power-law in nature (Nekola & McGill, 2014). This means that simply noting power-law like 308 

DDR relationships does not provide a strong method for differentiating among theories. In fact, 309 

had we simply looked for power-law like behavior we would have concluded that the semi-310 

recursive METE was consistent with empirical data. However, one of the properties that makes 311 

METE such a strong theory is that it makes specific predictions for precise parameters as well as 312 

general forms of empirical relationships. This allows it to be more rigorously compared to data 313 

and to other theories that predict different parameters values for a similar general form of the 314 

DDR (e.g., neutral theory). 315 

Our results mirror those of Xiao et al. (2013) and Newman et al. (2014) evaluating the 316 

non-spatial aspects of METE. All three studies show that when evaluating the theory using 317 

multiple patterns simultaneously some of the predictions perform well and some perform poorly. 318 

It is inherently difficult for theories to predict large numbers of patterns simultaneously, which is 319 

why evaluating theory in this way provides stronger tests than evaluating single patterns (McGill, 320 

2003; McGill et al., 2006). General theories like METE that make multiple predictions are 321 
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therefore both easier to evaluate and also more broadly useful since they allow a large number of 322 

patterns to be predicted from a relatively small amount of information. Because there are many 323 

patterns to evaluate it is also more likely that deviations from theory will be identified (White et 324 

al., 2012). In some cases these deviations may indicate that the theory is fundamentally unsound, 325 

but in others it may suggest modifications to the theory to address the observed deviations 326 

(White et al., 2012). Whether METE can be modified to address the observed deviations from 327 

empirical data remains to be seen. In the case of the DDR, despite its generality, there are a 328 

limited number of models that attempt to predict the DDR from first principles (Chave & Leigh, 329 

2002; Condit et al., 2002; Zillio et al., 2005; Harte, 2007, 2011; Nekola & McGill, 2014), which 330 

means that it may be worth pursuing the METE approach further.  331 

 METE is one of several general theories in ecology that make many predictions for many 332 

aspects of ecological community structure based on only a small amount of information. Our 333 

analysis of the semi-recursive formulation of METE’s spatially explicit prediction for the DDR 334 

suggests that this form of the theory over-predicts the strength of spatial correlation. These 335 

results coupled with studies of the species-area relationship suggest that semi-recursive METE 336 

accurately predicts the scaling of species occupancy but not spatial correlation. More generally, 337 

our results demonstrate that tests of spatial theories that focus solely on the species-area 338 

relationship and related patterns are only evaluating part of the spatial pattern, the distribution of 339 

occupancy among cells. Evaluating these theories using the DDR in addition to the SAR will 340 

help identify cases where the theories are correctly identifying some aspects of spatial structure, 341 

but not others, and thus yield stronger tests of the underlying theory. In some cases this will 342 

require extending the theory to make additional predictions, but this effort will provide both 343 

more testable and more usable theories. 344 
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Weecology is founded on the belief that better communication and collaboration between 492 

empirical and quantitative scientists is necessary for tackling many of the big scientific 493 

challenges in ecology. The purpose of Weecology is to facilitate collaborative research through a 494 

variety of mechanisms including shared resources, expertise, and web-based collaborative tools.  495 

Our hope is help scientists (and ourselves) collaborate and communicate across disciplinary 496 

divides and generate higher-quality novel research as a result.497 
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Tables: 498 

Table 1. Summary of the habitat type and state variables of the vegetation datasets. The state 499 

variables are total area (A0), total abundance (N0) and total number of species (S0). Amin and Amax 500 

are the finest and coarsest areas (m2) examined. Data were collected on woody forest plants with 501 

the exception of the serpentine site which contained herbaceous grassland plants. 502 

Site name Habitat type Ref Amin Amax A0 N0 S0 

BCI tropical 1-3 61.0 62500 500000 205096 301 

Sherman tropical 4 2.4 625 20000 7623 175 

Cocoli tropical 4 2.4 625 20000 4326 139 

Luquillo tropical 5 15.3 15625 125000 32320 124 

Bryan oak-hickory 6-8 2.1 535 17113 3394 48 

Big Oak oak-hickory 6-8 2.4 625 20000 5469 40 

Oosting oak-hickory 9 16 4096 65536 8892 39 

Rocky oak-hickory 6-8 3.5 900 14400 3383 37 

Bormann oak-hickory 6-8 4.8 1225 19600 3879 30 

Wood Bridge oak-hickory 6-8 1.2 315 5041 758 19 

Bald Mtn. oak-hickory 6-8 2.4 156 5000 669 17 

Landsend old field, pine 6-8 1.0 264 8450 2139 41 

Graveyard old field, pine 6-8 2.4 625 10000 2584 36 

UCSC mixed-evergreen 10 5.4 1406 45000 5885 31 

Serpentine serpentine 11 0.3 4 64 37182 24 

Cross Timbers oak woodland 12 9.8 2500 40000 7625 7 

Ranges          0.3-61.0 4-62500 64-500000 669-205096 7-301 

1. Condit (1998), 2. Hubbell et al. (1999), 3. Hubbell et al. (2005), 4. Condit et al. (2004), 5. 503 

Zimmerman et al. (1994), 6. Peet and Christensen (1987), 7. McDonald et al. (2002), 8. Xi et al. 504 

(2008), 9. Palmer et al. (2007), 10. Gilbert et al. (2010), 11. Green et al. (2003), 12. Arévalo (2013) 505 
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Figures 506 
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 507 

Fig 1. This diagram illustrates the “user rules” of how a landscape is bisected and how samples 508 

are compared for a given separation order. In this specific example, three bisections are used to 509 

generate a spatially explicit distribution of 10 individuals. In the last panel, the eight pairwise 510 

comparisons (arrows) at separation order of 2 for a scale of A0/2
3 (i.e., Ai=3, Dj=2) are illustrated.  511 

When simulating random bisections the number of individuals distributed to the left or right of 512 

the bisection line is a random draw from a discrete uniform distribution. 513 

514 
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 517 

Fig 2. The observed (black line with dots) and predicted distance decay relationships (METE: 518 

dark grey lines, solid for the observed SAD, dashed for the METE SAD; random placement: 519 

light grey line) for each site at a single spatial grain. Community similarity represents the 520 

average of the abundance-based Sørensen index for each spatial lag.  The spatial grain displayed 521 

was taken at either 8 or 9 bisections of the total area depending on whether the total extent was a 522 

square or a rectangle respectively. Geographic distance was calculated as the average physical 523 
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distance between the samples compared at given separation order (see Methods and Fig.1 for 524 

additional information).  525 

526 
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 527 

Fig 3. The log-log transformed one-to-one plots of the predicted and observed abundance-based 528 

Sørensen similarity values for the three models across all distances and spatial grains. The solid 529 

line is the one-to-one line. The grey points represent values from spatial grains in which the 530 

average individual density was low (i.e., less than 10 individuals) and thus both the observed and 531 

predicted similarities must be close to zero simply because of a sampling effect.  532 
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