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Abstract 
 
While reducing the burden of brain disorders remains a top priority of organizations like the 
World Health Organization and National Institutes of Health (BRAIN, 2013), the development of 
novel, safe and effective treatments for brain disorders has been slow. In this paper, we 
describe the state of the science for an emerging neurotechnology, real time functional 
magnetic resonance imaging (rtfMRI). We outline the scientific potential of rtfMRI as well as 
research strategies to optimize the development and application of rtfMRI as a next generation 
neurotherapeutic tool. We propose that rtfMRI can be used to deepen our understanding of 
brain-behavior relationships and inform our efforts to develop more effective therapeutic 
interventions for individuals with brain disorders. Our overall goal is for rtfMRI to advance 
personalized assessment and intervention approaches to enhance resilience and reduce 
morbidity by correcting maladaptive patterns of brain function in those with brain disorders.  
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Introduction 
 
Researchers have recently developed neuroimaging technologies that provide us with powerful 
tools to better understand the complexity of human brain-behavior relationships with the goal of 
discovering and developing novel, safe, effective and personalized therapeutics to treat brain 
disorders. Recognizing the potential of these new tools for advancing clinical neuroscience, the 
European Union and United States launched the Human Brain Project and Brain Research 
through Advancing Innovative Neurotechnologies (BRAIN) initiatives with estimated budgets of 
$1.3 billion and $3 billion in research support, respectively, to accelerate the development of 
such neurotechnologies (BRAIN, 2013; Kandel et al., 2013). At the leading edge of 
neuroimaging technology development is real time functional magnetic resonance imaging 
(rtfMRI). rtfMRI neurofeedback is an application of this technology that can be used to non-
invasively alter patterns of brain activity and behavior while an individual is inside the MRI 
scanner in real time (Birbaumer et al., 2009; Birbaumer et al., 2006; deCharms, 2008; 
deCharms et al., 2004; deCharms et al., 2005; Weiskopf et al., 2007; Weiskopf et al., 2003). 
The therapeutic potential for this technology lies in its ability to alter neural plasticity and learned 
behavior to modify brain function to optimize and/or restore healthy cognition and behavior. 
 
Brain structure and function are modified in response to changes within and outside the central 
nervous system via both normal and disordered processes (Kolb et al., 2010). rtfMRI allows a 
non-invasive view of brain function1 in vivo and in real time2. Compared to standard fMRI in 
which behavior is influenced experimentally and subsequent changes in brain activity are 
measured, rtfMRI switches the direction of the relationship between brain and behavior so that 
we can determine if directly changing brain function leads to changes in behavioral or 
experiential outcomes (Weiskopf, 2012). This approach of facilitating specific changes in brain 
function to produce changes in cognition, experience, or behavior is theorized to occur by 
accelerating and/or optimizing systems-level neuroplasticity. Other neurotherapeutic 
technologies, including electroconvulsive therapy, vagus nerve stimulation, deep brain 
stimulation, and transcranial magnetic stimulation or transcranial direct current stimulation, are 
also being used or investigated for the treatment of brain disorders and may also produce 
clinical change via altered neuroplasticity. Each of these technologies has potential benefits and 
may also be limited by constraints in spatial resolution or by their invasive nature. 
 
Neurofeedback is a training method in which real time information about changes in neural 
activity is provided to an individual to facilitate learned self-regulation of this neural activity to 
produce changes in brain function, cognition, or behavior. The earliest studies of neurofeedback 
employed electroencephalography (EEG) and demonstrated feedback-related changes in 
electrical brain activity and related behavior and cognition in humans (Keizer et al., 2010; 
Kouijzer et al., 2009; Ros et al., 2013; Zoefel et al., 2011) and other animals (Philippens and 
Vanwersch, 2010; Schafer and Moore, 2011; Sterman et al., 1969). Brain change after EEG 
neurofeedback has been shown using EEG and event related potentials (Egner and Gruzelier, 
2001; Kropotov et al., 2005). Likewise, changes in fMRI activation after EEG neurofeedback 
have been shown in targeted neural networks after a single 30-minute EEG training session 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Most rtfMRI systems use blood oxygen-dependent level or BOLD contrast, which is an indirect measure 
of brain function with known spatial and temporal resolution limitations. 
2 Real time, in the context of real time fMRI, refers to the ability to capture a brain signal every 1-2 
seconds with the limitation that the BOLD response takes 2-6 seconds to rise to peak LaConte, S.M., 
2011. Decoding fMRI brain states in real-time. Neuroimage 56, 440-454, Logothetis, N.K., Pauls, J., 
Augath, M., Trinath, T., Oeltermann, A., 2001. Neurophysiological investigation of the basis of the fMRI 
signal. Nature 412, 150-157.	  
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(Ros et al., 2013) and in a specific symptom-related brain region of interest (ROI) after multiple 
training sessions (Levesque et al., 2006). There have been multiple randomized controlled trials 
(RCTs) using EEG-based feedback, primarily in patients with attention deficit hyperactivity 
disorder (ADHD) (Hirshberg et al., 2005). A recent meta-analysis of existing RCTs indicates that 
EEG feedback training is associated with a reduction of ADHD symptoms with a large effect 
size (Arns et al., 2009) and a large randomized, sham-controlled trial is currently underway (LH, 
personal communication). However, while EEG has superior temporal resolution compared to 
standard fMRI, poor spatial resolution including the so-called ‘inverse problem (Grech et al., 
2008)’ limit the clinical utility of EEG. By contrast, rtfMRI can be used to target brain regions and 
networks with improved anatomical precision beyond EEG and improved temporal resolution 
beyond standard block design fMRI. 
 
rtfMRI was developed in 1995 (Cox et al., 1995), and proof-of-concept for rtfMRI as a potential 
neurotherapeutic tool for the treatment of brain disorders was demonstrated in 2005 (deCharms 
et al., 2005). There have since been substantial advancements related to rtfMRI technology and 
implementation (Hinds et al., 2011; LaConte, 2011; Weiskopf et al., 2005), with reports of rtfMRI 
modification of function in multiple brain structures, including auditory (Haller et al., 2010; Yoo et 
al., 2007), visual (Scharnowski et al., 2012; Shibata et al., 2011), and sensorimotor cortices 
(deCharms et al., 2004; Sitaram et al., 2012; Yoo and Jolesz, 2002), amygdala (Bruhl et al., 
2014; Zotev et al., 2011; Zotev et al., 2013), insula (Caria et al., 2010; Caria et al., 2007; Frank 
et al., 2012), parahippocampal gyrus (Weiskopf et al., 2004; Yoo et al., 2012), anterior cingulate 
cortex (Chapin et al., 2012; deCharms et al., 2005; Li et al., 2013), and prefrontal cortex (Rota 
et al., 2009; Sitaram et al., 2011), among others. Several groups have reported successful 
application of rtfMRI to modify cognitive and behavioral processes relevant for the treatment of 
clinical disorders (for review of these studies see Birbaumer et al., 2009; Caria et al., 2012; 
Chapin et al., 2012; deCharms, 2007; deCharms, 2008; Sulzer et al., 2013; Weiskopf, 2012; 
Weiskopf et al., 2007). Studies have demonstrated promise of rtfMRI neurofeedback in the 
treatment of chronic pain (deCharms et al., 2005), tinnitus (Haller et al., 2010), stroke (Sitaram 
et al., 2012), depression (Linden et al., 2012), schizophrenia (Ruiz et al., 2013), obesity (Frank 
et al., 2012), and addiction (Hartwell et al., 2013). Given the early stage of this research, it is not 
surprising that there are many limitations to these studies. Most notably, small sample sizes 
(typically between 6-12 participants) and lack of critical control conditions limit their potential use 
as evidence-based interventions. There are several plausible alternative hypotheses for the key 
variable(s) that account for the changes observed following rtfMRI neurofeedback training. 
These include, but are not limited to, effects due to experimenter monitoring, self-monitoring, 
positive reinforcement, cognitive and emotion regulation strategies, enhanced self-efficacy and 
motivation to change due to successful performance, and placebo response. To date, there 
have been no large RCTs of rtfMRI neurofeedback. RCTs involve random allocation of 
participants to treatment and control groups, minimizing bias in treatment assignment and 
facilitating concealment of treatment assignment to experimenters and participants (Schulz and 
Grimes, 2002). RCTs are the gold standard for ‘rational therapeutics’ in clinical medicine 
(Meldrum, 2000) and are critical for establishing an evidence-based clinical practice (The 
Cochrane Collaboration, 2011). Nevertheless, this important early work supports the investment 
in RCTs of rtfMRI for the treatment of some brain disorders. 
 
The aim of this paper is to define benchmarks to establish the therapeutic utility of rtfMRI 
neurofeedback. For each benchmark, we delineate the challenges and potential limitations of 
rtfMRI neurofeedback that need to be addressed to advance development of this 
neurotechnology, and outline a research strategy to address these challenges and limitations 
including potential experimental and neuroinformatics approaches. 
 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2014. ; https://doi.org/10.1101/003400doi: bioRxiv preprint 

https://doi.org/10.1101/003400
http://creativecommons.org/licenses/by-nc/4.0/


	   5 

Benchmarks for establishing real time fMRI as a potential neurotherapeutic tool 
 
Several technical, neuroscientific, and clinical issues must be addressed before rtfMRI 
neurofeedback can advance as a therapeutic tool. Due to the complexity of rtfMRI 
neurofeedback experiments, it is advisable to have considered these issues and have solutions 
in place in order to maximize the likelihood that the experiment will be a success. We have 
outlined the issues we felt are most critical and have offered potential solutions to help guide 
researchers. 
 
Benchmark 1: The rtfMRI signal is accurate and reliable 
 
Necessary preconditions for any successful rtfMRI experiment are that the brain state is 
detectable and can be reliably and reproducibly converted into a feedback signal over the time-
scale in question. Here we propose possible metrics that can be used to evaluate these 
prerequisites. 
 
From a methodological perspective, the neurofeedback signal is generally derived from fMRI 
paradigms of two broad categories: general linear model (GLM)-based methods, and more 
recently, multivariate pattern analysis (MVPA) methods. For recent reviews of these methods, 
see Sulzer (Sulzer et al., 2013) and LaConte (LaConte, 2011), respectively. GLM-based 
methods define an a priori ROI, either anatomically (using anatomical landmarks or atlas-based 
techniques) or with a functional localizer. The GLM is used to regress out nuisance parameters, 
then the resulting BOLD signal at each voxel in the ROI is combined into a neurofeedback 
signal using either averaging or a weighted average based on the standard deviation of the 
residual of the GLM in each voxel (Hinds et al., 2011). MVPA methods use supervised learning 
techniques, usually support vector machines, to determine the optimal set of weights (from 
either the whole brain or a restricted ROI) used to combine the BOLD signal across voxels into 
a single neurofeedback score. 
 
Regardless of whether a GLM- or MVPA-based model is used to compute the neurofeedback 
signal, the signal is a one-dimensional, usually linear combination of the BOLD signal across the 
brain. We can use the signal to noise ratio (SNR) to compute how well the neurofeedback signal 
conforms to the experimental design.  
 
Let F represent the (stochastic) neurofeedback signal and X the (deterministic) experimental 
design vector. Under the standard GLM assumptions (Monti, 2011) SNR can be calculated by: 
 

SNRF =
corr(F,X)2

1− corr(F,X)2 	  
 
Where corr(F,X) represents the Pearson correlation coefficient of vectors F and X. This quantity 
can be used to estimate how many repetition times (TRs) the neurofeedback signal would need 
to be averaged over to ensure it is accurate with a confidence level of (1−𝛼𝐹).  
 
After theoretical modeling, we arrived at an equation that relates three key quantities: the 
confidence in the neurofeedback signal (1−𝛼𝐹), the signal to noise ratio (𝑆𝑁𝑅𝐹), and the number 
of TRs used to compute the neurofeedback signal (n). The relationship between these 3 
variables is:  
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αF =1−P SNRF 2n > 0( )  

 
When P() is the standard cumulative normal distribution and n is the length (in TRs) of both the 
task and fixation blocks. 
 
Using this formula, we can determine the block length necessary to estimate an accurate 
neurofeedback signal with 95% confidence. We tested this formula using three rtfMRI feedback 
paradigms with regional ROIs with small (ventral striatum or VS), medium (fusiform face area 
and parahippocampal place area or FFA/PPA), and large (somatomotor cortex or SMC) 
expected SNR values. The results are illustrated in Figure 1 and summarized in Table 1.  
 

 
Figure 1. The relationship between signal-to-noise ratio (SNR) and block length (n) required for 
a type I error rate (α) less than 0.05 for three ROIs. 
 
Table 1. The relationship between signal-to-noise ratio (SNR) and block length (n) required for a 
type I error rate (α) less than 0.05 for three ROIs. 
 
 
ROI  SNR  n required for α𝜶<0.05  
SMC  1.581  1  
VS  0.0685  289  
FFA/PPA  0.4668  7 
 
 
Equally important to a detectable signal is a reproducible signal. Here the concordance 
correlation coefficient can be used to determine the reproducibility of the rtfMRI signal for a 
given subject from one run to the next, given the model employed. The concordance correlation 
coefficient is a simple metric that has been applied to fMRI to evaluate repeatability of various 
models [39]. Let W1 and W2 represent the weights used to aggregate the feedback signal 
(derived from either a GLM or MVPA-based model) from runs 1 and 2, respectively. The 
concordance correlation coefficient between these weight vectors is then 
	  
ρc =

2cov(W1,W2 )
var(W1)+ var(W2 )+ (W1 −W2 )

2 	  
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Where cov(.) represents the covariance of the weight vectors, var(.) represents the variance and 
Wi  represents the mean. 
 
From this work, we determined that the FFA/PPA and SMC ROIs were feasible as 
neurofeedback brain regions to target, but VS with low SNR was not feasible. At a minimum, it 
is recommended that researchers establish the quality of the neurofeedback signal in an 
independent dataset using either the SNR and concordance coefficient approach described 
above or some analogous method. If an experimenter finds that a signal does not meet these 
minimum standards, efforts should be made to optimize the experimental parameters and/or 
target ROI(s) before collecting data for a larger planned study. 
 
Benchmark 2: rtfMRI neurofeedback leads to learning 
 
One use of rtfMRI is to provide feedback aimed at inducing learning that is difficult to achieve, or 
is less efficient, using other methods. This can be contrasted with alternative uses of rtfMRI, 
such as triggering task events or optimizing task parameters, where the goal is not necessarily 
to produce a lasting learning effect. To understand the learning induced by rtfMRI, three aspects 
of this process should be considered: (1) How is learning measured? (2) Which mechanisms 
are responsible? and (3) How meaningful or lasting are the effects? We will describe these 
three aspects followed by a case study. 
  
Learning can be said to occur when experience influences behavior and/or alters brain structure 
or function. In the case of rtfMRI, the relevant experience can consist of elements of the task, 
feedback about regional brain activation, multivariate patterns of brain activity, or connectivity, 
and cognitive processes that arise due to the task, feedback, or attempts to control feedback 
with strategies. The consequences of this experience can be assessed using various dependent 
measures linked to learning in more standard experiments in cognitive psychology and 
neuroscience. In behavior, learning can be reflected in improved perception (Fahle, 2002), 
memory recall and recognition (Yonelinas, 2002), anticipation/prediction (Bubic et al., 2010), 
priming (Tulving and Schacter, 1990), and motor action (Stadler and Frensch, 1998). In the 
brain (particularly fMRI), learning can be reflected in enhanced (Schwartz et al., 2002) or 
attenuated activation within sensory systems (Grill-Spector et al., 2006; Turk-Browne et al., 
2008), activation in learning and memory systems (Brewer et al., 1998; Poldrack et al., 2001; 
Wagner et al., 1998), changes to the multivariate representational space of brain regions 
(Folstein et al., 2013; Schapiro et al., 2013), changes to functional connectivity (Buchel et al., 
1999), increased gray matter volume (Draganski et al., 2004), and alterations in white matter 
(Zatorre et al., 2012). All of these measures are potential targets for rtfMRI studies seeking to 
induce learning with neurofeedback. 
  
These changes in behavior and the brain reflecting learning can arise from different 
mechanisms. Feedback from a brain region may produce a type of instrumental conditioning, 
whereby activation of that region becomes rewarding. An increase in the activity of the region, 
and possibly additional inputs from the reward system and regions involved in cognitive control, 
may induce local plasticity. This plasticity could be reflected in alterations of the selectivity and 
circuitry of neurons in that region (Sur and Rubenstein, 2005). There may also be larger-scale 
consequences. The region/representation used as the basis for feedback may become more 
involved in general, or more selective for an ongoing task. This could be analogous to 
establishing a compensatory mechanism, as occurs naturally after brain damage or in aging 
(Bedny et al., 2011; Heuninckx et al., 2008). However, the region(s) being “compensated” for 
(i.e., initially involved but not used for neurofeedback) remain intact, and could possibly be 
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recruited less over time. Other regions that implement cognitive strategies for controlling 
feedback may become engaged in addition to the region being targeted for neurofeedback and 
the other brain areas recruited by this target region(s). 
  
These learning effects differ in several ways that will impact the likelihood of obtaining an effect, 
where the effect will be observed in the brain, and whether the effect will be manifested in 
behavior. Several characteristics of learning will determine the feasibility of an rtfMRI study. For 
instance, learning occurs over a range of timescales, from immediately in the case of priming to 
over weeks in the case of perceptual learning. Relatedly, effects persist for different durations 
depending on the type of learning and brain system involved, from milliseconds for adaptation in 
the visual system (Grill-Spector et al., 2006) to years for episodic memories consolidated in 
association cortex (McClelland JL, 1995). Finally, learning procedures vary in terms of whether 
the effects generalize to other contexts from being hyperspecific to the training context (Jiang 
and Song, 2005) to more flexible (Turk-Browne and Scholl, 2009). Considering these 
parameters when designing a study will be important for its success. 
  
These three aspects of learning –dependent measures, neural mechanisms, and 
timing/generalization properties– allow rtfMRI studies to be classified, and opportunities for new 
research to be identified. Take, for example, a study of perceptual learning induced by rtfMRI 
(Shibata et al., 2011). The dependent measures in this study were improved (1) accuracy in 
identifying a trained visual target orientation and (2) multivariate classification of this orientation 
from early visual cortex. The proposed mechanism is that rtfMRI feedback encouraged 
participants to generate orientation-specific neural activity patterns in this region, which resulted 
in local plasticity. The properties of learning in this task are that it took 5-10 sessions of training 
over a month, the effects lasted at least that long, and the benefit of training was specific to one 
orientation at a particular contrast. Various aspects of this classification could be investigated in 
future studies, such as what other brain systems are responsible for creating the activity 
patterns in visual cortex, and whether other forms of perceptual learning (e.g., Xiao et al., 2008) 
could lead to more generalized benefits. 
 
Benchmark 3: The training protocol is optimized for rtfMRI-based neurofeedback and learning 
 
A variety of approaches have been used for training subjects to control their brain patterns via 
rtfMRI neurofeedback. In most studies, the nature of the neurofeedback signal is made explicit 
to the subject, but there have also been paradigms where training occurs covertly (Bray et al., 
2007; Shibata et al., 2011). Some studies present feedback while subjects are processing 
auditory, visual, or tactile stimuli (deCharms et al., 2005; Scheinost et al., 2013; Yoo et al., 
2007) or while they are performing an assigned cognitive task (Chiew et al., 2012). Other rtfMRI 
studies employ an unconstrained paradigm in which the neurofeedback and the cues to 
increase or decrease brain activity are the only stimuli provided and the subjects are free to use 
any cognitive strategy to control brain function and neurofeedback (Caria et al., 2007; Hampson 
et al., 2011; Rota et al., 2009). The optimal approach is likely dependent upon the application. 
 
One open question is the importance of providing initial support (e.g., neurostimulation, 
pharmacotherapy, computerized cognitive training, and/or cognitive strategies) to subjects that 
will enable them to exert some initial level of control over the relevant brain activity patterns. 
Early reports suggested that learning was greatly facilitated by providing cognitive strategies to 
the subjects before they began neurofeedback (Caria et al., 2007; deCharms et al., 2005). 
Generally, rtfMRI neurofeedback studies have either provided all subjects with strategies or 
have not provided any subjects with strategies, making it impossible to determine the degree to 
which discussing strategies with subjects before they began neurofeedback helped the subjects 
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to gain control over their patterns of brain activity. There have been no published studies to date 
that have used neurostimulation, pharmacological aids, or computerized cognitive training to 
enhance subject’s ability to utilize rtfMRI feedback, which may be an important avenue for future 
studies to explore.  
 
It is not always necessary to provide initial strategies to subjects in order to achieve learning. 
Successful learning was achieved in subjects who were trained using instrumental conditioning 
(Bray et al., 2007) or were not provided with any initial strategies (Shibata et al., 2011). Further, 
subjects who have learned to control their brain activity patterns via rtfMRI neurofeedback have 
not always been consciously aware of the mental functions that were being molded by the 
training, even after completion of the neurofeedback (Shibata et al., 2011). These data imply 
that rtfMRI neurofeedback can induce subconscious learning. Although this is encouraging in 
terms of the potential utility of rtfMRI for training mental function, it also has ethical implications 
that must be carefully considered.  
 
It is also important to consider the schedule of delivery of neurofeedback, whether it is 
continuous or intermittent, in order to optimize learning. Continuous neurofeedback or feedback 
delivered as soon as data is acquired, generally every TR (~1-2 seconds), has the advantage of 
delivering somewhat immediate (relative to the 2-6 second hemodynamic delay) feedback, 
which is important to aid in efficient learning. For continuous rtfMRI-based neurofeedback the 
hemodynamic delay must be accounted for in the feedback display or explained to subjects. A 
disadvantage of continuous neurofeedback using rtfMRI is that single measurements are often 
noisy, leading to the potential for inaccurate feedback if delivered on a TR-by-TR basis. Asking 
a subject to simultaneously attend to the task and the feedback signal will also increase the 
cognitive load for the subject, which may disrupt optimal cognitive function and could also 
engage other brain systems, such as those involved in working memory, which may be 
unrelated to the task or counterproductive in creating therapeutic change. There is also 
evidence that continuous feedback may interfere with the consolidation of a learned response. 
Animal and human studies of operant learning have shown improved learning when subjects 
are provided with a period of delay after reward for “post-reinforcement synchronization” 
(Sherlin et al., 2011).  
 
Intermittent neurofeedback or neurofeedback delivered after data acquisition over several TRs, 
generally between 8-60 seconds, allows for averaging of the feedback signal over several TRs 
to improve SNR and accommodate the hemodynamic delay, and also minimizes cognitive load 
by separating task strategy from the evaluation of feedback. Johnson and colleagues found that 
subjects were better able to manipulate activity in the premotor cortex when imagining 
movements with intermittent neurofeedback (at the end of each 20 second block) as compared 
to continuous neurofeedback (Johnson et al., 2012). The optimal delivery of neurofeedback 
likely depends on the specific application. While continuous neurofeedback might be useful to 
train individuals to fine-tune cognitive strategies related to specific patterns of brain activity, 
intermittent neurofeedback might be more effective by reducing cognitive load in studies in 
which individuals are provided with specific practice strategies. 
 
Finally, it is important for researchers to consider human-computer interface design principles, 
especially as they relate to the display of the neurofeedback signal in order to aid in effective 
learning. This is a critical consideration as poor human-computer interface design alone could 
lead to failed trials, or in some cases, adverse consequences such as increased frustration, 
confusion, and/or fatigue. A review of human-computer interface design is beyond the scope of 
this paper (see Brown, 1998 for a general overview of this topic; Wickens et al., 2004); however, 
one area where human-computer interface design may be helpful is choosing the optimal 
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modality for delivering neurofeedback. Most rtfMRI neurofeedback paradigms, to date, have 
used visual feedback, but some subjects and populations may benefit from auditory, haptic, 
virtual reality/immersion, or some combination of these modalities for neurofeedback. 
 
Benchmark 4: There is an appropriate test of training success  
 
It is also important to establish guidelines for how best to assess rtfMRI training success. To 
date, there have been two common approaches: subjects show improved (1) control of brain 
activity while receiving neurofeedback and/or (2) control of brain activity without neurofeedback 
(i.e., by comparing brain regulation without neurofeedback before and after training with 
feedback). A few studies have tested for transfer from training runs in which cognitive strategies 
were provided to control the feedback, to transfer runs in which cognitive strategies were used 
to control brain activity without any fMRI information. deCharms and colleagues reported that 
after several runs of neurofeedback training to increase activity in the somatomotor cortex, 
subjects were able to increase somatomotor activity comparably to overt movement using only 
cognitive strategies without neurofeedback (deCharms et al., 2004). In other studies, subjects 
had success self-regulating brain activity with the aid of neurofeedback, but they were not able 
to self-regulate activity when no longer receiving neurofeedback (Caria et al., 2007; Hamilton et 
al., 2011). When creating an operational definition for training success, it will be important to 
consider: the expected timescale of training effects, expected pattern of change (e.g., linear or 
non-linear, monotonic or non-monotonic), and how best to account for individual differences. For 
example, training effects may be observed immediately or following some delay depending on 
the type and nature of learning impacting or impacted by training. Successful training may occur 
via gradual, incremental improvement characterized by a linear, monotonic function or trial-and-
error testing characterized by a non-linear, non-monotonic function. It is also unclear whether 
the experimenter should fix the training interval or allow for adaptive training based on individual 
differences in optimal learning strategies and performance. Finally, the experimenter will need to 
design the study to adequately capture potential brain changes related to training over time, 
which could include reduced activity in the target ROI(s), change in the extent of activation 
within the ROI(s), and/or recruitment of different neural systems to support improved 
performance. The experimenter could consider including a resting state fMRI scan before and 
after training as one strategy for capturing complex brain changes over time (Hampson et al., 
2011; Scheinost et al., 2013). 
 
Benchmark 5: rtfMRI neurofeedback leads to behavioral change 
 
The behavioral effects of rtfMRI training may be manifest in improvement on the task used 
during rtfMRI neurofeedback training, improvement on related tasks or on the same task in 
other contexts, or improvement that generalizes to real-world outcomes. 
 
In some studies, subjects have been trained to self-regulate brain activity by manipulating the 
neurofeedback signal and a behavioral response to some other, often concurrent stimulus. For 
example, deCharms and colleagues reported that training self-regulation of activity in the dorsal 
anterior cingulate, a brain region implicated in pain perception and regulation, led to a 
corresponding change in the perception of pain caused by a noxious thermal stimulus as well as 
in spontaneous pain perception in patients with chronic pain (deCharms et al., 2005).  
  
Another approach is to assess behavioral change before and after rtfMRI feedback training. For 
example, Zhang and colleagues trained subjects to increase activation in the left dorsolateral 
prefrontal cortex, a brain region involved in working memory, and reported improvements on 
digit span and letter memory tasks across training, indicating improved verbal working memory 
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with rtfMRI neurofeedback training (Zhang et al., 2013).  
 
There has been limited work in non-clinical populations targeting emotional brain regions and 
function. Rota and colleagues have shown improved detection of emotional tone with rtfMRI 
training from the right inferior frontal gyrus (Rota et al., 2009). On the other hand, another study 
(Johnston et al., 2011) found that rtfMRI training from brain regions involved in positive 
emotions failed to improve mood ratings in healthy participants. Although methodology must be 
considered, the authors also suggest that rtfMRI training of emotional control to enhance mood 
may be most effective in individuals with abnormal emotional control (as in their prior study in 
depression Linden et al., 2012), and less effective in individuals who are capable of normal 
mood regulation (but see (Allen et al., 2001) for a study demonstrating improved mood in 
healthy controls using EEG neurofeedback). 
 
There is limited evidence of behavioral change from rtfMRI that has generalized to other tasks 
or real-world outcomes. Prior studies in clinical populations have shown decreased pain ratings 
in individuals with chronic pain (deCharms et al., 2005), decreased symptoms in individuals with 
tinnitus (Haller et al., 2010), decreased craving ratings and physiological response to smoking 
cues in nicotine-dependent individuals (Canterberry et al., 2013; Hanlon et al., 2013), decreased 
mood symptoms in people with depression (Linden et al., 2012), increased motor speed and 
clinical ratings of motor symptoms in individuals with Parkinson’s disease (Subramanian et al., 
2011), and decreased contamination anxiety in people with sub-clinical anxiety (Scheinost et al., 
2013). However, with one exception (Scheinost et al., 2013), these studies measured behavior 
at the time of the rtfMRI study, did not test retention, and, with few exceptions (Scheinost et al., 
2013; Subramanian et al., 2011), the dependent measure of behavioral change with rtfMRI was 
assessed with self-report measures that may reflect non-specific training effects. Moving 
forward, it will be important for experimenters to show a causal link between the brain region(s) 
trained and the behavior targeted for modification in order to establish that specific brain-
behavior changes account for any observed clinical changes and are not simply epiphenomena. 
 
Benchmark 6: rtfMRI neurofeedback provides information difficult to access using other 
methods 
 
RtfMRI can help to improve our understanding of how cognitive processes are represented in 
the brain and how cognition is related to behavior in real time, which may aid in rtfMRI-based 
neurofeedback training. For example, subjective information can help clinicians and researchers 
understand cognition, yet traditional self-report measures of first-person experience have 
limitations. RtfMRI can be used to relate subjective experience to objective neuroimaging data 
to gain a more complete understanding of cognition in individual subjects. A recent study by 
Garrison and colleagues (Garrison et al., 2013) used rtfMRI in this way to link the subjective 
experience of focused attention to brain activity in the default mode network in experienced 
meditators who are experts at introspection. Short fMRI task runs and immediate self-report 
were paired with offline feedback (shown after self-report), real time feedback, or volitional 
manipulation of the feedback stimulus. Meditators reported that their subjective experience 
corresponded to feedback, and showed a significant percent signal change in the targeted brain 
region upon volitional manipulation, confirming the reported correspondence. This approach 
obviates the problem of reverse inference whereby cognitive processes are inferred from brain 
activity (Poldrack, 2006), and reduces the opacity of cognitive strategy in fMRI studies in 
cognitive neuroscience. Approaches in rtfMRI such as these can be used to further our 
understanding of cognitive processes, including those relevant to clinical neurotherapeutics. 
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Benchmark 7: An appropriate rtfMRI neurofeedback-based clinical trial design is in place 
 
Despite important early work suggesting it is possible to use rtfMRI as a non-invasive brain-
based clinical tool, to our knowledge there has been only one RCT, recently completed, that has 
investigated the efficacy of rtfMRI neurofeedback to effect meaningful clinical change (CH, 
personal communication). Several methodological considerations for the design of rtfMRI 
studies and clinical trials remain open questions that likely depend on the specific application.  
 
To demonstrate behavioral change that is directly related to rtfMRI feedback training, studies 
must implement important control conditions. Most studies that have included a control condition 
have either used false feedback or no feedback. False feedback can involve providing subjects 
with arbitrary feedback not related to brain function, actual neurofeedback from a brain region or 
network theoretically unrelated to the experimental variables of interest, or yoked 
neurofeedback from a matched subject. False feedback not based on actual fMRI signal was 
previously compared to no feedback as a control for training self-regulation of activity in the 
premotor cortex (Johnson et al., 2012). False feedback produced a widespread pattern of 
activation involving frontal, temporal, and parietal regions, which was distinct from the more 
localized activation associated with real neurofeedback. In addition, subjects reported more 
frustration with the task in the false feedback group as compared to the no feedback or real 
neurofeedback groups. Based on these findings, the authors reasoned that the negative impact 
of false feedback runs made it a less suitable control group than no feedback. However, the 
drawbacks to providing no feedback are first that it is unlikely to be as engaging as a feedback 
task, and second, that it does not control for the perception of success that subjects experience 
when they do well controlling their brain patterns. These differences between a neurofeedback 
group and a no feedback control group can lead to false positives related to unmatched 
motivation and placebo effects. Another option is to deliver control feedback using more cost-
effective methods such as autonomic biofeedback (deCharms et al., 2005). 
 
Other important design considerations for rtfMRI clinical trials include the optimal number of 
rtfMRI sessions, number of neurofeedback runs per session, appropriate timing between 
sessions if multiple sessions are used, and the combination of rtfMRI training with behavioral or 
other interventions. There is little data available to guide optimization of these parameters for 
clinical trials. A recent study addressed a number of these issues by tracking change across 
three rtfMRI sessions in which nicotine-dependent individuals were trained to reduce activation 
in the anterior cingulate cortex and reduce smoking cue-related craving (Canterberry et al., 
2013). Of 15 enrolled smokers, sixty percent completed three 1-hour rtfMRI sessions, 1-2 weeks 
apart. Within each rtfMRI session, subjects completed three 10-minute feedback runs. Reduced 
anterior cingulate cortex activity and reduced self-reported craving were evident at the first 
rtfMRI session and consistent across sessions and runs. This reduction in cue-induced craving 
with rtfMRI neurofeedback was significant at the third session, indicating that at least two 
feedback sessions were necessary to see any effect of neurofeedback, and more than two 
sessions may be needed to observe clinical improvement. 
 
Finally, it will be critical to compare the effects of rtfMRI-based neurofeedback to existing 
therapies or biofeedback using more cost-effective neuroimaging tools such as EEG in order to 
demonstrate the value added by rtfMRI-based neurofeedback above other treatment options. 
 
Benchmark 8:  Sharing resources and using common standards 
 
In a domain where reproducibility has been a non-trivial goal, there is a need for consensus on 
common standards and sharing of data, paradigms, software, and analytic tools. This will 
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provide an additional benefit of lowering the barrier to entry for researchers to use rtfMRI, which 
will also help generate new research questions and the development of novel algorithms, 
solutions, and tools to advance the field. 
 
One area of importance is the creation of an open rtfMRI communication protocol. Although 
Digital Imaging and Communications in Medicine (DICOM) is a standard for communicating 
imaging data to Picture Archiving and Communication System (PACS) and other systems, many 
scanners do not have the capability to reconstruct and send DICOM images as they are 
acquired. As such there is no common standard across scanners to communicate rtfMRI data 
from the scanner to an analysis or presentation computer. In the absence of such standards, 
several existing software packages rely on monitoring the file system to detect reconstructed 
images. While simpler to setup, this can introduce unnecessary delays and limit the possibilities 
of neurofeedback paradigms. In scanners manufactured by Siemens (www.siemens.com) and 
Philips (www.philips.com), users can transmit data over the network. In recent work published 
openly on Github (http://github.com/gablab/murfi2), a formal specification for rtfMRI 
communication has been developed to describe a set of information necessary to be transmitted 
from the scanner to an analysis or presentation computer. Software developers can use this 
standard to create both new sequences on scanners as well as new analysis platforms that 
communicate with these sequences. However, if manufacturers were able to send DICOM 
images in real time, it would benefit from an established protocol.  
 
Along with available standards, a repository for or notification of the availability of such 
resources is needed. A common neuroinformatics portal for rtfMRI coupled with question-
answer sites (e.g., http://neurostars.org) and code repositories (e.g., GitHub, http://github.com) 
can significantly simplify the dissemination of information and allow for community discussion of 
approaches and issues. With the increased focus on data sharing and reproducibility of imaging 
studies, it is critical to utilize such resources to increase sharing of rtfMRI data, experimental 
paradigms, and software.  
  
Conclusions: Impact of real time fMRI for cognitive neuroscience and neurotherapeutics 
 
A primary goal of rtfMRI is to aid in the development of safe, effective and personalized 
therapies for many brain related disorders including: pain, addiction, phobia, anxiety, and 
depression. rtfMRI can help to establish neural targets for these clinical conditions and rtfMRI 
neurofeedback has direct clinical application as a standalone treatment or as an augmentation 
strategy for interventions that work by training volitional control of brain activity. As described, 
rtfMRI neurofeedback has been used to train individuals to self-regulate brain activation patterns 
related to basic and clinical processes, and RCTs are in progress to corroborate potential 
clinical outcomes. rtfMRI may be especially effective as targeted neurofeedback in conjunction 
with behavioral interventions based on brain-behavior relationships. Additionally, and on the 
other end of the CNS disease spectrum, there is the potential application of rtfMRI 
neurofeedback to enhance performance (Gruzelier et al., 2006), learning (Yoo et al., 2012), 
perception (Scharnowski et al., 2012) or to promote wellness optimization.  
 
Improvements in our understanding of the neural underpinnings of psychiatric disorders have 
yielded potential neural targets for rtfMRI interventions. For example, dysfunction of the 
subgenual cingulate has been implicated in refractory depression, and deep brain stimulation 
targeted to that brain region has shown preliminary efficacy for the treatment of depression 
(Mayberg et al., 2005). As testing the efficacy of deep brain stimulation is invasive, it is possible 
that rtfMRI may be used for targeted neurofeedback to test this hypothesis prior to more 
invasive procedures. More generally, rtfMRI has the potential to test the robustness of 
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neurobiological hypotheses prior to more invasive procedures. 
 
Advances in rtfMRI also have the potential to impact clinical practice by improving individualized 
treatment. rtfMRI may be used to define the neural underpinnings of disordered behavior in the 
individual, and rtfMRI neurofeedback may be used to drive the individual pattern of brain 
activation toward a more normative state. rtfMRI neurofeedback may be calibrated to the 
individual’s current state, for example, to enhance learning as an individual improves across an 
intervention. Likewise, interventions may be tailored to the specific strategies found to be useful 
for the individual in rtfMRI neurofeedback studies (Lawrence et al., 2011). Further, behavioral 
interventions may be augmented by targeted neurofeedback of a brain activation pattern or 
cognitive process of interest. Finally, rtfMRI may be used to find predictors of not only clinical 
outcomes, but also of responsiveness to rtfMRI neurofeedback training.  
 
Looking forward, there is a clear need for cost-effective therapies. At this time, rtfMRI 
neurofeedback is costly. However, rtfMRI research can inform the development of more cost-
effective and scalable clinical tools, such as EEG or functional near-infrared spectroscopy 
(fNIRS). A translational step is to test simultaneous EEG-fMRI or fNIRS-fMRI to characterize the 
EEG signal or fNIRS signal correlated to the fMRI signal of interest, to be used for 
neurofeedback. 
 
In the least, rtfMRI neurofeedback can help improve our understanding of brain-behavior 
relationships as we aim to develop more effective intervention strategies for individuals with 
brain disorders. The ultimate goal is for this tool to assist clinicians and patients in designing 
personalized assessment and intervention approaches that may enhance resilience in at-risk 
populations by correcting known maladaptive patterns of brain function in advance of 
developing a disorder, accelerating adaptive compensatory neuroplastic changes in those with 
brain disorders, and/or directly targeting the disrupted brain region or system underlying brain 
disorders in order to restore healthy brain-behavior function. Overall, rtfMRI offers the 
opportunity to further our understanding of how the brain works and pushes the limits of our 
potential for self-directed healing and change. 
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