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Abstract

The living state is cognitive at every scale and level of or-
ganization. Since it is possible to associate a broad class
of cognitive processes with ‘dual’ information sources, many
pathologies can be addressed using statistical models based
on the Shannon Coding, the Shannon-McMillan Source Cod-
ing, the Rate Distortion, and the Data Rate Theorems, as
these provide powerful necessary condition constraints on all
information generation and exchange, and on system con-
trol. Deterministic-but-for-error codes, although they may
be fruitfully studied using information theoretic methods, do
not fall so easily within these models. Such codes do not in-
voke cognition, although they may become essential subcom-
ponents within larger cognitive processes. A formal argument,
however, places code stability within a recognizably similar
framework, with metabolic free energy serving as a ‘control
signal’ stabilizing efficient operation of complex biochemical
coding machinery. Demand beyond available energy supply
then expresses itself in punctuated destabilization of the cod-
ing channel, affecting gene expression, protein folding, or the
operation of the glycan/lectin cell interface. Aging, normal
or prematurely driven by psychosocial or environmental stres-
sors, would be expected to eventually interfere with routine
code operation, triggering onset of many chronic diseases usu-
ally associated with senescence that involve failures of these
mechanisms. Amyloid fibril formation is reviewed from this
perspective.

Key Words: amyloid; chronic disease; gene expression;
glycan code; information theory; protein misfolding; senes-
cence

1 Introduction

Tlusty’s (2007) information theoretic topological analysis of
the genetic code relies on minimizing certain characteristic er-
ror measures. Wallace (2012a) examined the role of the avail-
ability of metabolic free energy in the evolution of such codes,
using similar methods. Here we first generalize the argument,
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taking a somewhat more sophisticated approach based on a
Black-Scholes ‘cost’ analysis. We then explore a model of
punctuated code failure under free energy constraint that is
roughly analogous to Data Rate Theorem (DRT) limitations
in control theory (e.g., Nair et al. 2007). This will suggest a
deeper understanding of the onset of the chronic diseases of
aging, and of those driven by psychosocial or environmental
stresses that cause premature aging.

The essential point of the DRT is the unification of con-
trol and information theories, finding that certain kinds of
unstable systems cannot be stabilized if the rate of control
information is below a critical limit, defined as the ‘topologi-
cal information’ generated by the unstable system. Metabolic
free energy plays a surprisingly similar role in stabilizing
deterministic-but-for-error biological codes.

Tlusty’s (2007) central idea is that

To discuss the topology of errors we portray
the codon space as a graph whose verticies are the
codons... Two codons... are linked by an edge if they
are likely to be confused by misreading... We assume
that two codons are most likely to be confused if all
their letters except for one agree and therefore draw
an edge between them. The resulting graph is nat-
ural for considering the impact of translation errors
on mutations because such errors almost always in-
volve a single letter difference, that is, a movement
along an edge of the graph to a neighboring vertex.

The topology of a graph is characterized by its
genus γ, the minimal number of holes required for a
surface to embed the graph such that no two edges
cross. The more connected that a graph is the more
holes are required for its minimal embedding... [T]he
highly interconnected 64-codon graph is embedded
in a holey, γ = 41 surface. The genus is somewhat
reduced to γ = 25 if we consider only 48 effective
codons...

The maximum [of an information-theoretic func-
tional] determines a single contiguous domain where
a certain amino acid is encoded... Thus every mode
corresponds to an amino acid and the number of
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modes is the number of amino acids. This compact
organization is advantageous because misreading of
one codon as another codon within the same domain
has no deleterious impact. For example, if the code
has two amino acids, it is evident that the error-load
of an arrangement where there are two large contigu-
ous regions, each coding for a different amino acid,
is much smaller than a ‘checkerboard’ arrangement
of the amino acids.

This is analogous to the well-known topological coloring
problem. However, in the coding problem one desires maximal
similarity in the colors of neighboring ‘countries’, while in
the coloring problem one must color neighboring countries by
different colors. After some development (Tlusty 2008), the
number of possible amino acids in this scheme is determined
by Heawood’s formula (Ringel and Young 1968).

More explicitly, Tlusty (2007) models the emergence of the
genetic code as a transition in a noisy information channel,
using an approach based on the Rate Distortion Theorem,
with the optimal code is described by the minimum of a
‘free energy’-like functional, allowing description of the code’s
emergence as a transition akin to a phase transition in sta-
tistical physics. The basis for this is the observation that a
supercritical phase transition is known to take place in noisy
information channels. The noisy channel is controlled by a
temperature-like parameter that determines the balance be-
tween the information rate and the distortion in the same
way that physical temperature controls the balance between
energy and entropy in a physical system. Following Tlusty’s
equation (2), the free energy functional has the form D− TS
where D is the average error load’, equivalent to average dis-
tortion in a rate distortion problem, S is the ‘entropy due to
random drift’, and T measures the strength of random drift
relative to the selection force that pushes towards fitness max-
imization. This is essentially a Morse function (Pettini 2007;
Matsumoto 2002). According to Tlusty’s analysis, at high T
the channel is totally random and it conveys zero informa-
tion. At a certain critical temperature Tc the information
rate starts to increase continuously.

The average distortion D measures the average difference
between the genetic ‘message’ sent by a complicated codon
‘statement’ and what is actually expressed by the genetic (and
epigenetic) translation machinery in terms of an amino acid
sequence. See figure 1.

Here we envision a multi-step process in which the rate
distortion function R(D) between codon sequence and amino
acid sequence plays the central role. In the first step, R(D),
a nominally extensive quantity, but one physically limited by
the channel construction of figure 1, serves as a temperature-
analog in a one-parameter distribution of information source
uncertainties representing different coding strategies, from
which a free energy functional is constructed. While R(D)
is not ‘temperature-like’ – e.g., under a given circumstance it
can be increased as much as one likes by establishing parallel
channels – the physical structure of translation constrains that
approach, ensuring the ‘locally intensive’ nature of the rate
distortion function. Pettini’s (2007) ‘topological hypothesis’

Figure 1: Adapted from fig. 1.8 of Shmulevich and Dougherty
(2007). DNA meets RNA in modern protein synthesis. The
anticodon at one end of a tRNA molecule binds to its comple-
mentary codon in mRNA derived directly from the genome.
The average distortion D is a measure of the difference be-
tween what is supposed to be coded by a genome sequence
and what is actually expressed as an amino acid sequence.
Sequence-to-sequence translation is not highly parallel, in this
model, and the process can be well characterized by the rate
distortion function R(D) representing the minimum channel
capacity needed to produce average distortion less than D.

implies that topological shifts in code structure accompany
phase transitions in a free energy functional constructed from
the distribution of information source uncertainties arising
from possible code topologies.

The second stage of the argument revolves around the rela-
tion between intensive indices of metabolic free energy avail-
ability – e.g., underlying energy per molecular transaction,
and/or efficiency of its use – and R(D), leading to a second
free energy-like functional that undergoes another set of punc-
tuated phase changes.

While the genetic code has received much attention, Hecht
et al. (2004) note that protein α-helices have the ‘code’
101100100110... where 1 indicates a polar and 0 a non-
polar amino acid. Protein β-sheets have the simpler coding
10101010... Wallace (2010), in fact, extends Tlusty’s topo-
logical analysis via Heawoods’s graph genus formula to the
more complicated protein folding classifications of Chou and
Maggiora (1998). Wallace (2012b) argues, in addition, that
a similar argument must apply to the basic monosaccharides
associated with glycan ‘kelp frond’ production at the surface
of the cell. Again, here we shall be interested in calculat-
ing metabolic costs necessarily associated with limiting error
across such biological codes, and will model both punctuated
code evolution and a form of instability triggered by metabolic
energy restriction, or by the growth of energy demand beyond
available resources.
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2 Rate Distortion theory

The existence of a code implies the existence of an informa-
tion source using that code, and the behavior of such sources
is constrained by the asymptotic limit theorems of informa-
tion theory. That is, the interaction between biological sub-
systems associated with a code can be formally restated in
communication theory terms. Essentially, observation of a
code directly implies existence of an information source using
it.

Think of the machinery listing a sequence of codons as com-
municating with machinery that produces amino acids, and
compare what is actually produced with what should have
been produced, perhaps by a simple survival of the fittest
selection mechanism, perhaps via some more sophisticated
error-correcting systems.

Suppose a sequence of signals is generated by a biologi-
cal information source Y having output yn = y1, y2, ... –
codons. This is ‘digitized’ in terms of the observed behav-
ior of the system with which it communicates, for example
a sequence of ‘observed behaviors’ bn = b1, b2, ... – amino
acids. Assume each bn is then deterministically retranslated
back into a reproduction of the original biological signal,
bn → ŷn = ŷ1, ŷ2, ....

Define a distortion measure d(y, ŷ) which compares the
original to the retranslated path. Many distortion measures
are possible. The Hamming distortion is defined simply as

d(y, ŷ) = 1, y 6= ŷ

d(y, ŷ) = 0, y = ŷ.

For continuous variates the squared error distortion is just
d(y, ŷ) = (y − ŷ)2.

There are many possible distortion measures. The dis-
tortion between paths yn and ŷn is defined as d(yn, ŷn) ≡
1
n

∑n
j=1 d(yj , ŷj).

A remarkable characteristic of the Rate Distortion Theorem
is that the basic result is independent of the exact distortion
measure chosen (Cover and Thomas 2006).

Suppose that with each path yn and bn-path retransla-
tion into the y-language, denoted ŷn, there are associated
individual, joint, and conditional probability distributions
p(yn), p(ŷn), p(yn, ŷn), p(yn|ŷn).

The average distortion is defined as

D ≡
∑
yn

p(yn)d(yn, ŷn) (1)

This is essentially the ‘error load’ of Tlusty’s (2007) equa-
tion (1).

It is possible to define the information transmitted from the
Y to the Ŷ process using the Shannon source uncertainty of
the strings:

I(Y, Ŷ ) ≡ H(Y )−H(Y |Ŷ ) = H(Y ) +H(Ŷ )−H(Y, Ŷ ),

where H(..., ...) is the standard joint, and H(...|...) the condi-
tional, Shannon uncertainties (Cover and Thomas 2006).

If there is no uncertainty in Y given the retranslation Ŷ ,
then no information is lost, and the systems are in perfect
synchrony.

In general, of course, this will not be true.
The rate distortion function R(D) for a source Y with a

distortion measure d(y, ŷ) is defined as

R(D) = min
p(y,ŷ);

∑
(y,ŷ)

p(y)p(y|ŷ)d(y,ŷ)≤D
I(Y, Ŷ ) (2)

The minimization is over all conditional distributions p(y|ŷ)
for which the joint distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies
the average distortion constraint (i.e., average distortion ≤
D).

The Rate Distortion Theorem states that R(D) is the min-
imum necessary rate of information transmission which en-
sures the communication between the biological vesicles does
not exceed average distortion D. Thus R(D) defines a mini-
mum necessary channel capacity. Cover and Thomas (2006)
or Dembo and Zeitouni (1998) provide details. The rate dis-
tortion function has been calculated for a number of systems.

Cover and Thomas (2006, Lemma 13.4.1) show that R(D)
is necessarily a decreasing convex function of D for any rea-
sonable definition of distortion.

That is, R(D) is always a reverse J-shaped curve. This will
prove crucial for the overall argument. Indeed, convexity is
an exceedingly powerful mathematical condition, and permits
deep inference (e.g., Rockefellar 1970). Ellis (1985, Ch. VI)
applies convexity theory to conventional statistical mechanics.

For a Gaussian channel having noise with zero mean and
variance σ2,

R(D) = 1/2 log[σ2/D], 0 ≤ D ≤ σ2

R(D) = 0, D > σ2 (3)

For the ‘natural’ channel that seems to describe compres-
sion of real images (ref.)

R(D) = σ2/Dα (4)

with α ≈ 1.
Recall the relation between information source uncertainty

and channel capacity (Cover and Thomas 2006):

H[X] ≤ C (5)

where H is the uncertainty of the source X and C the channel
capacity. Remember also that

C ≡ max
P (X)

I(X|Y ) (6)

where P (X) is chosen so as to maximize the rate of informa-
tion transmission along a channel Y .

Note that for a parallel set of noninteracting channels, the
overall channel capacity is the sum of the individual capac-
ities, providing a ‘consensus average’ that does not apply in
the case of modern molecular coding.

Finally, recall the analogous definition of the rate distor-
tion function above, again an extremum over a probability
distribution.
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Recall also the homology between information source un-
certainty and free energy density. More formally, if N(n) is
the number of high probability ‘meaningful’ – that is, gram-
matical and syntactical – sequences of length n emitted by
an information source X, then, according to the Shannon-
McMillan Theorem, the zero-error limit of the Rate Distortion
Theorem,

H[X] = lim
n→∞

log[N(n)]

n
= lim
n→∞

H(Xn|X0, ..., Xn−1)

= lim
n→∞

H(X0, ..., Xn)

n+ 1
(7)

whereH(...|...) is the conditional and H(..., ...) is the joint
Shannon uncertainty.

In the limit of large n, H[X] becomes homologous to the
free energy density of a physical system at the thermodynamic
limit of infinite volume. More explicitly, the free energy den-
sity of a physical system having volume V and partition func-
tion Z(β) derived from the system’s Hamiltonian – the energy
function – at inverse temperature β is (e.g., Pettini, 2007)

F [K] = lim
V→∞

− 1

β

log[Z(β, V )]

V
≡ lim
V→∞

log[Ẑ(β, V )]

V

with Ẑ = Z−1/β . The latter expression is formally similar to
the first part of equation (7), a matter having deep implica-
tions: Feynman (2000) describes in great detail how informa-
tion and free energy have an inherent duality. Feynman, in
fact, defines information precisely as the free energy needed
to erase a message. The argument is surprisingly direct, and
for very simple systems it is easy to design a small (ideal-
ized) machine that turns the information within a message
directly into usable work – free energy. Information is a form
of free energy and the construction and transmission of infor-
mation within living things consumes metabolic free energy,
with nearly inevitable losses via the second law of thermody-
namics. If there are limits on available metabolic free energy
there will necessarily be limits on the ability of living things
to process information.

3 Groupoid symmetry shifting

Here we follow, in part, the argument of Wallace (2012a).
The direct model finds codons generated by a black box infor-
mation source whose source uncertainty is constrained by the
richness of the coding scheme of Tlusty’s analysis. More com-
plex codes will be associated with higher information source
uncertainties, i.e., the ability to ‘say’ more in less time, us-
ing a more complicated coding scheme. Suppose there are n
possible coding schemes. The simplest approach is to assume
that, for a given rate distortion function and distortion mea-
sure, R(D), under the constraints of figure 1, serves much as
an external temperature bath for the possible distribution of
information sources, the set {H1, ...,Hn}. That is, low distor-
tion, represented by a high rate of transmission of informa-
tion between codon machine and amino acid machine, permits

more complicated coding schemes according to a classic Gibbs
relation

Pr[Hj ] =
exp[−Hj/λR(D)]∑n
i=1 exp[−Hi/λR(D)]

(8)

where Pr[Hj ] is the probability of coding scheme j having
information source uncertainty Hj .

We assume that Pr[Hj ] is a one parameter distribution in
the ‘extensive’ quantity R(D) (monotonic convex, however, in
D) rather than a simple ‘intensive’ temperature-analog. This
is permitted under the ‘structurally intensive’ circumstance
of figure 1.

The free energy-like Morse Function FR associated with
this probability is defined as

exp[−FR/λR(D)] =
n∑
i=1

exp[−Hi/λR(D)] (9)

Applying Landau’s spontaneous symmetry lifting argument
to FR (Pettini 2007) generates topological transitions in codon
graph structure as the ‘temperature’ R(D) increases, i.e., as
the average distortion D declines, via the inherent convexity
of the Rate Distortion Function. That is, as the channel ca-
pacity connecting codon machines with amino acid machines
increases, more complex coding schemes become possible:

1. The genus of the embedding surface for a topological
code can be expressed in terms of the Euler characteristic of
the manifold, γ = 1− 1

2χ.
2. χ can be expressed in terms of the cohomology structure

of the manifold (Lee 2000, Theorem 13.38).
3. By the Poincare Duality Theorem, the homology groups

of a manifold are related to the cohomology groups in the
complementary dimension (Bredon 1993, p. 348).

4. The (co)homology groupoid can be taken as the disjoint
union of the (co)homology groups of the embedding manifold.

One can then invert Landau’s Spontaneous Symmetry
Breaking arguments and apply them to the (co)homology
groupoid in terms of the rising ‘temperature’ R(D), to ob-
tain a punctuated shift to increasingly complex genetic codes
with increasing channel capacity. See Wallace (2012a) for a
summary of standard material on groupoids and on Landau’s
phenomenological theory.

What, then, drives R(D), as this, in turn, drives punctu-
ated changes in the genetic code? Here we will significantly
diverge from the arguments in Wallace (2012a), invoking a
Black-Scholes formalism for ‘cost’ in terms of demand for
metabolic free energy. Later, we will use a similar argument
to examine failures in the dynamics of evolutionarily fixed
codes under free energy restraints.

4 Metabolic energy costs

Suppose that metabolic free energy is available at a rate H
determined by environmental structure and previous evolu-
tionary trajectory, which may be prior to the emergence of ef-
ficient photosynthesis, predation, mutualism, parasitism, and
the like. We iterate the treatment and consider H as the
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temperature analog in a Landau model on the Rate Distor-
tion Function itself. That is, let R(D) be the Rate Distortion
Function describing the relation between system intent and
system impact. This is essentially a channel capacity, and in-
formation transmission rate between the coding machine and
the structure or structures that biological code is attempting
to affect.

The distortion represents the dynamics of the disjunction
between the intent of a code and the actual productions of the
system. Let Rt be the RDF of the channel connecting them
at time t. The relation can, under conditions of both white
noise and volatility, be expressed as

dRt = f(t, Rt)dt+ bRtdWt (10)

Let H(Rt, t) represent the rate of incoming metabolic free
energy that is needed to achieve Rt at time t, and expand
using the Ito chain rule:

dHt = [∂H/∂t+ f(Rt, t)∂H/∂R+
1

2
b2R2

t∂
2H/∂R2]dt

+[bRt∂H/∂R]dWt (11)

Define L as the Legendre transform of the free energy rate
H, a kind of entropy, having the form

L = −H+R∂H/∂R (12)

Using the heuristic of replacing dX with ∆X in these ex-
pressions, and applying the results of equation (11), produces:

∆L = (−∂H/∂t− 1

2
b2R2∂2H/∂R2)∆t (13)

Analogous to the Black-Scholes calculation, the terms in f
and dWt cancel out, so that the effects of noise are subsumed
in the Ito correction involving b. Clearly, however, this also
invokes powerful regularity assumptions that may often be
violated. Matters then revolve about model robustness in the
face of such violation.
L, as the Legendre transform of the free energy rate mea-

sure H, is a kind of entropy that can be expected to rapidly
reach an extremum at nonequilibrium steady state. There,
∆L/∆t = ∂H/∂t = 0, so that

1

2
b2R2∂2H/∂R2 = 0 (14)

having the solution

HNSS = κ1R+ κ2 (15)

a perhaps not unexpected result. This outcome, however, per-
mits a Landau-analog phase transition analysis in which the
metabolic free energy available from the embedding ecosys-
tem serves to raise or lower the possible richness of a system’s
possible biological codes. As Wallace (2012a) argues, if H is
relatively large then there are many possible complex codes.
If, however, sufficient metabolic free energy is not available,
then the system can only entertain a few simplified codings.

While the aerobic transition apparently enabled endosym-
biotic processes producing eukaryotic organisms, it may
also have enabled evolution of the extraordinarily rich gly-
can/lectin cell surface codings essential to all multicellular
organisms. Wallace (2012b) argues, however, that full coding,
having 5,000-7,500 ‘glycan determinant’ amino acid analogs
made up of the appropriate basic set of monosaccharides,
would require a coding manifold with genus in the millions,
suggesting the need for an intermediate layer of cognitive
mechanism at the cell surface.

5 Code/translator stability

Van den Broeck et al. (1994, 1997), Horsthemeke and Lefever
(2006), and others, have noted that analogous results relating
phase transition to driving parameters in physical systems can
be obtained by using the rich stability criteria of stochastic
differential equations.

The motivation for this approach is the observation that
a Gaussian channel with noise variance σ2 and zero mean
has a Rate Distortion Function R(D) = 1/2 log[σ2/D] using
the squared distortion measure for the average distortion D.
Defining a ‘Rate Distortion entropy’ as the Legendre trans-
form

SR = R(D)−DdR(D)/dD = 1/2 log[σ2/D] + 1/2 (16)

the simplest possible nonequilibrium Onsager equation (de
Groot and Mazur 1984) is just

dD/dt = −µdSR/dD = µ/2D (17)

where t is the time and µ is a diffusion coefficient. By in-
spection, D(t) =

√
µt, the classic solution to the diffusion

equation. Such ‘correspondence reduction’ serves as a base to
argue upward in both scale and complexity.

But deterministic coding does not involve diffusive drift
of average distortion. Let H again be the rate of available
metabolic free energy. Then a plausible model, in the presence
of an internal system noise β2 in addition to the environmen-
tal channel noise defined by σ2, is the stochastic differential
equation

dDt = (
µ

2Dt
−M(H))dt+

β2

2
DtdWt (18)

where dWt represents unstructured white noise and M(H) ≥
0 is monotonically increasing.

This has the nonequilibrium steady state expectation

DNSS =
µ

2M(H)
(19)

Using the Ito chain rule on equation (18) (Protter 1990;
Khasminskii 2012), one can calculate the variance in the dis-
tortion as E(D2

t )− (E(Dt))
2.

Letting Yt = D2
t and applying the Ito relation,

dYt = [2
√
Yt(

µ

2
√
Yt
−M(H)) +

β4

4
Yt]dt+ β2YtdWt (20)
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where (β4/4)Yt is the Ito correction to the time term of the
SDE.

A little algebra shows that no real number solution for the
expectation of Yt = D2

t can exist unless the discriminant of
the resulting quadratic equation is ≥ 0, producing a minimum
necessary rate of available metabolic free energy for stability
defined by

M(H) ≥ β2

2

√
µ (21)

Values of M(H) below this limit will trigger a phase transi-
tion into a less integrated – or at least behaviorally different –
system in a highly punctuated manner, much as in the Landau
example.

From equations (15) and (19),

M(H) =
µ

2σ2
exp[2(H− κ2)/κ1] ≥ β2

2

√
µ (22)

Solving for H gives the necessary condition

H ≥ κ1
2

log[
β2σ2

√
µ

] + κ2 (23)

for there to be a real second moment in D, under the sub-
sidiary condition that H ≥ 0.

Given the context of this analysis, failure to provide ade-
quate rates of metabolic free energy H would represent the
onset of a regulatory stability catastrophe. The corollary, of
course, is that environmental influences increasing β, σ, the
κi, or reducing µ, would be expected to overwhelm internal
controls, triggering similar instability.

Variations of the model are possible, for example, apply-
ing the formalism to the ‘natural’ channel, having the rate
distortion function R(D) = σ2/D. The calculation is direct.

Equation (23), in fact, represents a close analog to the data
rate theorem (Nair et al. 2007, Theorem 1): the implication is
that there is a critical rate of available metabolic free energy
below which there does not exist any quantization, coding,
or control scheme, able to stabilize an (inherently) unstable
biological system.

Normal, or stress-induced, aging would, at some point, be
expected to affect the magnitudes of the parameters on the
right hand side of the expression in equation (23), while si-
multaneously decreasing the ability to provide metabolic free
energy – decreasing H. This would result in onset of serious
dysfunctions across a range of scales and levels of organiza-
tion, from genetic to protein folding to cell surface signaling.

6 Extending the model

It is possible to reinterpret the results of equation (23) from
the perspective of Section 3, producing a more general picture
of code failure under metabolic energy limitations. Suppose
we agree that equation (15) is only a first approximation, and
that we can take the Rate Distortion Function R as a mono-
tonic increasing function of available metabolic free energy
rate H that we begin to interpret as an effective system ‘tem-
perature’. Suppose also there are very many more possible

‘modes’ of code behavior, in addition to the simple stabil-
ity/instability break point implied by equation (23). That is,
we now expect complex ‘phase transitions’ in code function
with either changing demand for, or ability to provide, rates
of metabolic free energy to the coding/translating machine(s).

Given a large enough set of possible modes of
code/translation behavior, we write another pseudoprobabil-
ity like equation (8),

Pr[Hj ] =
exp[−Hj/ωH]∑n
i=1 exp[−Hi/ωH)]

(24)

where Hj is the source uncertainty to be associated with each
functional mode j.

This leads to another ‘free energy’ Morse Function, F , de-
fined now in terms of the rate of available metabolic free en-
ergy

exp[−F/ωH] =
n∑
i=1

exp[−Hi/ωH] (25)

Certain details of information phase transitions for this sys-
tem can be calculated using ‘biological’ renormalization meth-
ods (Wallace, 2005, Section 4.2) analogous to, but much dif-
ferent from, those used in the determination of physical phase
transition universality classes (Wilson, 1971).

Given F as a free energy analog, what are the transitions
between functional realms? Suppose, in classic manner, it is
possible to define a characteristic ‘length’, say l, on the sys-
tem. It is then possible to define renormalization symmetries
in terms of the ‘clumping’ transformation, so that, for clumps
of size L, in an external ‘field’ of strength J (that can be set
to 0 in the limit), one can write, in the usual manner (e.g.,
Wilson, 1971)

F [Q(L), J(L)] = f(L)F [Q(1), J(1)]

χ(Q(L), J(L)) =
χ(Q(1), J(1))

L
(26)

where χ is a characteristic correlation length and Q is an
‘inverse temperature measure’, i.e., ∝ 1/ωH.

As described in Wallace (2005), very many ‘biological’
renormalizations, f(L), are possible that lead to a number
of quite different universality classes for phase transition. In-
deed, a ‘universality class tuning’ can be used as a tool for
large-scale regulation of the system. While Wilson (1971) nec-
essarily uses f(L) ∝ L3 for simple physical systems, follow-
ing Wallace (2005), it is possible to argue that, since F is so
closely related to information measures, it is likely to ‘top out’
at different rates with increasing system size, so other forms
of f(L) must be explored. Indeed, standard renormalization
calculations for f(L) ∝ Lδ,m log(L)+1, and exp[m(L−1)/L]
all carry through.

This line of argument leads to complex forms of highly
punctuated phase transition in code/translator function with
changes in demand for, or supply of, the metabolic free energy
needed to run the machine.
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7 Amyloid fibril formation

Another possible inference from the considerations of Sec-
tions 3 and 6 is that, under metabolic free energy inadequacy,
grossly simplified ‘de-facto’ codes may sometimes begin to op-
erate in place of the full code. The most direct example, per-
haps, is the collapse of the ‘protein folding code’ from the rel-
atively complicated symmetries described in Wallace (2010)
to β-sheet amyloid plaques and fibrils in many protein folding
disorders.

More specifically, globular proteins, following the observa-
tions of Chou and Maggiora (1998), have four major, and per-
haps as many as another six minor, classifications. This sug-
gests a Tlusty code error network that is, essentially, a large
‘sphere’, having one minor, and possibly as many as three
more subminor attachment handles, according to Heawood’s
formula. These basic structures build a highly complicated
‘protein world’ that cannot be simply characterized.

The prebiotic ‘amyloid world’ of Maury (2009), in contrast,
is built on an ‘error code’ having a single β-sheet structure,
and shows, in its full extent, a remarkably simple eight-fold
‘steric zipper’ (Sawaya et al., 2007).

As Goldschmidt et al. (2010) put the matter,

We found that [protein segments with high fibril-
lation propensity] tend to be buried or twisted into
unfavorable conformations for forming beta sheets...
For some proteins a delicate balance between pro-
tein folding and misfolding exists that can be tipped
by changes in environment, destabilizing mutations,
or even protein concentration...

In addition to the self-chaperoning effects de-
scribed above, proteins are also protected from fib-
rillation during the process of folding by molecular
chaperones...

Our genome-wide analysis revealed that self-
complementary segments are found in almost all pro-
teins, yet not all proteins are amyloids. The implica-
tion is that chaperoning effects have evolved to con-
strain self-complementary segments from interaction
with each other.

Clearly, effective chaperoning requires considerable
metabolic energy, and failure to provide levels adequate for
both maintaining and operating such biochemical translation
machinery would trigger a canonical ‘code collapse’.

8 Discussion and conclusions

As has long been maintained (e.g., Maturana and Varela 1980;
Atlan and Cohen 1998; Wallace 2012c, 2014a), the living state
is cognitive at every scale and level of organization. Since it is
possible to associate a broad class of cognitive processes with
‘dual’ information sources (e.g., Wallace 2005, 2007, 2012c,
2014a), many phenomena – most particularly, complex pat-
terns of behavioral pathology – can be addressed using sta-
tistical models based on the Shannon Coding, the Shannon-
McMillan Source Coding, the Rate Distortion, and the Data

Rate Theorems (S/SM/RD/DR), as these provide powerful
necessary conditions on all information generation and ex-
change, and on the role of information in system control (e.g.,
Wallace 2014b, c).

Strictly speaking, deterministic-but-for-error codes, al-
though they may be partly analyzed using information theo-
retic methods as Tlusty does, do not fall so easily within di-
rect characterization by S/SM/RD/DR models. Such codes
do not, in fact, invoke cognition, although, as with cognitive
gene expression (e.g., Wallace and Wallace 2010), they may
become essential subcomponents within larger cognitive pro-
cesses.

Nonetheless, the argument leading to the Data Rate Theo-
rem analog of equation (23) – and the generalization of Section
6 – place code stability within a recognizably similar frame-
work, with metabolic free energy serving as a ‘control signal’
stabilizing efficient operation of complex biochemical coding
machinery. Demand beyond available metabolic energy sup-
ply then expresses itself in punctuated destabilization, degra-
dation, or pathological simplification, of the code/translation
channel, possibly affecting gene expression, protein folding, or
the operation of the glycan/lectin cell interface.

Normal aging, or its acceleration driven by psychosocial or
environmental stressors, must eventually interfere with rou-
tine code operation, triggering onset of many chronic diseases
associated with senescence that involve failures of these mech-
anisms.
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